HAROLD E. EDGERTON

PAPERS

MC 25

Series III

Laboratory Notebooks

Number 3

Dated Feb. 15, 1930 to June 16, 1931

NOTEBOOK S-3.

Massachusetts Institute of Technology

The Budde - A How the

COMPUTATION BOOK

an Ethics

Sr. iber

.031.

Course

Used from FEB 15 1930, to JUNE 16

NAME

MARDIE FORMER

Notebook # 3

Filming and Separation Record

_ unmounted photograph(s)

____ negative strip(s)

21 unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page _____ and ____.

Item(s) now housed in accompanying folder.

Omax = 20 mits elect degs / a mit. 6 1/3 20 < 40 rev. $b < \frac{40}{M_3 20} = \frac{2}{M_3}$ Let M3 = 1/4 b< 2 = 8 ATA R = 1 32×8 = 1 (1) Let n6= n5= 1. $\frac{e.c}{32x8} = 1$ (2)8 ny no D = 1. 7. (3) Let 6"= 1 mit on (P. table.) a = 120 rev. M. = 120 M. rev. Junit. Let n, = 1/4 so a = 120 = 30 rev./mit. $from(1) \quad D = \frac{32 \times 8}{30 1} =$ $C = \frac{8}{32} \frac{N_4}{32} \left(\frac{32}{30} \right) = \frac{1}{32} \frac{32}{30} \frac{32}{30} = \frac{8}{30}$ from (3) le= .05 mits fet Ny = 1/2 ke= .05 x 60 x 32 from(2) e= 32× \$ 30 = 30×32 rev/mit. 260

Let e = 30x32. 3 C= ==== $M_{4} = \frac{32 \times 4 \times C}{XD} = \frac{32 \times 4 \times 32 \times 8}{7 \times 30 \times D}$ but D = 32x8 My = 32 XX X 32 XX 122 = 16 ? My = XX X 32 XX 32 XX 2 should be a should be should be a should be should be a should be a sho Let e = 30×32 C = 32 XPX 2 5 30 X 32 15 $n_4 = \frac{32 \times 4 \times 8}{8 D 15} = \frac{32 \times 4 \times 8}{8 \times 15} = 1$ but if n 5 = 1/2 e= 8/15 $M_{4} = \frac{32 \times 4 \times c}{8 \eta_{5} \times D} = \frac{32 \times 4 \times 8}{8 \times 2 \times 8} = 2$ me to sente a man some her the be

trial III Let c = 32 and e must equal 30×32 b = <u>BC</u> = <u>32</u> <u>3xx3A</u> <u>1</u> = 16 and a = 30 $\frac{@h_6D}{326} = 1$ trog 14 = 1/2. <u>ee</u> = 1 326 = 1 M3 = 40 = 2 = 18 6 Ayns 75 D. = 1 fet 13 = 7 320 Let m = 1 a = 30 To $D = 32 \frac{32}{30} \frac{2}{10} = \frac{32\times32}{30}$ 5 = 16 $D = \frac{32\times32}{30}$ $M_6 = \frac{32b}{Da} = \frac{32}{32\times32} \frac{16}{32} = \frac{1}{2}$ $e = \frac{30 \times 32}{2}$ C= 32/30 1, = 14. When k = . 05 kx 30x32 M2 n2 = 114 73 = 1/8 1 × 30×32 1 = 120 ver ny = 1/2 75 = 1 76 = 1/2

NT 12016 $C = \sqrt{\frac{ea}{n.n.}}$ a = .9375 9.39 0.9.3.75 M5 0 = C71, 71_ = Vea 11, 712 1.12 32 Van, 1/2 D =enit. X I TT V TT VI VIII VII 1/2 (14) 1/2 n, 1/4 1/32 114-1/4) 7/2 114 14 1/8 7/5 > 1/2 14 1/8 (1)4) 114 1/4 no 1/4 30 30 - 30 3,75 1.875 - 2.085 15 a 30 7.5 e 3,75 D 32/12 128 32 32 32/2 30/12 30 C 30 Crini2 Travel of Sanit 1.88 3.75 2.66. 1.88 2.66 ₹2 13/8 .375 0.3995 Tipril 3, 1931 Rox <u>9.39</u> = 1.043 150 - rus/unit Scale it .53 - make C = 1.043 = 2.085 ver/mit c= Ver = V 16 2.085 30=4 VER = 417.90 = 31.6 rev/unit Cx 1/ = 31.6 1/ = 7.9 rev/mint - Weich 7.9 =0.395 in./ unit

The state den Tile A 20 Monit 20916 A C M, O inch/mit. 2016 in / with a - hens E ha Na Dt_ A CO cééo connz aö $\dot{\Theta} = \frac{Da}{32} \int \dot{\Theta} dt$ a " × 40 rev. conn2 \$40 rev. $\theta = \frac{CN_1N_2D_1}{32e} \int \theta dt$ $\frac{c n, \dot{\theta}}{20} \not\leq 12'' \pm$ $\theta = \frac{c n_1 n_2 D^2 a}{32^2 C C} \int \dot{\theta} dt.$ Conditions for scales is that $\frac{CN_1N_2P^2a}{32^2Ce} = 1.$ Speed of solutions "= (mm_2)a) "= k ad = k meeg 0 = M6 k M5 @ 0, "= knsened.

D. It the les I.l. at one point (1) $\frac{a\theta}{20 n_{c}} = k \frac{e\theta n_{c}}{20}$ $C\dot{\theta} = \frac{Da}{32}\ddot{\theta}dt$ D= 32/0- $\dot{\theta} = \frac{Da}{32c} \left(\dot{\theta} dt \right)$ $\frac{Da}{32C} = 1$ $C \phi = -\frac{D C n_1 n_2}{32} \phi dt$ 0 = - Den, M2 ()dt : Den, M2 = 1 320) Odt : Den, M2 = 1 $\theta = -\frac{D^2 \alpha cn_n n_2}{32^2 ce} \left(\dot{\theta} dt^2 \right)$ $\dot{\theta} = k \, \underline{e} \, \underline{n}_{5} \, \underline{n}_{6} \, \theta$ k is geometrical slope 0 =- E Dach, M2 ens Ma O de Ø = - k <u>D² M, M₂ Ms</u> M6 Ø If A = A sin (wt+x) Tree Por 1 ferrod = 120T D W= VK D= 1, M. M. M. M. T= 2TT in terms of t To in terms of variable (Dt) is Dunes T

D. At the les Ile Time in seconds = <u>sec</u>: x <u>rev</u> rev. <u>unit</u> of <u>D</u>; <u>whit</u> of <u>T</u>; oftend. <u>t</u>} In example set up for backlack test k = 1 $n_{c} = 1$ $n_{5} = \frac{1}{4}$ $\frac{a}{n_1} = k e n_5$ $a = \frac{e}{4}$ $n_{1}n_{2} = \frac{1}{4}$ $C = \frac{Da}{32}$ $C = \frac{32e4}{D} = \frac{32.16a}{D}$ Da = 32.16 x D" = 32".16 D = 4×32 = 128 $C = \frac{128a}{32} = 4a = e$ Time of ascillation in sec. = 88 Speed of time shaft = N rfan Sec = 60 88 = 60 128×2T $N = \frac{60 \times 128 \times 2\pi}{88} = \frac{60 \times 32 \pi}{11} = \frac{1920\pi}{11} = 550 \text{ rpm}_{e}$ Notor feed = 3:75×550 = 2070 xp.m.

Just to Hauden Folo And In Edgerton's problem (New ratio's (II)) ens = 0.9375 = 0.046875 m/deg. 1 e = 4 × 0,9375 = 3,75 rev/deg @ output of #2 integ. a = 6 inches per unit torque 16 = 4 a = 20×6 = 30 reo of # 1 leadse. / mint torque $\frac{D_{C} n_{1} n_{2}}{32e} = 1 \qquad n_{1} n_{2} = \frac{1}{8}$ $D = \frac{32e}{n_1 n_2 c} = \frac{32 \times 3.75 \times 8}{c} = \frac{256 \times 3.75}{c}$ = 960 $D = \frac{32C}{a} = \frac{32}{30}C$ $C = \frac{30}{32}D$ $D = \frac{960}{30} D^2 = \frac{32 \times 256 \times 3.75}{30}$ $D^{2} = \frac{2^{'3} \times 3.75}{30} = \frac{2^{'2} \times 3.75}{15} = 2^{'2} \times 0.25$ D= 32 VC = 30 $Try in c in M_2 = 40 \quad c = \frac{30}{8}\dot{\theta} = \frac{30\times16}{8} = 60$

Elpitens proffen Take / e = 0.9375 × 4 = 2.75 rev./degree of & in input

Just to Handen Folo New layout of ratios . (I) 4 $w^{2} = k \frac{D^{2} n_{1} n_{2} n_{5} m_{6}}{32^{2}} = l \frac{32^{2}}{32^{2} \times 8 \times 4 \times 4} = \frac{1}{128} \frac{4}{8^{2} \cdot 2}$ T= 2π812 = 1612π = 71. mits of t = 71×32 revolutions T= 120 TT 32 = 2270 2270 = 5.67 min. Old nation (I) no = + no = + $n_{1}n_{2} = \frac{1}{32}$ $\omega^{2} = \frac{128^{2}}{32 \times 8 \times 8 \cdot 32^{2}} = \frac{2^{14}}{2^{15+6}} = 2^{-7} = \frac{1}{128}$ w= -15-T = 2 TT 8 Y2 = 16 Y2 T, units of t = 71×128 revolutions oft shaft Tune in min. = 1/x/28 = 7/x 32 = 22.7 min. 400 = 100 = 22.7 min. T= 120TT 128

ant Just to Hayden Fol-5 Scales III (CIII = CIII) 5 Da = 1 320 32×30 =/ ens=0.9375 $\frac{\mathcal{D} c n_i n_2}{32e} = 1$ e = 0.9375 NE a check on new Frales $\frac{D c n_1 n_2 n_5}{32 \times 0.9375} = 1$ 32×30 32 × 0.9375 × 8 × 4 = 1 D = 320 n, = -2 32 C. C. n. N. N.5 = 1 a 32 x 0.9375 = 1 M2 = 1/4 Take c= 30 Find N5 $\frac{32}{30} \frac{30^2}{2} \frac{1}{8} \frac{115}{32 \times 0.9375} = 1$ $N_{5} = \frac{30 \times 2 \times 8 \times 32 \times 0.9375}{32 \times 30^{24}} = \frac{1}{2}$ $\omega^{2} = k \frac{D^{2} n_{1} n_{2} n_{5} n_{6}}{32^{2}} = k \frac{32^{2} c^{2} \cdot n_{1} n_{2} n_{5} n_{6}}{32^{2} a^{2}}$ $D = \frac{32.30}{30.12} = \frac{32}{12}$ 22,5 34 (2 = / 32 30 $\frac{22.5}{32} \frac{3}{\sqrt{2}} \frac{1}{8} \frac{1}{1.825} = \frac{673}{670} = 1.0$ $T = \frac{120 \pi}{N} \frac{32}{\sqrt{2}}$ Ch. n2 0× 40 mer.

< N. 6 32.30° × 8×4×0.9375 × 1 N 1. A

Just to Handen Fol-6 5 Scales II Take 11, 12 = 16 C = 30 12 $\frac{32c}{a} \cdot \frac{cn_1n_2n_5}{32 \times 0.9375} = 1$ 32.30².2 H5=/ 30 x32x0.9375×16=/ 15 = 30×32×76×019375 = 75 = 4 32×30×2 = 30 = 4 $\omega^{2} = k \frac{c^{2} n_{1} n_{2} n_{5} n_{6}}{a^{2}} \qquad D = \frac{322}{a} = \frac{32 \cdot 30Y^{2}}{30} = 32Y^{2}$ $T_{sec} = \frac{60}{N} D 2\pi = \frac{120\pi D}{N}$ = 120TT 32VZ en,n. 6 3012 16 17 = 45

- SF

de dt. 0= SSPidt-Sk(1-bcos20) ödt Jdt. Relt k(1-600306) Sh (1-bcosso) odt NZ - FRat - ("h(1=10000) dat ...

Just to Hayden Fol apr5 & jonax is about 2 or less. : let a = 16 $A0 \ a < \frac{40}{2} = 20$ max for emits = 0.2 CX0.2 < 40 C< 40 = 200. Let e= 128 I may is about 20 box 40 b< 40 = 2. let b= 2. $1 = \frac{M_3 \eta_6 Q D}{325} = \frac{M_3 \eta_6 \eta_6 D}{32 \times 2} = \frac{M_3 \eta_6 D}{4}$ 113, -160 2. $1 = \frac{\eta_1 e_{\mathcal{C}}}{532} = \frac{\eta_1 128 c}{232} = 2 \eta_1 e.$ 2/4 カ $3. \ 1 = \frac{m_4 n_5 5D}{322} = \frac{m_4 n_5 2D}{322} = \frac{m_4 n_5 2D}{322} = \frac{m_4 n_5 2D}{162}$ C I Try 15=1 16=1 13=1/4 117=1/4 115 = 16 C Dry 14 $I_{1} = \frac{\eta_{3} \eta_{6} \mathcal{D}}{4} = \frac{1}{4} \frac{1}{4} \frac{\mathcal{D}}{4} \qquad \mathcal{D} = 16.$ 2, 1= 21/2 c= 24 c c= 2, 3. $1 = \frac{M_4 M_5}{16} = \frac{M_4 1}{N_6} \frac{M_6}{2} = \frac{M_4 1}{N_6} \frac{M_4}{2} = 2.$ but $M_4 \ge \frac{1}{2}$. I try My = 1/2 which give from 3 D = 16x2 DUNS n6. n7. - $Let n_3 = n_7 = 1/4$ (2) $c = \overline{2n_7}$ $D = \frac{4}{n_3 n_6}$ 113- $D = \frac{4}{1 + 4} = 16 \times 4 = 64$ $c = \frac{1}{214} = 2.$ $\eta_{5} = \frac{c}{D} \frac{16x_{2}}{c} = \frac{2}{6x} \frac{16x_{2}}{c} = 1 \quad 2.$

ANT Just to Hayden Fol 2 III togy ny = 1/2 (same as II) c= 1/2 = 1 · Let M3 = My = 1/2 $D = \frac{4}{L_{\perp}} = 16,$ ne = 1/2 $m_5 = \frac{32}{D} = \frac{321}{16} = 2.$ NG II try M4 = 1/4 13 16 D = 1 2-11- C= 1 try n3= 1/2= 1/4 175 D= 1 4×16 C= 1 76=1 $D = \frac{4}{\frac{1}{2}} = 16 \quad C = \frac{1}{2\frac{1}{2}} = 2$ M5 = 64 1 = 64 2 = 8. 11G. check on case I 1. 1 = M3 710 a D = 1/4 1/4 1/6 64 = 1 1 326 . 32 x 2 1, 2. 1= M7 ee = 1/4 12 RA = 1 V 13 14 my 14 75 1 76 114 71, 14 9 16 Z Z e 128 \$ 64

- NS Just to Hayden Fals 400 rev/min. 3 C=1.0/3=.5 1.043 L 3 my = 1 1056 C = CY2 = 2.086. rev/amit. c= 1.043 rev. pmit quanties de termines c = 1.043 ver funit. a = 16 rev e = 128 nev- $1, \quad 1 = \frac{7}{3}\frac{7}{6}\frac{2D}{5} = \frac{7}{3}\frac{7}{6}\frac{7}{6}\frac{7}{5} = \frac{7}{3}\frac{7}{6}\frac{7}{6}\frac{D}{D} = \frac{7}{4}$ 5 = 2 rev. Q 1.= M2 e = M2 185 1.043 4 M2 1.043 32 6 = 4 M2 1.043 My = 2 = 1 / 1.083 Replot & chart so that c= 1.0. Let ng=1 c= 1.0 ver per mit (led deg). or 1.0 × 18 x = 9 inches for 180 gleet

4 Quanties determined TI c = 1.0 $1. \quad I = \frac{m_3 n_6 q D}{326} = \frac{m_3 m_6 X_8 D}{32} = \frac{m_3 m_6 D}{32}$ 9 = 16 e = 128 $2 = \frac{1}{532} = \frac{\eta_{1}}{2} \frac{1}{32} = 2\eta_{1}$ 3 = 2. 11/2= 1/2 $3. \quad 1 = \frac{m_{4} m_{5} \ 6D}{32 \ c} = \frac{m_{4} m_{5} \ 2D}{32 \ x/} = \frac{m_{4} m_{5} \ D}{16}$ (5 mknowns) (300 (mo equa) Let M3 = 1/2. My = 1/2 M5 = 1 $from 3 \qquad l = \frac{1/2}{10} D = 16 \times 2 = 32,$ from 1 1= = = 10 3 2 = 4 m6 Petabulation 11. 1/8 M6 = 1/4. 1/2 1/4 for all = 1.6 8 = 6.4 in permit m3 1/2 714 1/2 75 1 76 114 e = 128 - 128 x = 5.12 in/mit. 3, 1/2 a 16 5 2 e -1 D 32 C 128

Just to Hayden Fale

For cases where k = 0.05 as max. VIE Then e = 256. a remains 16 6 2 O Unit equations 1= 7376 aD = M376 H D = M376D $1 = \frac{\eta_2 e_c}{632} = \frac{\eta_2 256}{2 \times 32} = \eta_2 4$ 1/2= 1/4. $I = \frac{n_{\pm}n_{5}bD}{32c} = \frac{n_{5}n_{\pm}2D}{32\times 1} = \frac{n_{5}n_{\pm}D}{16}$ A ds + A (1-bcross)s = P_ Ret Pi S= for do $\frac{d^2 \phi}{d t^2} + \frac{P_0}{P_1} \left(1 - b \cos 2\theta \right) \frac{d \phi}{d t} = \frac{P_1}{P_1}$ Ag, ARda = E

Just to Hayden Febrar 1987 Computation #3 NB. 3 Tel-1530 June 10 315 TI July 2031 Jan 12 32 7-5 Oct 27 34 aug 27 35 T-6 aug 27 35 - 92 2836 7 apr 28 36 - may 27 37 8 June 1 37 april 1637 apr 18 38 June 12 39 10 June 13 39 Jofet 19 40 11 Sept 17 40 Dec 3 41 12 Dez 4 41 aug 24 42 13 aug 24 2 2 man 31 43 14 apr 145 Jan 30 44 15 Jan 30 44 Fol 16 45 16 Jel 17 45 June 30 46 17 mar 30 46 June 18 48 19 June 18 48 Feb 7 1950 EG46 Dr. 8 48 April 8, 1951 underwater GP. aug 4 52 Ocx19 1952 Photography 20 del 7 50 Dec 27 51 Jang 54 21 Rec 27 51 apr 19 55 22 Jan 9 54 23 apr 1955 Dec 19 56 24 Dec 1956 apr 2958 25 apr 29 58 may 1460 Jan 18 62 26 heary 14 60 mur 18 63 Jan 1862 27 25 100 1863 nung 30 65 July 11 69 29 may 30 65 Jan 11 73 Jan 11 73 Jan 11 73 Jan 12 75 mon Bork 1 10-15-31 Jan -14-31 30 act 269 31 Jan 11 73 Ken (small, red composition Book)

Hilling fan 21 1967 (wiste an pie book) Hilling fan 21 1967 (wiste an pie book (p.u)) Small composition book (p.u))

HAROLD E. EDGERTON 52 MASS. AVE. CAMBRIDGE MASS. M.I.T. ROOM 4-210 FEB. 15, 1930.

- NS

SELF. - HUNTING

OF

SYNCHRONOUS MACHINES.

P102-"105 Strobs.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

COMPUTATION BOOK

GENERAL INSTRUCTIONS

In all work in which *accuracy* and *ease of reference* are important, much depends upon carrying out the computation in a systematic manner. The following instructions, taken from the *Engineering Department Figuring Book of the Allis-Chalmers Co., serve as a guide in this matter.*

"All computations, of whatever kind, are to be made in these books, except in cases where special blanks may be provided for specific kinds of computation. Computations may be made in ink or pencil, whichever may be more convenient. Pencil figuring should be done with a soft pencil. All the work of computation should be done in these books, including all detail figuring."

"Each subject should begin on a new page, no matter how much space may be left on the previous page. The subject, with the date of beginning it, should be plainly written at the top of the first page of the subject."

"Work should be done systematically, and as neatly as consistent with rapidity. The books are, however, intended for convenience, and no unnecessary work should be done for sake of appearance only. Errors should be crossed off instead of erased, except where the latter will facilitate the work. Work should not be crowded. Paper costs less than the time which would be expended in attempting to economize space in making erasures."

"Where curves drawn on section paper (or sketches) are necessary parts of a computation, they should be pasted in the book, except where specifically otherwise provided for."

"Computations should be indexed, in the back of the book, by the person using the book." * * * * * * * *

1 Skrolf E. Edgerton

Oscillographic neasurement of the 1.5. Edget Augular displacement in a Syn. Machine. an extra synchronous machine on the shaft of a machine being tested gives a voltage which is in thas a definite relationship with the induced emf. E of that machine being tested sind since the field pole have a vigid relation ship. The open-circuit voltage from this extra machine is combined. vectorially with the terminal at voltage of the machine under test and a trigonometric 3 voetage problem gives the angular displacement. Ee E V TI II II Jummeda dield poles of both I machines in line. If to and Vare equal then $D = cool \frac{1}{2E_v}V_i^2$ When Ee and Vare equal then 180 $Q = cos' \frac{2V-V_1}{2V^2} = cos' 1 - \frac{V_1}{2V^2}$ θ 90 This method has been used in 24 the pastwith great success. when the rotor is slipping, for instance during a transient following a sudden load, then the length of Eq. depends directly upon the speed and some small evors are introduces. The expression for angle is them Q = coo' V + (1-5) E - V/2 where sisthe slip. The slip is usually 2EV(1-5) less than 2% so this is ordinarly neglected.

Jel 15 1930 angle measurement. . . S. Elgerten I had more Vershaw build me a device which I hoped would aid in measuring angle with the saillograph This was to be a variable relative motor, its stato supplied by a.c. from the terminalo, and its notor circuit to be connected to an oscillograph vibrator. a sketch is shown of the machine, At was driven at 3600 npm by a 2:1 gear on a 1800 r.p.m. alt in the flaminded dynamo laboralay Sime wage generators sel 99 a. b. c.). coil. needless to say the output voltage of the votor was of a very pecular shape. The current input was also interestingand offers some possibility of Auture development. The current to the exciting ac coil has a nick in it every time that the eccutric volor lines up with the pole face. the speed is constant this will occur at the same place on the current source otherwise it will occur at deferent places and its position will depend upon the relating positions of the votor and the terminal vollage. Trouble was experienced with the copper prushes that were upedand finally caused the experiment to be discontinued after four oac. were lotel sala for ooc. Osc. 1. Chattering brushes on rolor gave poor record. Film also too slow. Ose 2. Poor Focus. Wave interfere, Too slow Arum speed. Ope. 3. alk. on page 5. Doc 4. Focus froor. Angle voltage V, as explained proge 3 is shown on all ose,

Notebook # 3

Filming and Separation Record

5

unmounted photograph(s)

_____ negative strip(s)

____ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{+}$ and $\underline{-}$.

Jel 15 1930 angle measurement. " H. Elgertin I had more Vershaw build me a device which I hoped would aid in measuring angle with the ascillograph This was to be a variable relationed motor, its stato supplied by a.c. from the terminalo, and its volor circuit to be connected to, an oscillograph vibrator. a stretch is shown of the machine. At was driven at 3600 npm by a 2:1 gear on a planinded dynamo laboratory (Sime ways generators sel 99 a. E. c.). of V Ceoil. needless to say the output voltage of the votor The current input was also interestingand development. The antent to the exciting ac coil has a mich in it every time that the eccentric volor lines up with the pole face. At the speed is constant this will occur at the same place on the current afferent places and its position will depend upon the relating positions of the votor and the terrinol vollage the copper prushed that were upedand finally caused the experiment to be discontinued after four osc. were lote Data for osc. Osc. 1. Chattering brushes on rolor gave poor record. Film also too slow. Ose 2. Poor Focus. Wave interfere, Too slow Arun speed. Ope. 3. Ok. on page 5. Doc 4. Focus froor. tugle voltage U, as explained page 3 is shown on all osc.

Notebook # 3

Filming and Separation Record

5

l unmounted photograph(s)

____ negative strip(s)

_ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{+}$ and $\underline{-}$.

0 Angle voltage V, as explained page 3 is shown on all ose,

-15 5 * 中小市 mi ROTOR CURRENT WPUT CURRENT 050. 3 FEB. 15 1930 X.E.E. TIME

ab. 21/1730 L. E. Edgerton Source of Energy for Self Oscillations of Synchronous machines. a recent paper by nickle and Pierce in the a. S. E. blames self hunting to armature resistance. The unbalance of the notor circuit is also considered and it is noted that pole face damping windings in the guadrature ages suppresses the possibility of self-oscillation. no physicals picture was given in this paper of the mechanism where by a synchronous machine should hant accumulatively. Our common reasoning powers tell that if a winding on the fortor is escillated back and forth during an oscillation, the induced guments from Ten's law always of pool any change of position. Such an action would tend to reduce oscillations. I have been thinking about this problem for several years, trying & splisty myself that it was possible from the characteristics of synchronous and induction machines to explain self-hunting or self sustained socillations. conditions for negative damping air only on the rotor circuit. a rotor that is single thase has a torque that pulsales at double slip frequency. It is a maximum when the coll is cutting the maximum flux of the votating field, It is also a minimum when not cutting the rotating field. 100000000000000 Torque level auge to

to shown in the sketch on the preceding page this torque due to a single phase winding is a minimum at zero angular displacement. If the currents in the single phase rotor effect the rolating field, q, then this field can be represented by two recessary since the flux of the rotating field is pulsating. The positively rotating field reacto with the field, winding and gives positive tamping acording I some law as the sind as a function of angle and directly proportional of the slip for small values. The negative phowever is in the opposite sense always to the positive and the to & araint requirements does not have its maximm at the same time the positive field fines up with the coil. This being trul the negative field at small angles is in such a direction as to give torque which appears to push instead of pull as a function of slip. This caused oscillations to build up, They will continue to mercase in magnitude until large enough angles are reached inthe course of the swinging where the positive damping again occurs.

8

Mechanical-Electrical Argue Equation. Feb, 23 1930 1. E. Colgerton The swinging of a synchronous machine is always in acord with the differential equation that states the sum of the various Inchanical and electrical torques that exist during the disturbance. This equation is of the form : $P_{j} \frac{d^{2} \theta}{d t^{2}} + f(\theta) \cdot \mathbf{f}(\theta) + f(\theta) = load trops.$ In an ideal machine with negligible. armature resistance, a smooth notor, and for small values of slip, this reduces to approximately the following: Pi de + Fa de +Pabur 0 = load torque. The term To the is such that it always approved and force that tries to change the speed of the machine from synchronism. this effect then in a machine with a balanced notor jiscuit always tends to damp out oscillations. Such damping is termed by defination as beining positive. In order to get alf - oscillations this force must have a negative sense some of the time since there can be no sources of escillation in the synchronizing or inertia terms of the alferential equation. Dreyfus points out this fact. a bottor with a single phase winding will give this condition for small angula dis placements.

Induction motor with a Single-Phase Rotor. J. F. Edge From the open phase of and the Balancel the notor to the shart circuited 3 vottage pair there will be a voltage supply. of slip frequency. This V voltoph. may be split up into its populire and negative seguence components by Fortescai's method of symmetrical shase components. Since the arment in the open circuited phase is goo the sum of the positive and negative sequence currents are zero, in this phase and thus equal to each other in magnetude but 180° in phase I = I2+ + I2 = 0 where the 2 refers to the rotor circuit. I think that this problem can be best analysed by considering that the stator has two components of voltage applied to it. Each will be polyphase and balanced. One will be the impressed enf. V. The other will depend upon the slip at the which the notor is considered, It will be of such a value that the rotor current in one phase is zero. Such a requirement states that the spicticational voltage shall have a freq. of (1-25) f where the ship the stator arment will be the sum of the two unext components and since they are at different frequencies the total stator unnext will contain beats which accum in the different phases in rotation. I know this to be the case since I have observed it in the laboratory, both with metter and with the oscillograph,

10

Feb 23 1930 Equivalent Circuit for impressed voltage V. a un lev X2 I, beigg In 12 + beigg I T2 5 V+ In I, $J_{+2} = \frac{(V_{+} - J_{n} Z_{+})}{r_{1} + \frac{v_{*}}{s} + j'(N_{2} + N_{1})}$ Equivalent circuit for 1-25 voltage Generator action r2 (-5) (-25) "In slips from 0 to ,5. motor then on down to slip of 1. or stand frequency of (1-25) times that of 4 $I_{2}' = \frac{V_{-} I_{n} Z_{-}}{r_{1} - \frac{r_{2} S}{l - 2 S} + \frac{1}{S} \left[\frac{V_{2} (l - 2 S) + V_{1} (l - 2 S)}{r_{1} - 2 S} \right]}$ These two current in the rotor winding are to be equal and appoints in one phases from the above equations we can find u in terms of V+ and the slip. I. = I. = ZIT $V - I_{h} z = Z_{T} \left(V_{4} - I_{h} z_{4} \right) = \left(V_{4} + I_{h} z_{4} \right) \frac{\left(r_{1} + \frac{r_{3} s}{1 - 2s} \right) + j \left(1 - 2s \right) \left(\chi_{1} + \chi_{2} \right)}{1 - 2s}$ $\left(\mathbf{x}_{1}+\frac{\mathbf{x}_{2}}{\mathbf{s}}\right)+\mathbf{j}\left(\mathbf{x}_{1}+\mathbf{y}_{2}\right).$ $V = \left(V_4 - \frac{1}{2} \frac{z_T}{z_T} + \frac{1}{2} \frac{z_T}{z_T}\right)$ $Z_{+} = r_{i} + j' \chi_{i}$ $Z_{=} = r_{1} + j r_{1}(1-25)$

differential equation of a two phase machine and the reduction of these equations to a simple form. Feb 24/930 A. E. Edgents 1 Доток "Коток Suinsoial fux is assumed in this treatment. The air gato is also uniform and the iron has a constant germeability. Voltage drops around phase one of the stator. $e_{i}' = \tau_{i} z_{i}' + L_{i} p z_{i}' + M_{p} z_{2}' coo \theta + M_{p} z_{2}'' coo \theta + \frac{\pi}{2}.$ (1)e,"= v, 2;"+ L, p 2;"+ Mp 22 cood + Mp 22 cood -== phase 2. (2) E' = r2 2' + L2 p 2' + Mp 2' Mcood + Mp 2' Mcood - T/2 Roton Jh. I. (3)e" = r22"+ L2p2" + Mp2, Mc000 + Mp2, Mc000+ 15. (7) pha. from four equations and four inknowns to two Giteen the czi equations, two unknowns by splitting the currents nto componento. In order to do this let: 2 = 42 + 22 e, = e+, + e, $z_{i} = z_{i} + z_{i}$ and z' =- j z', + j z. 2"=jz+2+j=2. e,"= -jq, + je, @= Ga + Ca This change of variables gives the differential equations a new form wherin e2=-je,+je2. there are only two variables and two equations $C_{+1} = (r_{1} + L_{1}p) z'_{1} + M_{p} z'_{2} z'_{1} = (r_{1} + L_{1}p) z'_{1} + M_{p} z'_{2} z'_{1} = i0$ $C_{+1} = (r_{1} + L_{1}p) z'_{1} + M_{p} z'_{2} z'_{1} = i0$ notice the change of sign for the stoter and notor equation $e_{42} = (r_2 + L_2 p) \frac{1}{4_2} + M p \frac{1}{4_1} \frac{1}{2} = i \theta =$ is only in the exponent. e=2 = (r2+L2p) =2 + Mp =1, E'

Draliminary proof Subject to revision

Notebook # 3

X

Filming and Separation Record

____ unmounted photograph(s)

____ negative strip(s)

13 unmounted page(s) 12 page reprint with one page (notes, drawings, letters, etc.) of notes inserted

EDGERTON

was/were filmed where originally located between page 12 and 13.

differential equation of a two phase " machine and the reduction of these equations to a simple form. Per 24/930 V. E. Edgerts Suinsoial flux is assumed in this treatment. The air gato is also uniform and the iron has a constant germeability. Voltage drops around phase one of the stator. e'= v, z'+ L, p z' + Mp 2 cood + Mp 2' cood+ #. (1) e,"= v, z,"+ L, p z,"+ Mp 22 cost + Mp 22 cost - == phase 2. (2)e' = r2 2' + L2 p 2' + Mp 2', Mcood + Mp 2', Mcood - T/2 Roton Jh. I. 3) e" = rai"+ L2pi' + Mpi, Mc000 + Mpi, Mc000+ 15. pha. (7) from four equations and four inknowns to two C, " Leen Apadin r.p.m. equations, two unknowno by splitting the currents its components. In order to do this tet: Za = 2 + Za e, = e+, + e, $z_{1} = z_{+1} + z_{1}$ and z," = - j z_1, + j z_, 2"=j2+2+j=2. e,"=-je, +je, @= Ga + C2 This change of variables gives the differential equations a new form wherein e2=-jE1,+jE2 there are only two variables and two equations $C_{i} = (r_{i} + L_{i}p) z'_{i} + M_{p} z'_{2} z'_{i}$ $C_{i} = (r_{i} + L_{i}p) z'_{i} + M_{p} z'_{2} z^{-i0}$ notice the change of sign for the stater $e_{22} = (r_2 + L_2 p) \frac{z'}{r_2} + M_p \frac{z}{r_1} \frac{z''}{z} = i \theta =$ is only in the exponent. e=2 = (r2+L2p) =2 + Mp =1, E'

Draliminary proof Subject to revision

Notebook # 3

o to

Filming and Separation Record

____ unmounted photograph(s)

____ negative strip(s)

13 unmounted page(s) 12 page reprint with one page (notes, drawings, letters, etc.) of notes inserted

EDGERTON

was/were filmed where originally located between page 12 and 13.

Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis—Part I

BY R. H. PARK*

Associate, A. I. E. E.

Synopsis.—Starting with the basic assumption of no saturation or hysteresis, and with distribution of armature phase m. m. f. effectively sinusoidal as far as regards phenomena dependent upon rotor position, general formulas are developed for current, voltage, power, and torque under steady and transient load conditions. Special detailed formulas are also developed which permit the determination of current and torque on three-phase short circuit, during starting, and when only small deviations from an average operating angle are involved.

THIS paper presents a generalization and extension of the work of Blondel, Dreyfus, and Doherty and Nickle, and establishes new and general methods of calculating current power and torque in salient and non-salient pole synchronous machines, under both transient and steady load conditions.

Attention is restricted to symmetrical three-phase[†] machines with field structure symmetrical about the axes of the field winding and interpolar space, but salient poles and an arbitrary number of rotor[‡] circuits are considered.

Idealization is resorted to, to the extent that saturation and hysteresis in every magnetic circuit and eddy

currents in the armature iron are neglected, and in the assumption that, as far as concerns effects depending on the position of the rotor, each armature winding may be regarded as, in effect, sinusoidally distributed.³ A. Fundamental Circuit Equations

Consider the ideal synchronous machine of Fig. 1, and let

*General Engg. Dept., General Electric Company, Schenectady, N. Y.

†Single-phase machines may be regarded as three-phase machines with one phase open circuited.

\$Stator for a machine with stationary field structure.

³For numbered references see Bibliography.

Presented at the Winter Convention of the A. I. E. E., New York, N. Y., Jan. 28-Feb. 1, 1929.

In addition, new and more accurate equivalent circuits are developed for synchronous and asynchronous machines operating in parallel, and the domain of validity of such circuits is established.

Throughout, the treatment has been generalized to include salient poles and an arbitrary number of rotor circuits. The analysis is thus adapted to machines equipped with field pole collars, or with amortisseur windings of any arbitrary construction.

It is proposed to continue the analysis in a subsequent paper.

 i_a, i_b, i_c = per unit instantaneous phase currents e_a, e_b, e_c = per unit instantaneous phase voltages ψ_a, ψ_b, ψ_c = per unit instantaneous phase linkages t = time in electrical radians

$$p = \frac{d}{dt}$$

Then there is

 $\psi_a = I_d \cos \theta - I_a \sin \theta$

$$e_{a} = p \psi_{a} - r i_{a}$$

$$e_{b} = p \psi_{b} - r i_{b}$$

$$e_{c} = p \psi_{c} - r i_{c}$$
(1)

It has been shown previously3 that

$$-rac{x_{a}}{3}\left[i_{a}+i_{b}+i_{c}
ight]-rac{x_{d}+x_{q}}{3}\left[i_{a}-rac{i_{b}+i_{c}}{2}
ight] -rac{x_{d}-x_{q}}{3}\left[i_{a}\cos2 heta+i_{b}\cos\left(2 heta-120
ight)
ight]$$

$$egin{aligned} & \psi_b = I_d \cos{(heta - 120)} - I_q \sin{(heta - 120)} \ & -x_0 rac{i_a + i_b + i_c}{3} - rac{x_d + x_q}{3} \left[\ i_b - rac{i_c + i_a}{2}
ight] \end{aligned}$$

$$\frac{x_d - x_q}{3} [i_a \cos (2 \ \theta - 120) + i_b \cos (2 \ \theta + 120)]$$

$$+ i_c \cos 2 \theta$$
] (2)

$$-I_q \sin (heta + 120) - x_0 rac{i_a + i_b + i_c}{3}$$

$$-rac{x_d+x_a}{3}\left[i_c-rac{i_a+i_b}{2}
ight]$$

 $\psi_c = I_d \cos\left(\theta + 120\right)$

$$-rac{x_d-x_q}{3}\left[i_a\cos\left(2\ heta+120
ight)+i_b\cos2\ heta
ight.$$

$$-i_c \cos(2 \theta - 120)$$
]

N,= 5 Page 2 - ? ?

where,

29-33

- I_d = per-unit excitation in direct axis
- I_{a} = per-unit excitation in guadrature axis
- x_d = direct synchronous reactance
- $x_{v} =$ quadrature synchronous reactance

 $x_0 = \text{zero phase-sequence reactance}$

As shown in the Appendix, if normal linkages in the field circuit are defined as those obtaining at no load* there is in the case of no rotor circuits in the direct axis in addition to the field,

 $\Phi = \text{per-unit}$ instantaneous field linkages

 $= I - (x_d - x_d') i_d$

where.

I = per-unit instantaneous field current

$$i_{d} = \frac{2}{3} \{ i_{a} \cos \theta + i_{b} \cos (\theta - 120) + i_{c} \cos (\theta + 120) \}$$

On the other hand, if n additional rotor circuits exist in the direct axis there is,

$$= I + X_{f1d} I_{1d} + X_{f2d} I_{2d} + \dots + X_{fnd} I_{nd} - (x_d - x_d') =$$

where,

 I_{1d}, I_{2d}, \ldots etc., are the per-unit instantaneous currents in circuits 1, 2, etc., of the direct axis, X_{f1d} , X_{f2d} , . etc., are per-unit mutual coefficients between the field and circuits 1, 2, etc., of the direct axis.

Similar relations exist for the linkages in each of the additional rotor circuits except $x_d - x_d'$ is to be replaced by a term x_m . However, since all of these additional circuits are closed, it follows that there is an operational result

$$I_{d} = I + I_{1d} + I_{2d} + \dots + I_{nd}$$

= G (p) E + H (p) i_d (4)

where E is the per-unit value of the instantaneous field voltage, and G(p) and H(p) are operators such that

 x_d'' = the subtransient reactance²

It will be convenient to write $H(p) = x_d - x_d(p)$ and to rewrite (4) in the form,

$$I_{d} = G(p) E + [x_{d} - x_{d}(p)] i_{d}$$
(4a)

If there are no additional rotor circuits, there is, as shown in Appendix I,

$$\Psi = I - (x_d - x_d')$$

 $E = T_0 p \Psi + I$

where T_0 is the open circuit time constant of the field in radians.

There is then,

*This definition is somewhat different from that given in $\psi_q = -\frac{1}{3} \{\psi_a \sin \theta + \psi_b \sin(\theta - 120) + \psi_c \sin(\theta + 120)\}$ (7) reference 2.

If there is one additional rotor circuit in the direct axis there is.

$$\Psi = I + X_{f1d} I_{1d} - (x_d - x_d') i_d = \frac{E - I}{T_0 p}$$

$$\Psi_{1d} = X_{11d} I_{1d} + X_{j1d} I - x_{m1} d i_d = \frac{-I_{1d}}{T_{01d} I}$$

which gives,

$$G(p) = \frac{[X_{11d} - X_{f1d}] T_{01d} p + 1}{A(p)}$$
$$T_0 T_{01d} [X_{11d} (x_d - x_d') - X_{f1d} x_{m1d}] p^2$$
$$(p) = x_d - \frac{+ [(x_d - x'_d) T_{01d} + x_{m1d} T_0] p}{A(p)}$$

where,

(3)

 x_d

 $A (p) = [X_{11d} - X_{f1d}^2] T_0 T_{01d} p^2 + [X_{11d} T_0 + T_{01d}] p + 1$ If there is more than one additional rotor circuit the operators G(p) and $x_d(p)$ will be more complicated but may be found in the same way. The effects of external field resistance may be found by changing the term I in the field voltage equation to R I. Open circuited

field corresponds to R equal to infinity. Similarly, there will be

$$I_{q} = \left[x_{q} - x_{q}\left(p\right)\right] i_{q}$$

$$\dot{i}_{q} = -\frac{2}{3} \{ i_{a} \sin \theta + i_{b} \sin(\theta - 120) + i_{c} \sin(\theta + 120) \}$$
 (3a)

$$x_q(o) = x_q, x_q(\infty) = x_q'$$

So far, 10 equations have been established relating the 15 quantities e_a , e_b , e_c , i_a , i_b , i_c , ψ_a , ψ_b , ψ_c , i_d , i_q , I_d , I_q , E, θ in a general way. It follows that when any five of the quantities are known the remaining 10 may be determined. Their determination is very much facilitated, however, by the introduction of certain auxiliary quantities e_d , e_g , e_0 , i_0 , ψ_d , ψ_g , ψ_0 .

Thus, let

$$i_0 = \frac{1}{3} \{ i_a + i_b + i_c \}$$
 (3b)

(5)

$$e_{d} = \frac{2}{3} \{ e_{a} \cos \theta + e_{b} \cos (\theta - 120) + e_{c} \cos (\theta + 120) \}$$

$$e_q = -\frac{2}{3} \{e_a \sin \theta + e_b \sin(\theta - 120) + e_c \sin(\theta + 120)\}$$
 (6)

$$e_{0} = \frac{1}{3} \{ e_{a} + e_{b} + e_{c} \}$$

$$\psi_{d} = \frac{2}{3} \{ \psi_{a} \cos \theta + \psi_{b} \cos (\theta - 120) + \psi_{c} \cos (\theta + 120) \}$$

$$2$$

nov: 26, 1930 la 25 Round Roton 2'c no excitation in quad axis. no thent current Xd=Xq 1/a = Igenso - Igeno. - No (2a+2+2c) - Xd+Xg [2a - 26+2c] la = Iacost - Ig sint - 27a [ia - 25+ 2] 45 = In cos(0-120) - In sin(0-120) - 2×2/25 - 2/2+2/27 4c = Ia cos(8+120) - Ig sin(8+120) - 2 Ke [1'a - 1'a + 2's.]

ri

$$\psi_0 = rac{1}{3} \{ \psi_a + \psi_b + \psi_c \}$$

then from Equation (1) there is

$$e_{d} = \frac{2}{3} \{ \cos \theta \ p \ \psi_{a} + \cos(\theta - 120) \ p \ \psi_{b} + \cos(\theta + 120) \ p \ \psi_{c} \}$$

$$e_{q} = -\frac{2}{3} \{\sin \theta \ p \ \psi_{a} + \sin (\theta - 120) \ p \ \psi_{b} + \sin (\theta + 120) \ p \ \psi_{c} \} - r \ i_{q}$$

$$e_{0} = p \ \psi_{0} - r \ i_{0}$$
but,
$$p \ \psi_{d} = \frac{2}{3} \{\cos \theta \ p \ \psi_{a} + \cos (\theta - 120) \ p \ \psi_{b} + \cos (\theta + 120) \ p \ \psi_{c} \}$$

$$\begin{aligned} &-\frac{-1}{3} \left\{ \sin \theta \,\psi_a + \sin(\theta - 120) \,p \,\psi_b + \sin(\theta + 120) \,p \,\psi_c \right\} \,p \,\theta \\ &= e_d + r \,i_d + \psi_q \,p \,\theta \end{aligned}$$

 $p \ \psi_{q} = - \ \frac{2}{3} \ (\sin \ \theta \ p \ \psi_{a} + \sin \ (\theta - 120) \ p \ \psi_{b}$

$$+\sin(\theta+120) p \psi_c$$

$$-rac{2}{3} \{\cos heta \psi_a + \cos (heta - 120) \psi_b + \cos (heta + 120) \psi_c \} p \ heta$$

= $e_q + r i_q - \psi_d p \ heta$
hence there is

$$e_d = p \,\psi_d - r \,i_d - \psi_q \,p \,\theta \tag{8}$$

$$e_q = p \psi_q - r i_q + \psi_d p \theta \qquad (9)$$

$$e_0 = p \,\psi_0 - r \,i_0 \tag{10}$$

Also it may be readily verified that

$$\psi_d = I_d - x_d \, i_d = G \, (p) \, E - x_d \, (p) \, i_d \tag{11}$$

$$\psi_{q} = I_{q} - x_{q} \, i_{q} = - \, x_{q} \, (p) \, i_{q} \tag{12}$$

$$\psi_0 = -x_0 \, i_0 \tag{13}$$

Equations (8) to (13) establish six relatively simple relations between the 11 quantities e_d , e_q , e_0 , i_d , i_q , i_0 , ψ_d , ψ_q , ψ_0 , E, θ . In practise it is usually possible to determine five of these quantities directly from the terminal conditions, after which the remaining six may be calculated with relative simplicity. After the direct, quadrature, and zero quantities are known the phase quantities may be determined from the identical relations

$$i_{a} = i_{d} \cos \theta - i_{q} \sin \theta + i_{0}$$

$$i_{b} = i_{d} \cos (\theta - 120) - i_{q} \sin (\theta - 120) + i_{0} \quad (14)$$

$$i_{c} = i_{d} \cos (\theta + 120) - i_{q} \sin (\theta + 120) + i_{0}$$

$$\psi_{a} = \psi_{d} \cos \theta - \psi_{q} \sin \theta + \psi_{0}$$

$$\psi_{b} = \psi_{d} \cos (\theta - 120) - \psi_{c} \sin (\theta - 120) + \psi_{c} \quad (15)$$

$$\psi_{c} = \psi_{d} \cos (\theta + 120) - \psi_{a} \sin (\theta + 120) + \psi_{a}$$

$$e_a = e_d \cos \theta - e_a \sin \theta + e_0$$

 $e_b = e_d \cos(\theta - 120) - e_q \sin(\theta - 120) + e_0 \quad (16)$ $e_c = e_d \cos(\theta + 120) - e_q \sin(\theta + 120) + e_0$

Referring to Fig. 2, it may be seen that when there are no zero quantities, that is, when $e_0 = \psi_0 = i_0 = 0$, the phase quantities may be regarded as the projection of vectors \vec{e} , $\vec{\psi}$, and \vec{i} on axes lagging the direct axis by

angles θ , $\theta - 120$ and $\theta + 120$, where taking the direct axis as the axis of reals,

$$e = e_d + j e_q \ ar{\psi} = \psi_d + j \psi_q \ ar{i} = i_d + j i_q$$

If we introduce in addition the vector quantity, $\tilde{I} = I_d + j I_q$

the circuit equations previously obtained may be

transferred into the corresponding vector forms,

 $\vec{e} = p \vec{\psi} - \vec{ri} + [p \ \theta] j \vec{\psi}$ $\vec{\psi} = \vec{I} - \vec{xi}$ where, $\vec{xi} = x_d i_d + j x_q i_q$

Fig. 3 shows these relations graphically.

B. Armature Power Output

The per-unit instantaneous power output from the armature is necessarily proportional to the sum

 $e_a i_a + e_b i_b + e_c i_c$. By consideration of any instant D. Constant Rotor Speed during normal operation at unity power factor it may be seen that the factor of proportionality must be 2/3. That is.

P = per-unit instantaneous power output

$$= 2/3 | e_a i_a + e_b i_b + e_c i_c |$$

Substituting from Equations (14) and (16) there results the useful relation,

$$P = e_d i_d + e_q i_q + e_0 i_0$$

C. Electrical Torque on Rotor

It is possible to determine the electrical torque on the rotor directly from the general relation,

{Total power output} =

(mechanical power transferred across gap)

However, since this torque depends uniquely only on the magnitudes of the currents in every circuit of the machine, it follows that a general formula for torque may be derived by considering any special case in which arbitrary conditions are imposed as to the way in which these currents are changing as the rotor moves.

The simplest conditions to impose are that I_d , I_q , i_d , i_g , and i_0 remain constant as the rotor moves. In this case there will be no change in the stored magnetic energy of the machine as the rotor moves, and the power output of the rotor will be just equal in magnitude and opposite in sign to the rotor losses. It follows that under the special conditions assumed, Equation (18) becomes simply,

{armature power output} =

[mechanical power across gap] - [armature losses]

or,
$$P = T p \theta - \frac{2r}{3} \{ i_a^2 + i_b^2 + i_c^2 \}$$

= $T p \theta - r \{ i_d^2 + i_d^2 + i_d^2 \}$

Then.

T = per-unit instantaneous electrical torque

$$\frac{e_{d} i_{d} + e_{q} i_{q} + e_{0} i_{0} + r \{i_{d}^{2} + i_{q}^{2} + i_{0}^{2}\}}{p \theta}$$

but subject to the conditions imposed,

$$e_{d} = - \psi_{q} p \theta - r i_{d}$$

$$e_{q} = \psi_{d} p \theta - r i_{q}$$

$$e_{0} = -r i_{0}$$

It therefore follows that,

$$T = i_{q} \psi_{d} - i_{d} \psi_{q}$$
(19)
= vector product of $\overline{\psi}$ and \overline{i}
= $\overline{\psi} \times \overline{i}$ (19a)

a result which could have been established directly by physical reasoning. Formula (19) is employed by Dreyfus in his treatment of self-excited oscillations of synchronous machines.14

Suppose that the constant slip of the rotor is s. Then there is,

 $\psi_d = G(p) E - x_d(p) i_d$

 $\psi_q = -x_q (p) i_q$

 $e_d = p \psi_d - r i_d - (1-s) \psi_q$

 $e_q = p \psi_q - r i_q + (1 - s) \psi_d$

Putting

bı

(17)

there is

$$e_{d} = p G (p) E - z_{d} (p) i_{d} + (1 - s) x_{q} (p) i_{q}$$
(20)

$$e_{q} = (1 - s) [G (p) E - x_{d} (p) i_{d}] - z_{q} (p) i_{q}$$
(21)

 $p x_d (p) + r = z_d (p)$

 $p x_a(p) + r = z_a(p)$

Solving gives, $i_{d} = \{ [p \, z_{q} \, (p) + (1 - s)^{2} \, x_{q} \, (p)] \, G \, (p) \, E - z_{q} \, (p) \, e_{d} \}$ $-(1-s) x_q(p) e_q \} \div D(p)$ (22)

$$i_{q} = \frac{(1-s) r G (p) E - z_{d} (p) e_{q} + (1-s) x_{d} (p) e_{d}}{D (p)}$$
(23)

where, $D(p) = z_d(p) z_q(p) + (1-s)^2 x_d(p) x_q(p)$

E. Two Machines Connected Together

Suppose that two machines which we will designate respectively by the subscripts g and h, are connected together, but not to any other machines or circuits, and assume in addition that there are no zero quantities. In this case the voltages of each machine will be equal

phase for phase, and it therefore follows that the voltage vectors of each machine must coincide, as shown in Fig. 4.

Referring to the figure it will be seen that the direct and quadrature components of voltage of the two machines are subject to the mutual relations,

$$e_{hd} = e_{gd} \cos \delta - e_{gq} \sin \delta$$

$$e_{hq} = e_{gd} \sin \delta + e_{gq} \cos \delta$$

$$e_{gd} = e_{hd} \cos \delta + e_{hq} \sin \delta$$
(24)

$$e_{vg} = -e_{hd}\sin\delta + e_{hg}\cos\delta \qquad (25)$$

q= (r, + 4)z' + Mp(2 coout) + Mp(2 sin wt).

E2= (r2+Lp)i2+Mp(ibcoowt)+Mp(iaminut).

Ea = (Fa + Lap) 2'a + Mp (2', 000 wt) + Mp (2'sin wt). $C_b = (r_b + L_b p) \dot{z'_b} + M p (\dot{z'_b} cos w t) + M p (\dot{z'_b} sin w t).$

diffune and heart provisionly given the Dobring and .

It with the Specific and Will Countries Robert And

a - h (p) and the weather that the second of

End working and of the formulation of the District of the Source of the

etters the economistic is musicled aver the too

nations con brase spilleding a Scoution (19

The second secon

$$\frac{1}{2} = T \gamma \delta - \frac{2\pi}{2} (A + b + b)$$

$$= T \gamma \delta - \frac{2\pi}{2} (A + b + b) - \frac{2\pi}{2} (A +$$

On the other hand, for currents there will be

$$i_{hd} = - \{i_{gd}\cos\delta - i_{gq}\sin\delta\}$$

$$i_{hq} = - \{i_{gd}\sin\delta + i_{gq}\cos\delta\}$$

$$i_{gd} = - \{i_{hd}\cos\delta + i_{hq}\sin\delta\}$$
(26)

$$i_{gq} = -\{-i_{hd}\sin\delta + i_{hq}\cos\delta\}$$
(27)

F. One Machine on an Infinite Bus

In (E), if machine h has zero impedance, it follows from (20) and (21) that $e_{hd} = 0$, $e_{hq} =$ bus voltage say = e_{h}

Then for machine g there is,

$$e_d = e \sin \delta$$

$$e_q = e \cos \delta \qquad (28)$$
G. Torque Angle Relations

From Equations (11), (12), and (19), there is,

$$T \,=\, rac{{I}_{\,q}\,{\psi}_{d}}{{x}_{q}}\,-\, rac{{I}_{\,d}\,{\psi}_{q}}{{x}_{d}}\,-\, rac{{x}_{d}-{x}_{q}}{{x}_{d}\,{x}_{a}}\,\,{\psi}_{d}\,\psi$$

Then if the rotor leads the vector $\overline{\psi}$ by an angle $\overline{\delta}$ there is

$$\begin{aligned} \psi_q &= -\psi \sin \delta \\ \psi_d &= \psi \cos \delta \\ T &= \frac{I_q \psi}{x_q} \cos \delta + \frac{I_d \psi \sin \delta}{x_d} + \frac{x_d - x_q}{2 x_d x_q} \psi^2 \sin 2 \delta \end{aligned} (29)$$

A derivation of this formula for steady load conditions has been previously given by Doherty and Nickle.⁹

H. Three-Phase Short Circuit with Constant Rotor Speed Maintained

Since a three-phase short circuit causes e_d and e_q to vanish suddenly, its effect with constant rotor speed maintained may be found by impressing $e_d = -e_{d0}$, $e_q = -e_{q0}$ in (22) and (23) where e_{d0} and e_{q0} are the values of e_d and e_q before the short circuit. The initial currents existing before the short circuit must be added to the currents found in this way in order to obtain the resultant current after the short circuit.

With s = 0 and E constant there is in detail

$$egin{aligned} &i_d = rac{z_q \; (p) \; e_{d0} \; + \; x_q \; (p) \; e_{q0}}{D \; (p)} \, . \, 1 \; + \; rac{x_q \; E \; - \; r \; e_{d0} \; - \; x_q \; e_{q0}}{r^2 \; + \; x_d \; x_q} \ &i_q = rac{z_d \; (p) \; e_{q0} \; - \; x_d \; (p) \; e_{d0}}{D \; (p)} \, . \, 1 \; + \; rac{r \; E \; - \; r \; e_{q0} \; + \; x_d \; e_{d0}}{r^2 \; + \; x_d \; x_q} \end{aligned}$$

The working out of the formulas may be illustrated by consideration of the simple case of a machine with no rotor circuits in addition to the field. In this case there is

$$egin{aligned} &x_{q}\;(p)\,=\,x_{q}\ &x_{d}\;(p)\,=\,rac{x_{d}\,'\,T_{0}\;p\,+\,x_{d}}{T_{0}\;p\,+\,1}\ &D\left(p
ight)\,=\,\left<rac{x_{d}\,'\,T_{0}\;p\,+\,x_{d}}{T_{0}\;p\,+\,1}\;p\,+\,r
ight>\langle\,x_{q}\;p\,+\,r
ight> \end{aligned}$$

$$+ \frac{x_{d}' T_{0} p + x_{d}}{T_{0} p + 1} x_{q}$$

$$+ \frac{x_{d}' x_{q} T_{0} p^{3}}{F_{0} p^{3}} + \frac{[x_{d}' r T_{0} + (x_{d} + r T_{0}) x_{q}] p^{2}}{F_{0} (x_{d} + x_{q} + r T_{0}) + x_{d}' x_{q} T_{0}] p}$$

$$= \frac{F_{0}^{2} + x_{d} x_{q}}{T_{0} p + 1}$$

$$= \frac{d(p)}{T_{0} p + 1}$$

$$(31)$$

By the expansion theorem there is, finally,

$$i_{d} = \frac{x_{q} E}{r^{2} + x_{d} x_{q}} + \sum_{1}^{3} \frac{(T_{0} \alpha_{n} + 1) \langle (x_{q} \alpha_{n} + r) e_{d0} + x_{q} e_{q0} \rangle \epsilon^{-\alpha_{n}t}}{\alpha_{n} d' (\alpha_{n})}$$

$$q = \frac{r E}{r^{2} + x_{d} x_{q}} + \sum_{1}^{3} \frac{x_{d}' T_{0} \alpha_{n}^{2} + (x_{d} + r T_{0}) \alpha_{n} + r \rangle e_{q0} - (T_{0} \alpha_{n} x'_{d} + x_{d}) e_{d0}}{\alpha_{n} d' (\alpha_{n})}$$

$$\epsilon^{-\alpha_{n}t} \qquad (32)$$

where the summation is extended over the roots of

$$d(\alpha) = 0$$
 and $d'(p) = \frac{d}{dp} d(p)$

The phase currents may, of course, be found from

Equations (32) by the application of Equations (14). For the particular case

 $T_0 = 2,000, x_d = 1.00, x_q = 0.60, x_{d'} = 0.30$ the roots $\alpha_1, \alpha_2, \alpha_3$ of the equation d(p) = 0, were found to be as shown in Figs. 5, 6, and 7, where

$$\alpha_2 = \alpha_a + \alpha$$

$$\alpha_3 = \alpha_a - \alpha_b$$

It will be noted that, as would necessarily be the

 $\mathbf{5}$

case, where r = 0, α_1 is equal to the reciprocal of the case, where r = 0, α_1 is equal to the reciprocal of the short circuit time constant of the machine, *i*. *e*., for $\delta = \frac{\pi}{2} - s t$, and referring to Equation (28), r = 0,

$$\alpha_1 = - \frac{x_d}{x_{d'}} \frac{1}{T_0} = - \ 0.001667$$

while for $r = \infty$

The root α_a is found to be almost exactly equal to the value which it would have were $T_0 = \infty$, *i. e.*,

Thus, in the special case considered this approximate formula gives

$$\alpha_a = \frac{(0.30 + 0.60) r}{2 \times 0.30 \times 0.60} = 2.50 r$$

which checks the result found by the exact solution of the cubic.

I. Starting Torque

On infinite bus and with slip s, there will be, choosing

$$e_d = \cos s t$$

$$e_q = \sin s t$$

If we now introduce a system of vectors rotating at s per-unit angular velocity there is

$$ed = 1.0$$

$$e_q = -j$$

$$p = js$$
(33)

Then from (22) and (23),

$$\begin{aligned} f_{d} &= \left\{ j \, s \, x_{q'} \left(j \, s \right) + r - j \left(1 - s \right) x_{q'} \left(j \, s \right) \right\} \\ &+ \left\{ \left[j \, s \, x_{d'} \left(j \, s \right) + r \right] \left[j \, s \, x_{q'} \left(j \, s \right) + r \right] \\ &+ \left(1 - s \right)^{2} x_{d'} \left(j \, s \right) x_{q'} \left(j \, s \right) \right\} \\ &= \frac{j \left(1 - 2 \, s \right) x_{q'} \left(j \, s \right) - r}{r^{2} + \left(1 - 2 \, s \right) x_{d'} \left(j \, s \right) x_{q'} \left(j \, s \right) + j \, s \, r \left[x_{d'} \left(j \, s \right) + x_{q'} \left(j \, s \right) \right] \right\} \\ &= \left\{ \left[j \, x_{q'} \left(j \, s \right) - \frac{r}{1 - 2 \, s} \right] \div \left\{ x_{d'} \left(j \, s \right) x_{q'} \left(j \, s \right) \\ &+ \frac{r}{1 - 2 \, s} \left[r + j \, s \left(x_{d'} \left(j \, s \right) + x_{q'} \left(j \, s \right) \right) \right] \right\} \end{aligned}$$

$$(34)$$

The expressions for average power and torque then become,

$$P_{av} = 1/2 [e_d \cdot i_d + e_q \cdot i_q]$$

 $T_{av} = 1/2 [i_q \cdot \psi_d - i_d \cdot \psi_q]$

where the dot indicates the scalar product, or $P_{av} = 1/2 [1 \cdot i_d - j \cdot i_g]$

= 1/2 [Real of i_d – Imaginary of i_g] (36) There is in general,

$$e_{d} + r i_{d} = p \psi_{d} - (1 - s) \psi_{q}$$

$$e_{q} + r i_{q} = (1 - s) \psi_{d} + p \psi_{q}$$

$$\psi_{d} = \frac{\begin{vmatrix} e_{d} + r i_{d} - (1 - s) \\ e_{q} + r i_{q} & p \end{vmatrix}}{\begin{vmatrix} p & -(1 - s) \\ (1 - s) & p \end{vmatrix}}$$

$$= \frac{p (e_{d} + r i_{d}) + (1 - s) (e_{q} + r i_{q})}{p^{2} + (1 - s)^{2}} \qquad (37)$$

$$\psi_q = \frac{p \ (e_q + r \ i_q) - (1 - s) \ (e_d + r \ i_d)}{p^2 + (1 - s)^2}$$
(38)

PARK: SYNCHRONOUS MACHINES

$$\psi_d = rac{j \, s \, (e_d + r \, i_d) \, + \, (1 - s) \, (e_q + r \, i_q)}{1 - 2 \, s}$$
 $j \, s \, (e_q + r \, i_q) - \, (1 - s) \, (e_d + r \, i_d)$

$$\psi_q = \frac{\int \frac{1}{\sqrt{(e_q + 1)e_q}} (1 - 3)(e_d + 1)}{1 - 2s}$$

with $e_d = 1.0$, $e_q = -j$ $\psi_d = \frac{j s + j s r i_d + (1 - s) (-j) + (1 - s) r i_q}{1 - 2 s}$ $= \frac{-(1 - 2s) j + r [j s i_d + (1 - s) i_q]}{1 - 2 s}$

$$= -j + \frac{r}{1-2s} [js i_d + (1-s) i_q]$$
(39)

$$\psi_{q} = \frac{j s (-j + r i_{q}) - (1 - s) - r (1 - s) i_{d}}{1 - 2 s}$$
$$= \frac{-(1 - 2 s) + r [j s i_{q} - (1 - s) i_{d}]}{1 - 2 s}$$
$$= -1 + \frac{r}{1 - 2 s} [j s i_{q} - (1 - s) i_{d}]$$
(40)

Thus,

$$T_{av} = 1/2 \begin{bmatrix} i_q \cdot (-j) + i_q \cdot \frac{r}{1-2s} \langle j s i_d + (1-s) i_q \rangle \\ -i_d \cdot (-1) - i_d \cdot \frac{r}{1-2s} \langle j s i_q - (1-s) i_d \rangle \end{bmatrix}$$

$$= P_{av} + \frac{r}{2(1-2s)} \begin{bmatrix} (1-s) \langle i_q^2 + i_d^2 \rangle \\ + 2s i_q \cdot j i_d \end{bmatrix}$$

$$= P_{av} + \frac{r}{2} (i_q^2 + i_d^2) + \frac{rs}{2(1-2s)} \begin{bmatrix} i_q^2 + i_d^2 \\ + 2 i_q \cdot j i_d \end{bmatrix}$$

$$= P_{av} + r \frac{i_q^2 + i_d^2}{2} + \frac{rs}{2(1-2s)} (i_q + j i_d)^2 \quad (\mathbf{41})$$

Mr. Ralph Hammar, who has been engaged in the application of the general method of calculation outlined above, to the predetermination of the starting torque of practical synchronous motors, has suggested an interesting modification of formulas (36) and (41), based upon the fact that, since the total m. m. f. consists of direct and quadrature components pulsating at slip frequency, it may be resolved into two components, one moving forward at a per-unit speed 1 - s + s = 1.0, and the other moving backward at a per-unit speed 1 - s - s = 1 - 2 s. Thus from this standpoint half of both the direct and quadrature components will move forward, and half backward. Since the quadrature axis is ahead of the direct it follows that as far as concerns the forward component the quadrature current i_a is equivalent to a d-c. $j i_q$, while as regards backward component it is equivalent to a direct component

 $-j i_{q}$. It follows that the vector amounts of forward and backward m. m. f. or current are

forward current
$$= i_f = \frac{1}{2} (i_d + j i_q)$$

backward current =
$$i_b = \frac{1}{2} (i_d - j i_q)$$
 (42)

If we define by analogy,

forward voltage =
$$\frac{1}{2} (e_d + j e_q)$$

backward voltage = $\frac{1}{2} (e_d - j e_q)$ (43)

There is,

$$egin{aligned} y &= rac{1}{2} \left\{ \; rac{-2 \, r}{1 - 2 \, s} \, + j \, [x_d{}' \, (j \, s) \, + x_q{}' \, (j \, s)] \;
ight\} \; \div \\ &\left\{ \; x_d{}' \, (j \, s) \, x_q{}' \, (j \, s) \, + rac{r}{1 - 2 \, s} \, \langle r \, + j \, s \, [x_d{}' \, (j \, s) \, + x_q{}' \, (j \, s)] \;
ight\} \; \div \\ &+ x_q{}' \, (j \, s)]
angle \;
ight\} \end{aligned}$$

$$= \frac{1}{2} \left\{ j [x_{q'}(js) - x_{d'}(js)] \right\} \div \left\{ x_{d'}(js) x_{q'}(js) + \frac{r}{1 - 2s} \langle r + js [x_{d'}(js) + x_{q'}(js)] \rangle \right\}$$

$$e_f = 1.0$$
 (44)

$$e_b = 0 \tag{45}$$

$$P_{av} = e_f \cdot i_f = \text{real of } i_f \tag{46}$$

$$T_{av} = P_{av} + r \, i_{f}^{2} + \frac{r}{1 - 2 \, s} \, i_{b}^{2} \tag{47}$$

J. Zero Armature Resistance, One Machine Connected to an Infinite Bus

Assume that a machine of negligible armature resistance is operating from an infinite bus of per-unit voltage e, at synchronous speed, with a steady excitation voltage E_0 , and displacement angle δ_0 . At the instant t = 0, let δ and E change.

There is,

$$egin{aligned} &i_d = rac{E_0 - \psi_{d0}}{x_d} - rac{1}{x_d \ (p)} \ \Delta \ \psi_d + rac{G \ (p)}{x_d \ (p)} \ \Delta \ E \ &i_q = - rac{\psi_{q0}}{x_q} - rac{1}{x_q \ (p)} \ \Delta \ \psi_q \ &\psi_d = e \cos \delta \ &\psi_q = - e \sin \delta \end{aligned}$$

From which there is, by obvious re-arrangement,

(49)

 $e \sin \delta$

$$egin{aligned} &i_d = rac{E-e\cos\delta}{x_d} \ + e\,rac{x_d-x_d\,(p)}{x_d\,x_d\,(p)}\,(\cos\delta_0-\cos\delta)\,, \ &x_d\,(p)-G\,(p)\,x_d\,, \ &x_d\,(p)-G\,(p)\,x_d\,, \ &x_d\,(p)\,. \end{aligned}$$

$$i_q = \frac{e\sin\delta}{x_q} + e\frac{x_q - x_q(p)}{x_q x_q(p)} (\sin\delta - \sin\delta_0) \quad (48)$$

 ΔE

Then,

$$T = \frac{E \ e \ \sin \delta}{x_d} + \frac{x_d - x_q}{2 \ x_d \ x_q} e^2 \sin 2 \ \delta$$

 $x_d x_d (p)$

$$+ \ e^2 \cos \delta \ rac{x_{_q} - x_{_q} \ (p)}{x_{_q} \ x_{_q} \ (p)} \ (\sin \delta - \, \sin \delta_{_0}) \ ,$$

$$+ \ e^2 \sin \delta \ rac{x_d - x_d \ (p)}{x_d \ x_d \ (p)} \ (\cos \delta_0 - \ \cos \delta)$$

$$- \ e \sin \delta \ rac{x_d \ (p) - x_d \ G \ (p)}{x_d \ x_d \ (p)} \ . \ \Delta \ E$$

But quantities a_{dn} , a_{qn} , α_{dn} , α_{qn} , b_n , β_n may be found such that

$$\frac{x_{q} - x_{q}(p)}{x_{q}(p)} \cdot 1 = \frac{x_{q} - x_{q}''}{x_{q}''} \sum_{d_{dn} \epsilon^{-\alpha_{dn}t}} a_{dn} \epsilon^{-\alpha_{dn}t}$$

$$\frac{x_{d} - x_{d}(p)}{x_{d}(p)} \cdot 1 = \frac{x_{d} - x_{d}''}{x_{d}''} \sum_{d_{qn} \epsilon^{-\alpha_{qn}t}} a_{qn} \epsilon^{-\alpha_{qn}t}$$

$$\frac{x_{d}(p) - x_{d}G(p)}{x_{d}(p)} \cdot 1 = \sum_{d_{qn} \epsilon^{-\beta_{n}t}} b_{n} \epsilon^{-\beta_{n}t}$$

$$\frac{x_{q}'' = x_{q}(\infty)}{x_{d}'' = x_{d}(\infty)}$$

$$\sum_{d_{qn} = 1.0} \sum_{d_{qn} = 1.0} b_{d_{qn}} = 1.0$$

It therefore follows from the operational rule that,

$$(p) F(t) = F(0) \phi(t) + \int_{0}^{t} \phi(t-u) F'(u) du$$
 (51)

.1

where,

$$\phi(t) = f(p)$$

$$o = o(t)$$

$$p \delta = \delta'(t)$$

$$\Delta E = \Delta E(t)$$

$$p \Delta E = \Delta E'(t)$$

Equations (48) and (49) may be rewritten in the form,

$$i_d = \frac{E - e \cos \delta}{x_d}$$

$$+ e \frac{x_d - x_d''}{x_d x_d''} \sum a_{dn} \epsilon^{-\alpha_{dn}t} \int_0^t \epsilon^{\alpha_{dn}u} \sin \delta (u) \delta' (u) d u$$
$$- \frac{1}{2} \sum b_{-\epsilon} \epsilon^{-\beta_n t} \int_0^t \epsilon^{\beta_n u} \Lambda E' (u) d u$$
(49)

2.5

$$- \frac{1}{x_d} \sum b_n \, \epsilon^{-\theta_n t} \int_0^{\infty} \epsilon^{\theta_n u} \, \Delta E'(u) \, d \, u \tag{48a}$$

$$t_q = \frac{x_q}{x_q}$$

$$+ e \frac{x_q - x_q''}{x_q x_q''} \sum_{a_{qn}} e^{-\alpha_{qn}t} \int_0^t e^{\alpha_{qn}u} \cos \delta (u) \, \delta' (u) \, du$$

$$T = \frac{E e \sin \delta}{x_d} + \frac{e^2 (x_d - x_q)}{2 x_d x_q} \sin 2 \, \delta$$

$$+e^{2}\frac{x_{d}-x_{d}''}{x_{d}x_{d}''}\sin\delta\sum a_{dn}\,\epsilon^{-\alpha_{dn}t}\int_{0}^{t}\epsilon^{\alpha_{dn}u}\sin\delta(u)\,\delta'(u)\,du$$

$$+e^{2}\frac{x_{q}-x_{q}''}{x_{q}x_{q}''}\cos\delta\sum a_{qn}\,\epsilon^{-\alpha_{qn}t}\int_{0}^{t}\epsilon^{\alpha_{qn}u}\cos\delta(u)\,\delta'(u)\,du$$
$$-\frac{e\sin\delta}{x_{d}}\sum b_{n}\,\epsilon^{-\beta_{n}t}\,\int_{0}^{t}\epsilon^{\beta_{n}u}\,\Delta E'(u)\,du \qquad (49a)$$

Formula (49a) may be used to determine starting torque and current with zero armature resistance, by introducing $\delta(t) = s t$, $\delta'(t) = s$. Thus the average component of torque is found to be,

$$T_{av} = \frac{1}{2} \frac{x_d - x_d''}{x_d x_d''} \sum a_{dn} \frac{\alpha_{dn} s}{\alpha_{dn}^2 + s^2} + \frac{1}{2} \frac{x_q - x_q''}{x_q x_q''} \sum a_{qn} \frac{\alpha_{qn} s}{\alpha_{qn}^2 + s^2}$$
(52)

Since

$$\frac{\alpha s}{\alpha^2 + s^2}$$
 is never greater than $\frac{1}{2}$, and

$$\sum a_{dn} = \sum a_{qn} = 1.0$$

it follows that T_{av} is never greater than

$$\frac{1}{4} \left\{ \frac{x_d - x_d''}{x_d x_d''} + \frac{x_q - x_q''}{x_q x_q''} \right\}$$
(53)

Equation (53) thus provides a very simple criterion of the maximum possible starting torque of a synchronous motor of given dimensions, when armature resistance is neglected.

The same formula may also be used to obtain a simple expression for the damping and synchronizing components of pulsating torque due to a given small angular pulsation of the rotor. Thus if the angular pulsation is

$$\Delta \delta = [\Delta \delta] \sin (s t)$$

and if the pulsation of torque is expressed in the form

$$\Delta T = T_s \,\Delta \delta \,+\, T_d \,\frac{d}{d t} \,\Delta \delta$$

there results.

$$T_{s} = T_{s0} + e^{2} \sin^{2} \delta_{0} \frac{x_{d} - x_{d}''}{x_{d} x_{d}''} \sum \frac{a_{dn} s^{2}}{(\alpha_{dn})^{2} + s^{2}} + e^{2} \cos^{2} \delta_{0} \frac{x_{q} - x_{q}''}{x_{q} x_{q}''} \sum \frac{a_{qn} s^{2}}{(\alpha_{qn})^{2} + s^{2}} s T_{d} = e^{2} \sin^{2} \delta_{0} \frac{x_{d} - x_{d}''}{x_{d} x_{d}''} \sum \frac{a_{dn} s \alpha_{dn}}{(\alpha_{dn})^{2} + s^{2}} + e^{2} \cos^{2} \delta_{0} \frac{x_{q} - x_{q}''}{x_{q} x_{q}''} \sum \frac{a_{qn} s \alpha_{qn}}{(\alpha_{qn})^{2} + s^{2}} where$$

Let,

$$T_{s0} = rac{e \, I_{d0} \cos \delta_0}{x_d} + rac{e^2 \, (x_d - x_q)}{x_d \, x_q} \cos 2 \, \delta_0$$

 δ_0 = average angular displacement, *i. e.*, total angle = $\delta = \delta_0 + \Delta \delta$.

It can be shown that for the case of no additional rotor circuits, Equations (54) are exactly equivalent to Equations (24) and (25) in Doherty and Nickle's paper, Synchronous Machines III. The new formulas herein developed are, however, very much simpler in form, especially since in the case which Doherty and Nickle have treated, there is only one term in the summation: that is, n = 1, and α is merely the reciprocal of the short circuit time constant of the machine, expressed in radians.

The Equivalent Circuit of Synchronous Machines K. Operating in Parallel at No Load, Neglecting the Effect of Armature Resistance

> δ_a = angle of rotor *a* and bus $\theta_0 =$ angle of rotor *a* in space

In general, the shaft torque of a machine depends on its acceleration and speed in space, and the magnitude and rate of change of the bus voltage as a vector. If all of the machines are operating at no load and if there is no armature resistance, a small displacement of any one machine will change the magnitude of the bus voltage only by a second order quantity; consequently for small displacements the magnitude of the bus voltage may be regarded as fixed, and only the angle of the bus and rotor need be considered. Furthermore, the electrical torque may be found in terms of (δ) by employing an infinite bus formula. But Equation (49a) implies the alternative general operational form,

$$T = rac{e \, I_{\,d0} \sin \delta}{x_d} + rac{e^2 \, (x_d - x_q) \sin 2 \, \delta}{2 \, x_d \, x_q} \ - rac{x_d - x_d''}{x_d \, x_d'} \, e^2 \, \sin \, \delta \, \sum rac{a_{nd} \, p}{p + lpha_{nd}} \, . \cos \delta \, (49b)$$

$$+rac{x_q-x_q''}{x_q\,x_q''}\,e^2\cos\delta\sumrac{a_{nq}\,p}{p+lpha_{nq}}\,.\sin\delta$$

Therefore in the case under consideration there is for machine *a*.

$$T_{a} = \left[\frac{e I_{a}}{x_{da}} + e^{2} \frac{(x_{da} - x_{qa})}{x_{da} x_{qa}}\right] \delta_{a} + \frac{x_{qa} - x_{qa}''}{x_{qa} x_{qa}''} e^{2} \sum a_{nqa} \frac{p}{p + \alpha_{nqa}} \cdot \delta_{a}$$
(55)

where: e = per-unit bus voltage

 I_a = per-unit excitation of machine *a*, etc.

This equation can be represented by Fig. 8, in which the charge through the circuit represents (δ_a) and the

voltage across the circuit represents the electrical torque of the machine (T_a) .

The capacitances and resistances must be chosen so that

$$C_{0a} = \frac{x_{da} x_{qa}}{e I_{a} x_{qa} + e^{2} (x_{da} - x_{qa})}$$
(56)
$$C_{na} = \frac{x_{qa} x_{qa}''}{e^{2} a_{nga} (x_{qa} - x_{qa}'')}$$
$$R_{na} = \frac{1}{C_{na} \alpha_{nga}}$$

The equation for the mechanical torque is

where:

 M_a = inertia factor of machine *a* in radians

$$= \frac{2 \times \text{stored mech. energy at normal speed}}{\text{base power}}$$

 $T_{sa} = T_a + M_a p s_a$

$$= 2 \pi f \frac{0.462 \quad W R^2}{\frac{1000}{\text{base kw.}}} \left(\frac{\text{rev. per min.}}{1000}\right)^2}{\text{base kw.}}$$

= per-unit speed of machine *a* \mathbf{S}_a

$$t = \text{time in seconds} \left(p = \frac{d}{dt} \right)$$

But,

Thus there is

$$T_{sa} = T_a + M_a p^2 \theta_a \tag{57a}$$

which corresponds to the equivalent circuit of Fig. 9, in which change = θ_a

 $s_a = p \theta_a$

$$L_a = M_a$$

The machine operating on an infinite bus can be

(57)

represented by the equivalent circuit of Fig. 10, since the condition

1 miles

$$\theta_a = \delta_a = 0$$

is fulfilled.

Several machines in parallel on the same bus may be

represented by the diagram of Fig. 11, since the conditions

 $heta_a - \delta_a = heta_b - \delta_b = \dots$ (= bus angle in space) $T_a + T_b + T_c$, etc. = bus power output = 0

A transmission line may be represented by a condenser.

Thus two machines connected by a line of reactance (x) would be represented by the circuit of Fig. 12, where

$$C = \frac{x}{e^2}$$
(58)

Shaft torques are, of course, represented by voltages.

Mechanical damping, such as that due to a fan on a motor shaft or that due to the prime mover, is represented by resistance in series with the inductance (L) as in Fig. 13. (R) must be chosen equal to the rate of decrease in available driving torque with increase in speed.

Governors and other prime mover characteristics may also be represented by connecting their circuits in the inductive branch of the circuit. Thus a governor which acts through a single time constant may be represented by the circuit of Fig. 14, where

10

An induction motor is represented by the simple circuit of Fig. 15 and is precisely the circuit of a synchronous machine with only one time constant and $C_0 = \infty$ on account of I = 0.

Results similar to these have been previously shown by Arnold, Nickle,¹⁰ and others, but simpler and more approximate circuits were used, the branches of the several circuits were not directly evaluated in terms of machine constants, and the derivation was incomplete in that the limitation to no load and zero resistance was not appreciated.

L. Torque Angle Relations of a Synchronous Machine Connected to an Infinite Bus, for Small Angular Deviations from an Average Operating Angle

There is, in general,

$$T = T_0 + \Delta T = (\psi_{d0} + \Delta \psi_d) (i_{q0} + \Delta i_q) - (i_{d0} + \Delta i_d) (\psi_{q0} + \Delta \psi_q)$$

For small angular deviations,

$$\Delta T = i_{q0} \Delta \psi_d + \psi_{d0} \Delta i_q - i_{d0} \Delta \psi_q - \psi_{q0} \Delta i_d$$

$$= \{\psi_{d0} + i_{d0} x_q(p)\} \Delta i_q - \{\psi_{q0} + i_{q0} x_d(p)\} \Delta i_d$$
 (60)

$$e_{d0} + \Delta e_d = p \ \Delta \psi_d - r(i_{d0} + \Delta i_d) - (\psi_{q0} + \Delta \psi_q)(1 + p \ \Delta \delta)$$

$$e_{q0} + \Delta e_q = p \ \Delta \psi_q - r(i_{q0} + \Delta i_q) + (\psi_{d0} + \Delta \psi_d)(1 + p \ \Delta \delta)$$

$$\Delta e_d = p \ \Delta \psi_d - r \ \Delta i_d - \psi_{q0} \ p \ \Delta \delta - \Delta \psi_q$$

$$\Delta e_q = p \ \Delta \psi_q - r \ \Delta i_q + \psi_{d0} \ p \ \Delta \delta + \Delta \psi_d$$
from which there is
$$z_d \ (p) \ \Delta i_d - x_q \ (p) \ \Delta i_q = - \ \Delta e_d - \psi_{q0} \ p \ \Delta \delta$$

$$z_g \ (p) \ \Delta i_q + x_d \ (p) \ \Delta i_d = - \ \Delta e_q + \psi_{d0} \ p \ \Delta \delta$$

$$\begin{array}{l} \Delta \ i_d = \\ \frac{z_q \ (p)\langle - \ \Delta \ e_d - \psi_{q0} \ p \ \Delta \ \delta \rangle + x_q \ (p)\langle - \ \Delta \ e_q + \psi_{d0} \ p \ \Delta \ \delta \rangle }{D \ (p)} \end{array}$$

$$\Delta i_q =$$

$$rac{z_{d}\left(p
ight)\left\langle -\ \Delta \,e_{q}+\psi_{d0}\,p\;\Delta\,\delta
ight
angle -x_{d}\left(p
ight)\left\langle -\ \Delta \,e_{d}-\psi_{q0}\,p\;\Delta\,\delta
ight
angle }{D\left(p
ight)}$$

where,

 $\Delta i_d =$

 $\Delta i_q =$

h

$$D(p) = z_d(p) z_q(p) + x_d(p) x_q(p)$$

out from Equations (28),
 $e_{d0} + \Delta e_d = e \sin(\delta_0 + \Delta \delta)$

$$e_{q0} + \Delta e_q = e \cos \left(\delta_0 + \Delta \delta \right)$$

$$\Delta e_d = e \cos \delta_0 \Delta \delta$$

$$\Delta e_q = -e \sin \delta_0 \Delta \delta$$
(62)

$$rac{-\left(e\cos{\delta_{\scriptscriptstyle 0}} + \psi_{\scriptscriptstyle q0} \; p
ight) \, z_{\scriptscriptstyle q} \left(p
ight) + \left(e\sin{\delta_{\scriptscriptstyle 0}} + \psi_{\scriptscriptstyle d0} \; p
ight) \, x_{\scriptscriptstyle q} \left(p
ight)}{D \left(p
ight)} \, . \, \Delta \, \delta$$

$$rac{e \sin \delta_{0} + \psi_{d0} \, p) \, z_{d} \left(p
ight) + \left(e \cos \delta_{0} + \psi_{q0} \, p
ight) x_{d} \left(p
ight)}{D \left(p
ight)} \, . \, \Delta \, \delta$$

$$\begin{bmatrix} \psi_{d0} + i_{d0} x_{q} (p) \end{bmatrix} \left\{ \begin{array}{c} (e \sin \delta_{0} + \psi_{d0} p) z_{d} (p) \\ + (e \cos \delta_{0} + \psi_{q0} p) x_{d} (p) \end{array} \right\}$$

$$T =$$

$$(64)$$

$$rac{+[\psi_{q_0}+i_{q_0}\,x_{d}\,(p)]\left\{egin{array}{c} (e\,\cos\delta_0\,+\,\psi_{q_0}\,p)\,\,z_{q}\,(p)\ -\,(e\,\sin\delta_0\,+\,\psi_{d0}\,\,p)\,\,x_{q}\,(p)
ight\}}{D\,(p)}\,.\,\Delta\,\delta$$

say,

 Δ

$$\Delta T = f\left(p\right)$$
 . $\Delta \delta$

From (57a) the equation for shaft torque becomes

$$\Delta T_{*} = (M \ p^{2} + f(p)) , \Delta \delta$$

Thus,

(61)

$$\Delta \delta = \frac{1}{M p^2 + f(p)} , \Delta T_s$$
(65)

Appendix

Formula for Linkages and Voltage in Field Circuit with no Additional Rotor Circuits

In this case the per-unit field linkages will depend linearly on the armature and field currents. That is, in general,

$$\Psi = a I - b i_d$$

Then if normal linkages are defined as those existing at no load there must be a = 1.0.

The quantity b may be found by suddenly impressing terminal linkages ψ_d with no initial currents in the machines and E = 0.

By definition there is, initially

$$i_d = -rac{\psi_d}{x_d}$$

but also there must be from the definition of x_d^2

$$i_d = rac{I - \psi_d}{x_d}$$

hence there must be an initial induced field current of amount

$$I = \psi_d \left(1 - \frac{x_d}{x_d'} \right)$$

But, initially the field linkages are zero, thus

$$\psi = \psi_d \, 1 - \frac{x_d}{x_d'} + \frac{b}{x_d'} = 0$$

 $b = x_d - x_d'$

hence

Similarly, there will be E = per-unit field voltage

$$= c n \Psi + d I$$

Normal field voltage will be here defined as those existing at no load and normal voltage. This requires that d = 1. The quantity c may then be recognized as the time constant of the field in radians when the armature is open circuited, since with the field shorted under these conditions there is

$$(T_0 p + 1) I = 0$$

$$c p \Psi + I = 0$$

$$\psi = I$$

 $c = T_0$ = time constant of field with armature open circuited.

Bibliography

 Doherty, R. E. and Nickle, C. A., Synchronous Machines V, A. I. E. E. Quarterly TRANS., Vol. 48, No. 2, April, 1929. 2. Park, R. H. and Robertson, B. L., *The Reactance of Synchronous Machines*, A. I. E. E. Quarterly TRANS., Vol. 47, No. 2, April, 1928, p. 514.

3. Park, R. H., "Definition of an Ideal Synchronous Machine and Formula for the Armature Flux Linkages," *General Elec. Rev.*, June, 1928, Vol. 31, pp. 332-334.

4. Alger, P. L., *The Calculation of the Reactance of* Synchronous Machines, A. I. E. E. Quarterly TRANS., Vol. 47, No. 2, April, 1928, p. 493.

5. Doherty, R. E. and Nickle, C. A., Synchronous Machines IV, A. I. E. E. Quarterly TRANS., Vol. 47, No. 2, April, 1928, p. 457, Discussion p. 487.

6. Wieseman, R. W., Graphical Determination of Magnetic Fields; Practical Application to Salient-Pole Synchronous Machine Design, A. I. E. E. TRANS., Vol. XLVI, 1927, p. 141.

7. Doherty, R. E. and Nickle, C. A., Synchronous Machines III, Torque-Angle Characteristics Under Transient Conditions, A. I. E. E. TRANS., Vol. XLVI, 1927, p. 1.

8. Bekku, S., "Sudden Short Circuit of Alternator," Researches of the Electrotechnical Laboratory No. 203, June, 1927.

9. Doherty, R. E. and Nickle, C. A., Synchronous Machines I and II, An Extension of Blondel's Two-Reaction Theory, A. I. E. E. TRANS., Vol. XLV, pp. 912-47.

10. Nickle, C. A., Oscillographic Solution of Electromechanical Systems, A. I. E. E. TRANS., Vol. XLIV, 1925, pp. 844-856.

11. Dreyfus, L., "Ausgleichvorgange Beim Plotzliehen Kurzschluss von Synchron Generatoren," Archiv f. Electrotech., 5 S 103, 1916.

12. Dreyfus, L., "Ausgleichvorgange in der Symmetrischen Mehrphasenmaschine," *Elektrotech. u. Maschinenbau*, 30 S 25, 121, 139, 1912.

13. Dreyfus, L., "Freie Magnetische Energie Zwischen Verketteten Mehrphasensystemen," *Elektrotech u. Maschinenbau*, 29 S. 891, 1911.

14. Dreyfus, L., "Einfuhrung in die Theorie der Selbsterregten Schwingungen Synchroner Maschinen," *Elektrotech. u. Maschinenbau*, 29 S. 323, 345, 1911.

13 Mar 1, 1930 The exponent & can be thought of as an operator which takes into account the speed of the rolor. For instand, in the first of the four equations, the voltages are in terms of drop with respect to the stator eurored. The arrent in the rotor in the steady state, is speeded up ly a frequency of (1-5) so that it's apparent frequency from the state side is that of the fundamental. Likewise in the expressions for the rotor voltage, the stator currents france their frequency reduced to that of the notor. STEADY STATE BALANCED STATOR AND ROTOR, BAL. VOLTAGE. With balanced voltage on the state we know that E, = e, + e, and E = -j e, + j e, or solving for the components. e, = E, + jE2 and e = E, - jE2 also the rotor will run at a constant speed, i.e. & a a const. rate of increase. 8 = (u-n) #t m = electrical angular velocity of the votor. In the steady-state it is known that the current in both the votor and the stator are sinusoids of thequencies determined by the applied potential = and the slip[s==(w-m)]. Thus the components of current are of the form: 1/2 = I = 1/2 = 1 When the rotor is shouted Ez = E, = 0. $\vec{z}_{i} = \vec{z}_{i} \vec{z}$ $\vec{z}_{i} = \vec{z}_{i} \vec{z}$ + component; This in the differential equations for the $G_{i} = \frac{1}{4} = z_{i} \overline{z}_{i} \varepsilon_{+} M_{p} \left(\overline{z}_{2} \varepsilon_{-} \varepsilon_{w} t \right)$ $Z_i = (r_i + j \omega L_*)$ cancel exponentials = Z_2 I_2 = + Mp (I, E '/w-m)t). $z_{2} = \left(r_{2} + j \cos \lambda_{2}\right).$ $E_{i} = Z_{i} \frac{I}{J_{i}} + i \omega M_{i} \frac{I}{J_{2}}$ (w-n) = 5w $s = \frac{(av-m)}{w}$ add and subtract _ + j'wMs I, S. juli-M) 5 1'm (L2-M) $E_{i} = \left[\Upsilon_{i} + j \omega \left(L_{i} - M \right) \overline{I}_{i} + j \omega M \left(\overline{J}_{i} + \overline{J}_{i} \right) \right]$ E, I, Simu Iz Which gives the ordinary steady state quations for the ind motor and the [] + I,

14Jun. 1, 1930 And. motor with 19 Rotor. 2. 9. Edgerto a three phase induction motor with a thirdle phase rotor circuit has a differential equation that is given by the following component equations. (This is given in Ku's paper a. 2. EE. 1929 Jan- Feb). (r,+L,p)z' + = Pz'z = "ut = v= & ()(r+ L,p)?' + M p 2'2 E' = 0 < Bal. veto. (2) $(T_2 + L_2 p) z_2 + \frac{3}{2} M p (z_1' \varepsilon' + z' \varepsilon'') = 0.$ (3).Croceeding as before to pick out the steady state solutions, we select the form of Ainsoidal. The magnitude I is undetermined but the frequency is that $z'_{2} = -I_{2}\left(\frac{z}{2} + \frac{z}{2}\right)$ of the slip. 5= slip. When this is used in (1) it is found that i' must have two frequen of components, one of rated frequency (that of v,) and the other of (1-23) or (2n-w). $(-\overline{r}_{1} + \underline{h}_{1} p)z' + \frac{M}{2} \frac{I}{2} \int \frac{1}{2} \frac{1}{$ From (!) $(r_1+L_1p)z_1' = 2L - \frac{M}{2}p I_2(z_1'(ws+m)t - itws-m)t$ $\omega - n - n =$ w-271 (w-n+n)=w $i'_{io} of the form Inz' + I_{gz}(i'_{n,w})t' = Ez' - \frac{M}{4}I_{z}(i'_{w}z'_{t} + j'_{2n-w})t'_{y}$ Equating each forguency. $\int (Y_1 + j' w L_1) I_A \varepsilon' = E \varepsilon' - \frac{M I_2 j' w \varepsilon' w t}{4}$ Cancelling externation $I_B \mathcal{E} = -j(\partial n - \omega) \frac{MI_2}{4} \mathcal{E}^{j(2n-\omega)t}$. $Z_i I_A = E - j \frac{\omega M}{4} I_2$ $Z_{II} I_{B} = -j(2\eta - \omega) \frac{MI_{2}}{K}$

15In a similiar manner the expressions for the steady state values of is and i' can be put into equation (3), thus determining the form of equation that i must have. For equation (3): (S2+iswl2)I2 + 3 Mp [IA & iwt-nt + I3 & Mp [I ?] = 0 I2 [S2+iwl2] & + I3 (S=iwl3) & + 3 M i ws MIA + 3 M(-iws) IB & iwn + I = 0 Separateling the eigenst freq and can delich freq. apponentes I = I = I = iswt - I = 0 $I_2 \begin{bmatrix} T_2 + j'wh_2 \end{bmatrix}_{z + z}^{z} = Mj'ws I_A z + \frac{3}{2} j'sw M I_D z = 0.$ and $I_2 [Y_2 + i w L_2] \xrightarrow{I_3 \to 1} \frac{3}{2} M i w S I_B \xrightarrow{-i s w t} - \frac{3}{2} i s w M I_c \xrightarrow{-i s w t} = 0$ $-I_2 Z_2 + i X I_A + j X I_5 = 0.$ I_A see below $I_2(Z_2)_c - \int X I_B \neq \int X I_c = 0. \qquad I_B \qquad ?$ 22. from assumption of the Steady state. (s,+L,p)2'+ Mo Iz (2 j'wst-n -j'wst-at) = 0 (s,+L,p)2'+ Mo Iz (2 j'wst-n -j'wst-at) = 0 (s,+L,p)2'+ ZOZ $\left(\gamma_{,+}+L,p\right)z'+\frac{MI_{2}}{4}\left(-j'\omega z''-j'(2n-\omega)z''\right)=0.$ of the form. $z' = -I_A z + I_B z + I_B z$ since also $i'_+ i' = real = i'$ Equating equal freq. and cancelling exponents. $(\gamma_i - j \omega L_i) I_A - \frac{M I_2}{4} j \omega = 0$ $\left(r_{p}-i\left(2n-\omega\right)\right)I_{B}-\frac{MI_{2}}{4}i\left(2n-\omega\right)=0$

16 Collecting various vector expressions $I \begin{cases} Z_{i}J_{A} = E - j'\omega \frac{MI_{2}}{4} \\ Z_{i}J_{B} = -j \frac{MI_{2}(2n-\omega)}{4} \end{cases}$ $\mathbf{I} \begin{cases} \overline{Z_{10}} \overline{I_{A}} = j^{\omega} \frac{M \overline{I_{2}}}{\overline{4}} \\ \overline{Z_{10}} \overline{I_{B}} = j^{(2n-\omega)} \frac{M \overline{I_{2}}}{\overline{4}} \end{cases}$ Don't need thei $Z_2 I_2 + j = M w s \left[I_A + I_B \right] = 0$ From I and It. -EjaMws/2, $I_{2} = \frac{1}{\left[Z_{2} + \frac{3}{8} \frac{M_{w}^{2}}{Z_{1}} + \frac{3}{8} \frac{M_{w}^{2}}{Z_{1}} + \frac{3}{8} \frac{M_{w}^{2}}{Z_{11}} \right]}$ $\frac{-E 3^{2}Mws/2}{Z_{2} + \frac{3}{8}M^{2}w^{2}s \left[\frac{1}{Z_{1}} + \frac{2m-w}{w}\frac{1}{Z_{n}}\right]}$ 2<u>n-w</u>= 1-25 $\frac{2n-2\omega+\omega}{\omega} = \frac{\omega}{\omega} - 2\left(\frac{\omega-n}{\omega}\right)$ $\begin{array}{c}
-E \int_{2}^{3} Mw \frac{3}{2} \\
= \frac{+E}{Z_{2}} \\
= \frac{+E}{Z_{2}}
\end{array}$ = 1-25. I = i = z, z, z + wm [4] $Z_{i} = Y_{i} + f \omega k_{i}$ $Z_{ij} = Y_i + j'(2\pi - \omega)L_i$ $J_{A} = \frac{E - j \underbrace{\omega}_{4} M \left(\frac{+E}{Z_{2}} \right)}{Z_{1}} = \frac{E \left(1 + j \underbrace{\omega}_{4} M \right)}{Z_{1}} = \frac{E}{Z_{1}}$ = r, + j'al, (1-25) , $Z_{8} = -j\frac{M}{4}\frac{(2n-w)}{Z_{11}}\binom{+E}{Z_{22}} = -j\frac{M}{4}\frac{(1-2s)w}{Z_{11}}\frac{E}{Z_{22}} = -j\frac{wM}{4}\frac{(1-2s)}{Z_{11}}\frac{E}{Z_{22}} = \frac{E}{Z_{11}}\frac{E}{Z_{22}}$ $Z_{A} = \frac{Z_{1}}{1 - j \frac{WM}{4 Z_{2}}}$ $\mathcal{I}_{\mathcal{B}} = \frac{Z_{\mathcal{H}}}{(1-2s) \vec{\sigma} \frac{\omega M}{4T}} =$

mar 21930 Currents andud. notion with a phase rotor. 2. 2. Edgerton obtained expressions for the magnitudes (vector) of the current in the rotor and the two components of current in the stator. This to done by assuming the current in the rotor to be a simisoidally ranging one, the magnetude being unknown. By inspection of the differential equations it was sound that two current components must exist in the stater, one of fundamental This was also known experimentally but it could be deduced from the differential equations. Now the various frequencies magnitudes and placed in the differential equations for the steady state. In this case the for at is replaced by the jw or j(2n-w) for the (1-25) frequency. In this manner three equations are abtained with three unknowns after the different frequency companent, and equated and the exponential cancelled. The three unknowns (Iz, Ip, and Is) are then solved in terms of station medication with a hip which the field the L = synchronous self inductance of statom per phase. It is the self inductance of one phase (statom), plus the mutual effect of each of the other statom phases. phases. 12 = self inductance of the field on rotor. The current in the votor is then: $Z_{2} = \frac{1}{2} \sin \omega st = \frac{E}{Z_{1}} \sin \omega t \quad \text{where } Z_{2} = j \left[\frac{2}{3} \frac{Z_{1}Z_{2}}{S \omega M} + \omega M \left(\frac{1}{4} + \frac{1}{4} (1 - 2S) \frac{Z_{1}}{Z_{1}} \right]$ Z, = ri+jwh, Z= 52+ j'whis. Zn = Vatjul, (1-25).

Mar. 10, 1950

is equal to i - i is = $2(I_{A} \cos \omega t + I_{B} \cos(2n-\omega)t)$ = 2/I cos wt + Is cos w(1-25)t] and the rotor current as demonstrated on the previous page is (2m-w) w w -17 21 $t'_2 = I_2 \cos \omega t.$ 5= 4-1 $(2\eta - 2\omega = \omega)\omega$ In these expressions Iz, IA, and Ig are vectors which = (1-25)w.V are determined by the constants of the dif). $I_{2} = \frac{E}{Z_{2}} \qquad = j \left[\frac{2}{3} \frac{Z_{2}}{S_{W}M} + w M \left[\frac{1}{4} + \frac{1}{4} (1 - 25) \frac{Z_{1}}{Z_{1}} \right] \right]$ $I_{R} = \frac{E}{Z_{A}}$ $\mathcal{E}_{A} = \frac{z_{i}}{1 - j \frac{\omega M}{4 \mathcal{Z}}}$ IB = EXB $E_{B} = \frac{Z_{"}}{-(1-25)j\frac{M\omega}{4Z_{0}}}$ are quite difficult to make since they involve quite a few vector expression, Migor oral exam in Elect Eng. apr. 2, 1930 18-200

18

Notebook # _ 3

0

Filming and Separation Record

9

____ unmounted photograph(s)

____ negative strip(s)

<u>3</u> unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\frac{18}{19}$ and $\frac{19}{19}$.

Item(s) now housed in accompanying folder.

Mar. 10, 1930

is equal to i - i i' = $2(I_{A} \cos \omega t + I_{B} \cos(2n-\omega)t)$ = 2 (I coo w + I coo w (1-25)t / and the votor current as demonstrated (2n-w) w w FI7 21 $u'_2 = I_2 \cos \omega t.$ 5= 4-1 2 n - 2w = w) w In these expressions Iz, IA, and Ig are vectors which = (1-25) w. V are determined by the constants of the sip). $\overline{Z}_{2} = j \left[\frac{2}{3} \frac{Z_{2}}{S_{W}M} + w M \left[\frac{1}{4} + \frac{1}{4} (1 - 25) \frac{Z_{1}}{Z_{11}} \right] \right]$ $I_2 = \frac{E}{E_2}$ $I_{A} = \frac{E}{Z_{A}}$ $\mathcal{F}_{A} = \frac{Z_{i}}{1 - j \frac{\omega M}{4 \mathcal{Z}_{i}}}$ IB = E ZB = ZB $Z_B = \frac{Z_n}{-(1-25)j\frac{M\omega}{4Z_0}}$ are quite difficult to make since they winder quite a few vector expression, Mijor oral axan in Elect Eng. apr. 2, 1930 18-200

18

Notebook # _____

0

Filming and Separation Record

9

____ unmounted photograph(s)

____ negative strip(s)

<u>3</u> unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\frac{18}{19}$ and $\frac{19}{19}$.

Item(s) now housed in accompanying folder.

Equation for troque $\mathcal{T} = P_{j} M \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2}$ with the single phase roton. $7'_{5}$, $\pm 7'_{52} = -\frac{1}{5}\cos 5 = \frac{1}{5}\cos 5 = \frac{1}{2}$ $-j'z_{b_1}'+j'z_{b_2}=0$ 2-11-1-12+12 $2_{61} = \frac{T_6}{2} \cos 5 \omega t$ w - 25. $7b_2 = \frac{T_p}{2} \cos sat.$ - 12m + jw + jw - js - 12(w-m) - 15. $T = j PM \left(\frac{2}{a_2} z^2 - \frac{2}{a_1} z^2 \right) = cossut. -j 2s - js$ $z'_{a_1} = I_A \Sigma^{j \omega t} + I_B \Sigma^{j (2n-\omega)t}$ $\frac{2}{42} = I_{A} = -j_{wt} = -j_{(2n-w)t} = -j_{(2n-w)t} = (\omega - s)t$ $T = j' PM \left(I_{A} = \frac{-j_{wt}}{2} \frac{j_{(w-s)t}}{2} + I_{B} = \frac{-j_{(2n-w)t}}{2} \frac{(\omega - s)t}{2} + I_{B} = \frac{1}{2} = \frac{1}{2} \frac{$ - conj) Ib cossut. = $j'PM\left(I_R \Xi^{-j'st} + I_B \Xi^{j'sst}\right) = codswit: real + 2$

19 Aluel in apr 21 1930. X. 2.5.

PULLING INTO STEP OF A SALIENT POLE SYNCHRONOUS MOTOR UNDER LIGHT LOAD CONDITIONS.

A salient-pole motor when brought up to speed as an induction motor usually pulls into synchronism and operates as a reluctance motor, if the shaft load is small and other conditions favorable. The salient-poles follow the rotating m.m.f. of the armature by an angle sufficient to supply the load on the shaft. This reluctance torque as a function of the angle is a sin 20 term. The reason that it depends upon the double angle is because the polarity of the salient poles is not definite but depends upon the position. In other words the salient pole is a mass of iron that endeavors to place itself in a place where the maximum flux will exist and it does not depend on whether the field is north or south. 19

The synchronous torque expressions for the salient-pole machine as given by Doherty and Nickle at the A.I.E.E. convention in June 1926, are

$$P = \frac{EV x_d}{z^2} \sin \vartheta + \frac{V''(x_d - x_q)}{z^2} \sin 2 + \frac{rV}{z^2} (V - E \cos \vartheta).$$

The first term (sin Θ) is the synchroniaing power due to the field current. If is the induced e.m.f. in the stator. V is the applied potential. x_d is the reactance in the direct axis. $Z^2 = \frac{1+1}{x_d} \frac{1}{q}$ where x_q = the reactance in the quadrature axis and r = the armature resistance.

The second term (sin 2 \oplus) is the reluctance power. The last term corrects for the losses that exist in the armature. The sum of these components equals the input to the motor.

Before the field current is connected the input to the motor is equal

$$P = \frac{v^2 (x_d - x_q)}{z^2} \sin 2 \theta + \frac{r v^2}{z}$$

Core loss has been neglected here. In case measurements can be

to

0

Duel in apr 2/ 1930.

made then the core loss should be subtracted from P before it is equated to the other quantities.

$$P - (core loss) = \frac{\sqrt{2} (x_d - x_q)}{z^2} \sin 2 \theta + \frac{r \sqrt{2}}{z^2}$$

2.

The shaft load being small (only windage and friction), sin 2 0 will be small and satisfies the equation in four positions for each 360 electrical degrees of displacement. Two of these angles are unstable (90 and 270 degrees) since the slope of the torque curve is negative. The two possible operating angles are 0 and 180 degrees. When the motor pulls into step as a reluctance motor it may be at either of these angles (0 pr 180 degrees.)

Thus when the field is connected to a supply of d-c. there are three possibilities; (1) the motor will operate at zero angular displacement but with a much smaller armature current.

- (2) The motor will operate at 180 degrees of angular displacement but with increased armature current.
- (3) The motor will not operate continuously as case (2) if the field current is large enough. In this case the motor must slip a pole, resulting in voilent pulsations of current and power.

The three attached oscillograms were taken for the three cases that are listed above.

December 18th, 1929.

H. E. Edgerton.

Massachusetts Institute of Technology.

20

Notebook # 3

Filming and Separation Record

21

USC. No.

____ unmounted photograph(s)

____ negative strip(s)

_ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page 20 and 21.

Item(s) now housed in accompanying folder.

made then the core loss should be subtracted from P before it is equated to the other quantities.

$$P - (core loss) = \frac{\sqrt{2} (x_d - x_q)}{z^2} \sin 2 \theta + \frac{r \sqrt{2}}{z^2}$$

2.

The shaft load being small (only windage and friction), sin 2 θ will be small and satisfies the equation in four positions for each 360 electrical degrees of displacement. Two of these angles are unstable (90 and 270 degrees) since the slope of the torque curve is negative. The two possible operating angles are 0 and 180 degrees. When the motor pulls into step as a reluctance motor it may be at either of these angles (0 pr 180 degrees.)

Thus when the field is connected to a supply of d-c. there are three possibilities; (1) the motor will operate at zero angular displacement but with a much smaller armature current.

- (2) The motor will operate at 180 degrees of angular displacement but with increased armature current.
- (3) The motor will not operate continuously as case (2) if the field current is large enough. In this case the motor must slip a pole, resulting in voilent pulsations of current and power.

The three attached oscillograms were taken for the three cases that are listed above.

December 18th, 1929.

H. E. Edgerton.

Massachusetts Institute of Technology.

Notebook # 3

Filming and Separation Record

21

USC. No.

_____ unmounted photograph(s)

____ negative strip(s)

_ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page 20 and 21.

Item(s) now housed in accompanying folder.

•

				1.2 1. 1. 1. 1.	and the		nov	(4)
	mae	chena	804 A	+ B				
With	only	Wind 9	Fretos	on set	* in	nall	machin	e
Anving	0							
Watts	VÆ-	Ia	RPM					
1580	220	4.18	1204					k
1520	218	4.1	1204				Land Street	
With	large.	machin	e exer	led for	core l	020.	1	No. 1
Wattsup	at Vtous	3 Ia	If 804 A	RPM	Ea 804	A		
2020	220	5.34	7.3	1210	211	•		
21.60	219	5.64	9.2	1208	244			
2320	218.5	6.05	10.65	1202	266			
2528	217.5	. 6.70	125	1201	287			
2980	215.0	7.90	16.0.	1196	326			
Short	encen	1 on	804A.					
Watton	but V+ 804	\$ In 804B	Ie 804 A	Speed	Ja . 904 #			
1880'	218	5	5.05	1204	76.8			
2840	216.8	7.5	9.25	1205	141			
2140	217.5	5.65	650	1205	99.2			
3600	2170	9.6	11.45	1206	174			-
1440	217.5	3.85	0	1202				
	'							-
With	added	reacta	nee on	804 A	y sho	Alda	unter	_
IL	Ia,	Ia2	In:	RPM	EatoN	Xs	7	-
4.6	22	21.8	21.5	1200	79	3.62		4
7.7	37	36.5	36.2		129.5	3.53	c tron	time
10.1	47.6	46.5	46.1		152	3.26	Real	101
12.3	55.9	54.3	54.1	1	167.5	3.06	5)	
	1							_
415	51.2	50.8	49.9		72	1.42	-)	
5.20	64	63.7	62.8	1	89.5	1-41	Gair	cone
6:40	78.4	77.18	77.3	(108.5	1-39:	5 J rec	actors
		.,	/					
								A.B
						1	1	NO
and the second second				the second second		State of the other state	-	- in a second

21

T

24·may 2/930. 2. E. Elgerton Resistance of leads for measuring resistance = 0.153 ohms. loose contact. 0,129. ohms. R. = May 31930 D. F. Edgerton R Letter IF 230 DC Benphis w 2305 Waternel m 60AU D 34 asc. power clement. When R was about 0.7 of an ohim the damping was small but still positive. fld 1 with 110 volts as Samel. Could not show neg power running as ind motor with 1 rotar R1 = 3.23 - .13 R2 = 2.88 - .13 R3 = 2.49 Oc no 7. To excitation 19 rotor. (Regular field winding short-circuited) D.C. machine delivering power into lines The rotor unvent without was studing Ooc no. 8. Repear. nongeros for Vange and Speed. Ose nog, colib reduced on Velvator #3 (rotor aufo). Not. R. = 2,29-.13 2,16 $R_2 = 2.40 - = 2.27$ $R_2 = 2.32 - = 2.19$ $R_3 = 2.32 - = 36.62$ 2,21 ohmodry,

m let to 230 volto D.C. 30 230th 6 a. dief. open # *If* = const. Ra Vibrator#6 Polyphase. power. silvetin #7. speed and voltage of ange machine. Iz V I_f 656760 24873 E. A.W I, Osc. Ri Rz and Rz shorted 24873. 10 547400 656691 for calib. run. × 4 19.2 Calibrati Fld nov (West) 19.0 20,7 228 252 99 A and 89 B). Windage Friction Corelass of Jailed × 2 226 Jed no 1 (West) 228 5.6 З± 3.± the Power element put abead of the resistances. Guad fld open. Osc 230. zero of F- Power shifted. 11. 234 220 12. 60 age S.S. test on new purtch to say 13 67 98. 3.96 Slow osc. esclue to sun toose. 14. Same except time delay relay set on fastest foint.

26The By 1930 Calculation of Oscolograms. Expertor From Jelon no 9. when 0= 180 electrical begrees Ta 135 inches O PRW. WAYI EL. - 20 1-4.61 299 32 -,23 6-1-3,0 1.33 H + ,07+ 1000 34 09 35 77.46 5.35 \$ +,06 58 - 5,46 8.92 1 300 60 72. 7.6 10.4 8 1,25 79 1 11.45 M. 108 ¥ 390 20 360 1 19 61 10.8 7.874 35 4 8.83 4.75 6 12 m car. 10 + 68 1 mich of Poly Power = 7.68 RW. 1- .692 847 45 - 27 139 0.5 mel = 188 auf # 1.42 -3,0 5,5 V -,45 - 31 1 minh = 14.84 kell Calcof Evans and sels cha. I. 1= 228 R = 2,21 + 0.32= 2.54 ohns per plant 7 3 May = 0.14 23 Red = 5.7 1000 = 10.1 2W

Filming and Separation Record

151

-27

____ unmounted photograph(s)

____ negative strip(s)

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{26}$ and $\underline{27}$.

26 Tray 1930 Calculation of Oschograms. Experton From Jelin no 9. when 0= 180 electrical begrees In = 135 inches PRW. KUA:11 Tot. Pinch F2 Finch - 20 1-4.61 299 32 - 60 -,23 6-1-3,0 1,33 10 100 34 + 107# .09 35 77.46 5.35 5 +.06 140 n 5.46 8.42 A.S +.71 58 300 60 72. · 9.6 10.4 8 1,25 300 40 5 11.45 10,40x 79 1,40 ¥ 340 20 360 ↑ 19 v 11.7 9.65 4 8 1. 1.2 1.9 10.8 7.879 68 \$ 8.83 4.75 6 + 68 \$ 5.225 1.045 10m 020. 10 1 mich of Poly Power = 7.68 KW. - ,27 1-.692 2.97 5 -19 1.39 0.5 mile = 188 auf or 1.42 1-3,0 5,5 6 -39 - 45 Calc of Evans and Delo chant, 1 inch = 14.84 leve, 1= 228 R = 2,21 + 0.2= 2.54 ohms per place X = 4,53 ohmo 1 1 / / x = 0.14 x 3 Rat = 251,220 = 10.1 200 $P = \sqrt[4]{\frac{2}{Z^2}} = \frac{228^2}{254} = \frac{4.89}{8.9} \frac{1}{2.54} = \frac{4.89}{1000} \frac{1}{2.7} = \frac{4.89}{1000} \frac{1}{2.54} = \frac{1}{1000} \frac{1}{2.54} = \frac{1}{10$ Q = V2X = 228 4.53 = 8.73 KU.

Notebook # 3

Filming and Separation Record

151

-27

____ unmounted photograph(s)

____ negative strip(s)

_ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{26}$ and $\underline{27}$.

- server and a server and a server and an and a server and a server and a server a ser

Calculation of Oscillogram no. 9. 2. 4. Edge tor

120,	tratter batter	C.	P Juch	P.
	1.32	147	.20	1.53
2	1.22	124	.35	2.69
	1.1	107	,55	4,22
	.91	88	.66	5.01
	.82-	72	.53	4.07
	,61	52	.21	1.61
	.41	35	03	23
	.22	18	16	- 1.23
	.00	00	- ,12	-0.922
	,24	21	+,03	+.23
	,42-	36	.18	1.38
	.60	51	,33	2.54
	,79	69	,54	4.15
	.97	88	.69	5.30
	1.10	107	.57	4.38
	1.20	122	.32	2.46
	1.29	140	.05	.384
	1.35	161	13	- 1.0
	1.37	180	15	-/./5
	1.35		02	154
	1.32-	147	+ .16	+1.23
	1.25	130	,30	2.3
	1.15	114	. 5-3	3.84
	1.02	94	,66	5.07
257	,85	75	.58	4.45

 $\begin{aligned} \begin{aligned} & (alc of slip, \\ & 1 p degree + 15 cycles of time \\ & \frac{dv}{dt} = \frac{180}{.25} = 120 \ elast deg / sec, \\ & 0 = 360 \times 60 = syn speed an elast deg / sec, \\ & s = \frac{d0}{.25} = \frac{120}{.25} = 3.33 \ percent slip, \\ & w \end{aligned}$

27

28sugle woltag Corrent Speech R S 72 m Pe 2300 R GUAN A-C Fig 4. It have for liver , Rolow ent, wining diagram for ascillogram no H? polyphase rotor winding single phase votor winding (average torque curve. The instantancolis torque varies at double slip frequency). R Fig 1 The torque from a motor fith a polyphase 42 with angular displacement. Figo. 4070 The torque twith a single plase rolor Fig 3. O-Power. avies as Jig 5 opc. function r angula hisplacen (see fig 3)

Notebook # 3

Filming and Separation Record

29

_____ unmounted photograph(s)

____ negative strip(s)

<u>3</u> unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page 28 and 29.

28 augle woltage Carrent 5peed RNN 230v De And the R 2300 6070 A-C Qualified Fig 4. per plan for low Rotor ent, wiring diagram for ascillogram no H? polyphase rotor inding single phase votor winding (average tor que curve. The R frequency). Jig 1 the torque from a motor with a polyplase notor does not very with angular displacement. 1020/ Fig2. average The torque from a motor Angle plase rolor Fig 3. O-Power. avies as a Jig 5 opc. function + angula displacement (seel fig 3)

Filming and Separation Record

____ unmounted photograph(s)

____ negative strip(s)

4

<u>3</u> unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{28}$ and $\underline{29}$.

- May 6 1950 Self-Oscillation of 96. Salient pole syn motor # 305997. D.E Co ATB-6-37.5-1200 Jorn PB PF-80 3cf 90-180 amps 30 KW. 600- 37.51 Direct Connected to. John Roos. # 1016477 shund type RC B3 A Jun 230 volts aufs 160 1200 R.P.M. R = .507 - .128 .466 - .128 ,490 -R2 = 1765 E Ad open R3= -6+5 ,515 eun vitz withe vib? I no rheastate in federauit. Surtehes normally closed. Dacillograph opensthem just befre shot. They to the open out 1. to give speed Osc. 15 16 17/8 Demoto Calibration W 19. IF E I 2,22 228 69.0 x 20 50,3 0246 221 .981

S.m. Salient - Pole motor 30 Aug 12/930 Cathine of Pullin tests E. Edgerla B5. 8. 8, D.E. a.C. Deneration.] Ayuchronous noter. a.C. Severator # 302707. #842053 # 842052 ATI-10-62.5M 720 C 50 KW 720 P.F.8 ATI-10-160 M 720 AT1-4-62,5-M-720 C 40 amp 2300 v 6010 X.P. output 160 speed 720 P.f. = . 8 50 KW speed 720 P.f. = 8. amp 15 %. Volto 230. 15 Jamp vol 230 125KUA. Exciter # 502320 Type FF-4 -5-720 formE 40 amp speed 720. 125 volto . when it it mu = + 1250 Load on 2 + a buss. -un-666 23000 psc D Record evt If Ia Va Vaugle . 10,000 100× 1. = 100 avolant. Prinput . llovac Speed. formotor DC 2200 for are and relay.

May. 14, 1930 L. Edgerton WR 2 from Ira. 9, Terrysletter of may 5, 1930. and reactances. $= \frac{WR^2}{842053} \qquad \frac{WR^2}{960} \qquad \frac{1}{362} \qquad \frac{1}{0.173} \\ \frac{1}{173} \qquad \frac{1}{173} \qquad \frac{1}{173}$ # 302707 1175 .651 .32 # 842052 627 0.409 0.209 tolal WR2 2762 pound feet squared. $\frac{\text{Peluctance power at $\frac{1}{2}$ voltage.}}{V = .5}$ $\frac{V = .5}{\chi_d = .651} \quad \chi_q = .32 \qquad P = \frac{V^2(\chi_d - \chi_q)}{2\chi_d \chi_q} = \frac{.5^2(.651 - .32)}{2.651.32} = 0.198$ $P_{KW} = \frac{125}{160.198} = \frac{32}{8.KW} \cdot \frac{25}{8.KW} \cdot \frac{198}{31.8KW}$ Synchronous power. Pm = (UE Xy 125 (.5.5) 125 +25 61.3 48.0 KW) Pm = (UE Xy 125 (.5.5) 160 = 31.3 KW. 61.5 KW 1100 volto - 8,8 amfos field current. from sat. curre. 31.3 KW × 1.000 = 16.4 amperes required from 13 1.00 a.c. 1100 volt source. The motor requires 160 amps. exceting annext.

mary 15 1950 Jintz Broderick 32 C.T. C.T. 200:1 ratio P.T. 20:1. V. 5500 12.00 V. 55 on start 111 - 115+ start. 58 on run. I less than 1 amp run to 120 32. = 1.6 amp × 100 running light. 32. amps. .32. amps. Connections of polyphase watchelement of oscillographs Jun Jun Field Resistance. 9.5 shub fld + Rheoon board. 5.2 ohms fld only with Rheoout. 61.5. noynspeed. $\frac{6.00 \pm \sqrt{\frac{P_m}{f(wR^2)}}}{\frac{P_m}{f(wR^2)}}$ SI $5 < \frac{6}{720} \sqrt{\frac{59}{60}}$ $P_m = 50$ < 1.45% 37 f = 60 WR2 = 2762 see Com m = 720

Steady-State Tower- Augle Curveson #302707. mag 16 1930 H.S. Glypton. Haye. V, HW I, Iz Ig 32270. X20 X10 X10 D. 24873. X20 X10 X10 D. d. Cline Gen Prit. V Paul Fourmanie θ Sam Levine meter on board. Cas Kingsley. 116.5 116.5 59.0 115.3 1.7 1.08 1.05 18.9 24 130. 56.5 115.0 2.28 1.34 1.83 18.8 34 155 2.44 1.43 1.42 56.0 115 18.95 164 38 53.9 115.3 2.85 1.61 1.6 18.8 46. 180 61.0 115.2 1.37 1.- .95-18.8 18. 112. 25 6 20 64.3 115.2 .90 .75 ,75± 18.8 8.0 70 66.0 115.2 .40 .65 .60 18.9 - 66.5 = 16,54×2 0 0 66.5 115.2 .5 -.47 9.4 Ka = 33.07 2 Am 233.0 18.9 cove loss of 24 A 0 220 115.0 52. 3.46 1.86 1.88 18.9 57 230. \$ 8.6 3.92 -2.1 50. 115.0 2.1 18.9 66 250. 66.5 115.2. ,5 3.46 3.46 9.3 0 0 64.0 115,0 1.18 3,5 3.51 9.25 9.0 97 60.0 3,56 115.3 1.61 3,55 alent lows 9.25. 20,4 138 56. 115.0 3.71 2.06 3.70 9.20 28.5 166. 54,5 115.0 2,30 3.74 3.77 9,20 33.2 176 52.5 115,0 2.64 3.84 3,82 9.20 39.5 192. 49.5 115.0 3.17 3.97 3.95 9.20 49.0 213 4.07 47.5 115,0 meterchanged 3.47 4.07 9.2 55,0 227 45.5 116.0 3,82 4.18 4,20. 60. 9.1 239 43.0 115.8 4.17 433 4.33. 252 9.1 66.5 1/2 volts on (3.2?) quess form autotrans (3.2?) quess form yester hazs tests 32. 7 Reluctande pullout shorted thru 5 ohuns 1 16. J Pullin.

Pulling- into Step Scillograns on 302707. and Sliptorque Curve of 302707. A. Eo I HW IF Vo Maximin. Pout out. H. Edgertor marg 17, 19, 30 V X10 Pauttourmarie 115 0 175 - 8 Leviel 25 18 114 1.71 3.4 Osc 20 9.3 25.5 175 1.69 3.3 21. 115 25 173 9.4 1.82 3.61 22 115 27.5 182 9.7 123 60 115 1.84 3.61 9.2 27.5 157 1 27.5 155 series we Afsale - failes to fuel in 24 27.3 152 mith Vs. The 25 (this out toston) 114.5 1.8+ 3.7 9.2 19.8 1585/26/15/5 115 1.86 3.69 27-8 154 9.2 19.8 10 1497, 27 1515 11 5 1.84 3.67 19.8 27.7 153 9.25 13 17170 28 154 115 19.8 28.2. 155 1.86 3.72 9.55 19 1519.29 115 19-8 27.8 153 1.86 3.66 9.4 19.5° & 24. Sangle 31.0 161 calibration 19.5° & speed 1 30 115 2.11 3.98 8.55 These readings were made immedially 19.5 Slip of film 30 1.025 %. = (1.07 to .80) inches variation .94 + in. Calculation of slip from number of cycles per 360 elect degrees X cycles / clectres. slif = 60 eycles/sec 7. slip = 60×100 1 × 100

Comparison in the second	1			and the second sec	and the second	2. 77. P	The second second		I The Party of the	
36			Stead	y-state	2			- police		
May 17, 1930.		Forme	r - au	gle Ci	vrm	3027	07			
	Vac	iae	iac	hu	Vauq.	Pout	Vout	î4	Viet 0 € 2x116.5 € € 211 -32	
									4.55	
	115.2	-	-	0.61	59.	Ð	0	9.2	,25 1 1 29.4	
	115.5	1.05	1.02	2.05	46	12	105	9.1	,197 11,55 ,22,7	
	115.1	1.46	1.44	7.82	38	20	132	9.1	NoB 9.39 19.78	
	1.4.9	2.03	2.05	4.00	26	32	161	9.2	.11) 6.4 12.5	
	114.6	2.53	2.56	4.87	'7	39	181	9.2	939 4.189.36	
	115.0	3.04	3.02	5.65	6 [±]	46	196	9.	2 12 96 1,45 2,90	
	114.2	3.33	3.72	6.15	DI	50	205	9.1	5000	
	114.3	3.74	3.75	6.72	13	55	215	9.	2 1457 6.4	
	114.2	4.40	4.42	7.40	30	60	225	9.1	109 1 ³⁵ 143	

Probability of Synchronization May 19 1930, x = synchronized o-failed If Protout output. V 24,5 143 9.2 115 ХX Descontinued due to lateness of how 60 From page 31. Calculated Prehistance = 31.8 Psyn. = 6/.5. Condition for limiting slip S= 600 160 2762 NII I .0160 or 1.6 percent slip.

38 May 19, 1930. 2. 2. Edgerto Calibration of speed vibrator Paul Pourmanier Slips sliffinch - | | | | | Def in inches. VB Vs ,96 19.4 .20 19.4 1.31 .30 1.22 19.4 ,30 after the commutation .80 19.4 ,20 2.03 .32 220 volts These show that the speed .3 amps ± , 60 cycles. this means. Jess than . 5 of an amp. 3.0 amps 60 p. With \$/3 of inductance 220 v the angle voltage, then this should from the average of the speed record. It also may be computed from the record of field current since the fundamental of this is at slip frequency. there was too much inductance in series with the speed vibrator for the tests taken on the 17 th. However the records show the tendency of the speed which is important and sufficient for us.

mag 19,19:59 Synchronization Tests # 20000 If HTP Ia P V. × 10×10 × 10 output out. V K = Syn. X10 9.2-a load of 28 Ku causes the slip to be much larger than it was yesterday Sat. 29 blats in 1/2 min . 1.61 24.1 158 113,6 31 " 1.724 25.3 164.5 113.6 38 .. 26.5 2.11 171.0 113.5 46 2.56 27.6 176.0 31 .32-volto - \$ 1.65 19:4 2.05 9, slig = bests 9. with 26.5 170.0 ± fld shorted the motor pulls out 26.5 kw. KW putso rom oscillograms of page 35. D Slows down 20 finiting value of slip as (calculated on page 37. CURVE 1.6% SLIP. 10 PERCENT SLIP

40 May 221330 L.E. Edgerton Thotografelo taken may 17, 1930 Suring tests of pages 34-35des Kingsley farine Journanien Sam Paul Journal Edgentur # 302707 1 160 KW MOTOR BEING TESTED. HINE FOR EASORING ANGLE oscillog aph 62.5KW LOAD MACHINE Change-over switch Exciter used to measure slip.

Notebook # 3

Filming and Separation Record

____ unmounted photograph(s)

____ negative strip(s)

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{+0}$ and $\underline{+1}$.

May 22/330 Photografelo taken may 17, 1930 During tests of pages 34-35des Kingsley Levine Jour marier Sam Powl Jour Edgertur

302707 , 160 KW MOTOR BEING TESTED. NG ANGLE 950

oscillograph

change-ov switch

Exciter used to measure slip .

62.5KW LOAD MACHINE
Notebook # 3

22

Filming and Separation Record

_ unmounted photograph(s)

____ negative strip(s)

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{+0}$ and $\underline{+/}$.

41 From page 68 Fourmarier's thesis. Ooc no1. 27 excitator -40° 9=0.7 226 1300 3 23 110 4 28 150

0/2

Qa22, 1930 J. E. Edgerton nettod of measuring Slip-anga curves for a hunting motor. to give a plot of slip against angle by - CG+ "Too supply 39 ----750 v generator Voetage propto slip .: motin being tested voltage prop to engle. Jul wave rectifier 200 Expected results. The spot will give an intreasing the 0 damping negative. At the damping the my distuitance will give a speral that decreases to a point at the center.

Determination of the Moment of Inertia of a Synchronous Machine by Measuring its Hunting Period.

The motional differential equation of synchronous torques that determined the angular transients of a synchronous machine that is connected to an infinite bus is the following:

$$P_j \frac{d^2 \varphi}{dt^2} + P_m \sin \varphi = load (any function of time)$$

The electrical damping term has been neglected since it is usually small. The first term represents the torque that is due to the acceleration or deceleration of the combined rotating mass of the motor and load. The second represents the synchronizing torque between the two components of magnetic field which are due to the applied armature voltage and the field current.

The coefficients P_j and P_m will now be determined in units of kilowatts, electrical degrees, and seconds.

Inertia torque = J^{\times} in pound feet where $J = \frac{WR^2}{g}$ = the moment of inertia in poundals

> The angular acceleration in mechanical radians per second².

Inertia power = $\frac{2\pi n}{60} (J \propto) = \frac{2\pi n}{60} (\frac{\sqrt{2}R^2}{6}) \propto$ in pound feet per second.

If we express the acceleration in electrical degrees per second then

$$\mathcal{X} = \frac{2\pi}{180p} \frac{d^2\theta}{dt^2}$$

since 2m mechanical radians = 180 p electrical degrees.

44

The expression for the inertia power can be now written in terms of kilowatts, electrical degrees, and seconds as

Inertia power in kilowatts =
$$\frac{2\pi n}{60} \left(\frac{WR^2}{E}\right) \left(\frac{2\pi}{180p}\right) \frac{d^2\theta}{dt^2} \cdot \frac{.746}{550}$$

= $P_j \frac{d^2\theta}{dt^2}$ (2)
where $P_j = 0.154 \times 10^{-6} \frac{n(WR^2)}{p}$ or $18.6 \times 10^{-6} \frac{f}{p^2}$ (WR²)
since $n = f \frac{120}{p}$ (WR²)

The maximum synchronizing power for a three-phase round-rotor synchronous machine which has negligible armature resistance is

$$P_{\rm m} = \frac{3 \, \rm VE}{1000 \, \rm x}$$
 kilowatts

where V = terminal phase voltage

- E = induced phase voltage due to the field current.
- x = synchronous reactance per phase.

If the magnitude of the angular oscillation is not large than the slope of the power angle curve may be considered as a straight line. This assumption makes equation 1 a linear differential equation. The slope of the power-angle curve is

Slope = $P_m \frac{\pi}{2} \frac{\cos \theta}{90}$ kilowatts per electrical degree

and the linear differential equation is

$$P_j \frac{d^2 \theta}{dt^2} + P_m \frac{\pi \cos \theta}{2} \theta = load in kilowatts.$$

(3)

Notebook # 3

Filming and Separation Record

_ unmounted photograph(s)

____ negative strip(s)

____ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{44}$ and $\underline{45}$.

The expression for the inertia power can be now written in terms of kilowatts, electrical degrees, and seconds as

Inertia power in kilowatts = $\frac{2m}{60} \left(\frac{WR}{8}\right)^2 \left(\frac{2m}{180p}\right) \frac{d^2\theta}{dt^2} \cdot \frac{.746}{550}$ = $P_j \frac{d^2\theta}{dt^2}$ (2) where $P_j = 0.154 \times 10^{-6} \frac{n(WR^2)}{p}$ or $18.6 \times 10^{-6} \frac{f}{p^2}$ (WR²) since $n = f \frac{120}{p}$

The maximum synchronizing power for a three-phase round-rotor synchronous machine which has negligible armature resistance is

$$P_{\rm m} = \frac{3 \, \rm VE}{1000 \, \rm x} \quad \text{kilowatts} \tag{3}$$

where V = terminal phase voltage

- E = induced phase voltage due to the field current.
- x = synchronous reactance per phase.

If the magnitude of the angular oscillation is not large than the slope of the power angle curve may be considered as a straight line. This assumption makes equation 1 a linear differential equation. The slope of the power-angle curve is

Slope =
$$P_{\rm H} \stackrel{fl}{=} \frac{\cos \theta}{2}$$
 kilowatts per electrical degree

and the linear differential equation is

$$P_j \frac{d^2 \theta}{dt^2} + P_m \frac{\pi \cos \theta}{2} \theta = \text{load in kilowatts.}$$

44

Filming and Separation Record

45

unmounted photograph(s)

____ negative strip(s)

____ unmounted page(s)
____ (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{+4}$ and $\underline{+5}$.

45 Po= 0 f= 100 pm m= 120f $F = 0.265 \sqrt{\binom{VE}{X}} \cos \frac{p^2}{1} \frac{1}{(WR^2)} \frac{(128)^2}{(120)^2} \frac{p^2}{1} \frac{1}{(WR^2)} \frac{(128)^2}{(120)^2} \frac{p^2}{1} \frac{1}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{1}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{1}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{1}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(WR^2)} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(120)^2} \frac{p^2}{(120)^2} \frac{p^2}{1} \frac{p^2}{(120)^2} \frac{$ 2/ = 0,268 (VE cos & (120) + = 0.268×120 = 277 V 18.5 × 10° f WR² · (Pm = cool) = = 277 V 18.5 × 10° f WR² · (The second $= \frac{1}{2\pi} \sqrt{\frac{1}{18.5 \times 10^{-6}}} \sqrt{\frac{p^2}{f(wR^2)}} \frac{f(120)^2}{f(120)^2} \mathbb{P}_R$ $= \frac{120 \text{ W10}}{2\pi \text{ W10}} \frac{1}{18.5} \frac{1}{100} \frac{1}{1} \frac{\text{F}}{\text{WR}^2} \frac{1}{\text{R}}.$ 0,233 VT 120 ×10 X180 6,28 3,00 1/4 3,00 1/4 1/32 4430. cy 588.° cy c per second 3540 cy c per min

The differential equation is analogous to a series circuit of inductance L and capacity C which has the differential equation

 $L \frac{d^2 g}{dt} + \frac{g}{c} = E.$

The natural frequency of oscillation of an electrical circuit

is known to be

$$\mathbf{F} = \frac{1}{2\pi} \sqrt{\frac{1}{1c}}$$
 cycles per second.

Similarly the frequency of mechanical oscillation is

$$F = \frac{1}{2\pi} \sqrt{\frac{1}{P_{j}}} \frac{\frac{P_{m} \sum \cos \theta}{90}}{90}$$
$$= 0.268 \sqrt{\frac{VE p^{2} \cos \theta}{x \text{ f } (WR^{2})}}$$

Solving for the moment of inertia

$$WR^2 = 0.072 \frac{VE p^2 \cos \theta}{x f F^2}$$

H. E. Edgerton M.I.T. Nov. 15, 1930 45

46 WR from Hunting tests. 1.5. Edjerter 100,1930. To El mo DC. - eev Load yasput on the set by changing field current on the dic machine, Reactors series connection Then switch 5 good for 30 anyteres. was opened and this allowed the set to spring about its no load angle. The gaadrature field was open circuited and so the damping was negligible. an oscillogram was taken when the circuit conditions were as follows. 232 volts line to line. VE If = 8.4 amperes. Iac = 5 ± ampo.

47Calculation of WR 2 from diets of precedingpage. 232 1= P = & (number of poles) C000 = 1 X f = 60 cycles / sec cycles (sec. F $\frac{0.092 \, VE \, p^2 \cos \theta}{\chi f \, F^2} =$ See next pay.

46 WR from Hunting tests. 1.5. Edjertin 13,1930. To El mo DC. the set by changing field current on the dic machine, Reactors series connection Then switch 5 good for 30 anyteres. was opened and this allowed the set to spring about its no load angle. The gaad atures field was open circuited and ao the damping was negligible. an oscillogram was taken when the circuit conditions were as follows. V= 232 volts line to line. If = 8.4 amperes. Inc = 5 + sups.

Calculation of WR2 from dets of precedingpage. Cint 232 1= E = P = & (number of poles) C000 = 1 K = 60 cycles / sec f cycles / sec. F $\frac{0.072 \, VE \, p^2 \cos \theta}{\pi f \, F^2} =$ FUEL CONTRACTOR CONTRACTOR CONTRACTOR

48 804 B. Syn Generalo. 2 KUA Starting Condition 60 cycles Vistator 18 17 16 23.5 28,0 27,0 V field 186 volts 285 When cold this motor will not start with 102 ville AB = P A 16 = 7 A = 76 Kw perdeg 4 = .4375 3 20 25 45 50 30 40 35 3 4 5 6

Moo 19 1930

of 804 A. I3 KW. KW2 V If. Ew serie 304A. Ð I, I_2 - 3.75 .37 M .43M 227 8.15 -1.60 +40.0 42 9.0 ,94 M , 15M. 227 8.15+ -3.78 +45.0 9.5 9.8 3.65 ,296 ,396 2265 8.10 +1.36 -+33.0 3,25 7.8 ,686 ,826 +3,0 7.5 7.50 28.5 232.8.4 13.0 .5654 .7/4 228 8.05+5.4 226 8.1 24.0 12.8 -.74 4 .9854 226 8.0 +6.9 17.9 17.6 1200 -,59 M ,56 M 225,5 8.05 -4.6 11.8 11.0 46.0 -198 M , 875M 226. 8.05 -7.42 19.2 18.3 53.0 1 50 Ege F= 60

Power- angle and

Short circuit of 80417 + reactors as used in tests.

F= 1/ 1 0.4375 If Ia E $P_{j} = \left(\frac{1}{2\pi}\right)^{2} \frac{1}{F^{2}} 0.4375$ 16.2 2.05 28,2 3,55 $WR^{2} = (\frac{1}{2\pi})^{2} = \frac{1}{F^{2}} \frac{0.4375}{18.6f}$ 3,60 28,2 109 4,95 $WR^{Z} = \left(\frac{52}{2\pi}\right)^{2} 0.4375 \frac{X}{18.6} \frac{X10^{\circ}}{18.6}$ 38.9 4.99 150 = 247 pour fet ~ 48,2 6,16 182 6,16

267.

50 Reg 21930 Synchroning tests as fingley fr. PRN. Tr. egalor stort, puller on after start laft 33 KW 1854 9.6 15,5 8 122 10+2 Brown up to the - fankondere ingelig posed for the aufilm oper dury 16 fr and they were fine. I put on a show Friday Dac 15 1;

Notebook # 3

Filming and Separation Record

_ unmounted photograph(s)

1 negative strip(s) inside mounted envelope B. 51

51

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page 50 and 51.

50 21930 Sundaming tests markey fr. . PKW. If. Remarkan. equiler start, 0 pullinon after start raft 33 RW 1851 9.6 15,5 15.0 failed to pullin. > Atta 9. 13.8 two shots . 122 gr up to step or with wrong Two too with funkowere The film speed was 16 frances per 1.9. 16 mm films These films came back has thing day Dec 15 1/30.

Notebook # 3

Filming and Separation Record

_ unmounted photograph(s)

1 negative strip(s) inside mounted envelope Pg 51

51

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page 50 and 51.

51 Moving Victure Photographs of 10 pole Synchronous motor. 19 lens 16 f. p. S. Panderomatic film . Jetenny Lane. For all strobograms of Jan 7 by Prot. Bowles. 33 KW shaftlord 10 amps & field current Kare Wilder. 3-7616 Dert 1980

51 Moving Victure Photographs of 10 pole Synchronous motor. 1.9 lens 16 f. p. S. Panderomatic film . I Henry Fane. For all strobograms of Jan 7 by Prof. Bowles. 33 RW 10 amps & field current Kare Wilder. 3-24016 Dert 1980

52 mind gigst Integraph Solutions P. = h at of Salient Pole motor. 150. = 7.5 Kolor Reluctance = 0.3 × Pm. b= O do Ai P# Pm la 0 Initial Steady State. 1.20 6,15 07 0167 550 - 160 ,15 0 .93/10.0 0 -02 ,20 .95 420 0 75- 150± 16 162 0167 .95 .55/15. mostable very! 3 ,25 ,30 02 0 0 14/125 N .208,25 +02 103-149 stable. 0 0 .60/13.5 225 27 102 0 122 Very lize to 163/14 242 ,233 ,28 .02 0 Just stable mustable. (2° ,257 ,265,02 0 h = .0167 instead of 07

53March 201930 Ditto, 177 chart 2 20 atvar. 1:34 P4Pm le 00 deg 0 -02 183 0167 183 132 1.5 7.5 0 1.4 .02 180 112 ,123 7.0 0 ,105 1.2 102 180 6.0 1.3 .02 180 1.3 .114 6.5 0 backen 330° 2.6 332 29 backer 2.3. .72 29. 2,6 .02 11 2.0 1.7 1.4 14 116.

54 From Chart 2. P. P. 14 290

55 mar 2/1931 Edgests Brown Idemeste Chart3, 00 k pup K= 0475 ,56 0 .045 0 ,565 0 .1 0 .38 180 0 1 375 180 0 0 1370 180 interal at ,365? 0 1360 180 aft. Chart 3a Test of Sutegraph. k = 0P= 1 slope through 90° straight line for + (0) force W Imm .39 .03 0 K= 0318 ,40 0 .03 0 Round Rolm. PR=0. ,39 0 ,05 0 .42 ,03 0 41.5 about critical.

52 Murd 91931 Integraph Solutions 52 P1 = h th of Salient Pole motor. $\frac{1.50.}{1.50.} = 7.5$ Reluctance = 0.3 × Pm. b= 0 variation P# Pm do Ft. A.o. k O 1,20 6,15 Initial Steady State. 02 0167 ,15 550 - 160 0 .93/10.0 .20 :02 0 420 0 195 75- 150± 10 000 0167 .95 ,55/15. 3 ,25 ,30 02 mastable very! 0 0 14/125 N .208,25 102 103-149 Stable. 0 0 .60/13.5 3,25,27 0 122 102 Ven dye to 163/ al 12 ,233 ,28 .02 0 Just stable molable 239 ,237 ,285 .02 0 le = .0167 instead of 07
53 March 201930 199 chart 20 Avar. 1:34 P4Pm le 00 0 -02 180 0167 180 .132 1.5 0 7.5 1.4 .123 :02 180 1.2 7.0 0 ,105 102 180 1.2 6.0 1.3 .02 180 .114 1.3 6.5 0 2.6 332 29. Vackur I .72 2.3. 2,6 .02 11 2.0 1.7 10 116. 1,5

54 From Charto. PEPn 14 0. 238 290

55 mar 211931 Elgento Brown Idemester Chartz, Fm Oo k K= 0475 ,56 0 .045 @ ,565 0 .1 0 .38 180 11 0 375 180 0 0 180 14 1370 critical at . 365? 0 11 ,360 180 at. Chart 3a Test of Sutegraph. k = 0F= 1 slope through 90° straight line for + (0) force 11/ Imm ,39 .03 0 K= 0318 ,40 ,03 0 0 0 Round Rolm. PR=0. ,39 ,05 0 0 ,03 0 .42 41.5 about critical.

56 March 281931. Chart 4. K=0635 Thew Integraph setup II. inch do that la dolat de PJP 00 0.06 11.33 6.01 ,68 0 .70 0 6,18 11 0 .69 0 6.09 ,53 180 4.68

K= 0635 57 Mar 291931. ,375 m = 1 mit of slip. 5 Sutegraph setup I. P/ P/Pn O. 12 doft doft with inches 4.46 0.06 11.59 ,715 0 0. ,690 0,061 4.32 B .53 180 .06 ,06 3.315 .51 11 106 3.19 new cha 0 chart 6 Reverse Solutions -R#,06 Py = 167 .63 . 59 .55 .52 Ø 116 (final) 36 0 127 0 (final angle 77 0 1180 124.0 12/15 0 520 67. 0 72 0 3400 281 0 254 0 227 Ø 112 Br. Ok # makes 77 .06 80° .06 · barely 3,315 53 o second suring ina just .06 054 77.5 .06 3.38 000 out on 3 nd owing - gist. Round Rotor Solution .70 0 .06 4.37

58 Chart 7. Setup V. aft and P/pm k 0. 84 .085 0 3.95 82 1 0 close. 3.995 0 072 11 180 3.38 0 close .68 140 3,70 0 .67 the scale on the o table apagin error for the solutions they slope is connect on this page but needs to be connected by 1 8.45 = Au - 1.058 for all values up to mow that is be as noted

59april 1,1931. 13. Determination of the conditions wherin a Salient-Pole Syndironous motor pulls into the pas a Belintand motor, is The equation stating the restrictions P3 de Palo + Bsin 20 = P-First change minables so that 20 = x $P_{j} = \frac{d}{dt^{2}} + P_{a} = \frac{d}{dt} + \frac{P_{a}}{dt} + \frac{P_{a}}{dt} = \frac{P_{a}}{dt}$ Pdz + Pdz + 2Pr sind = 2PL Change time variable so that z = = = a. aPj dix + aPd dx + 2Pr tin x = 2PL $\frac{d^2x}{dz^2} + \frac{a}{a^2P_j} \frac{d^2x}{dt} + \frac{2P_e}{a^2P_j} \frac{d^2x}{dt} = \frac{2P_e}{a^2P_j}$ now fet 2Pr = 1 $a = \sqrt{\frac{2P_R}{P_1'}}$ dizz + Pa dizz + Pj VIPR dx + 2PR Aind = dizz + Pj VIPR dx + Bizk PL RPR dZx = Pd dx + sin x = PL dx z + 12 P; PR dt + sin x = PL PR.

60

from the colonical roton kas Pd and PE it can be found whether mot the conditions fallabore R = G3

61 Marbalanced Roto Induction motor an induction strolo with an turbaland $P_{i} = \frac{d^{2}0}{dt^{2}} + \frac{n}{2} \left(1 - 6\cos 2\theta \right) \frac{d\theta}{dt} = n_{2}$ $\frac{don + \frac{Pe}{R_1}(1 - b\cos 2\theta)}{dt} = \frac{P_1}{R_1}$ or since do = 5. as + Pi (1-bcong/sdt)s = Pi It in another form by changing the mit of time i = 3/2 a = constant. let i = 3/2 a = constant. a Fi dro taPa (1-bcos 20) do = P_1 Let $a^2 P_j = 1$ $a = V P_j$ $\frac{d}{d} \frac{\partial}{\partial r^2} + \frac{T_d}{(F_1)} (1 - b \cos 2\theta) \frac{d\phi}{dr} = F_2.$

62 & + k(1- bcoo20) 0 = P2 $\Theta = \int \left[P_2 - \frac{i^2}{k} \left(1 - b\cos 2\theta \right) \dot{\theta} \right] dt dt$ 0(1-bco20) 0 (1-bco20) sino 10 1-bcors = h(1-bcors20)6 TO A 0 ó D

63 k(1- f cn 20) Sódt G de fre. (-)8 = Jag dt j = Jlo. Sk(1-b-cn26)6dt PN M EA (Jurdy Swindy Judy X M DD 0 104 P = (mdn I fudx du fudx = u bi Ø= MPL 0 = S/ST2dt= (Sk (1-bcoo20) & dt]dt.

64 R- Amo k(1-b0020) 10 0 0 h PL B t 0 A Sh (1-100028) odt. SPedt SK(1-bcosse) # do XX V

Notebook # 3

Filming and Separation Record

e5

unmounted photograph(s)

____ negative strip(s)

_ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{64}$ and $\underline{65}$.

Item(s) now housed in accompanying folder.

1001

- serve -

64 le (1-60020) R-Amo 10 Ø 1 E 0 h. P. M 6 G 6 0 A SPERT She (1-100020)odt. SK(1-bcos20) the do XX V

Notebook # 3

Filming and Separation Record

05

unmounted photograph(s)

____ negative strip(s)

unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page $\underline{64}$ and $\underline{65}$.

Item(s) now housed in accompanying folder.

all contingent

65 non- anear damping on mach Prob. april 51931. PL-diab " DOC 118 k(1-bcar20) AOCNE Mz B) ma 714. 1 CO <u>C0</u> M4 bé 2. 1. Dt Integrator limitations a0" < 40 rev-e < 40 " CO < too reve per min. 50 < 40 rev. Unit relationships $l = \frac{\eta_3 \eta_6 a}{32 b} D$ $\frac{b\theta}{M_3} = \frac{1}{32} \int a\theta' \, n_6 \, D \, dt$ $\frac{be}{n_1} = \frac{1}{32} \int ec \, do$ 1 = n, ec. 2. $\frac{C\theta}{m_4} = \frac{1}{32} \int b \delta \eta_5 D dt.$ $I = \frac{\eta_4 \eta_5 b \mathcal{P}}{32 C}$ 3.

66 Ömax is about 2 or less so a < 40 = 20 rev / mit fet a = 16 a=16 max for emits = 0,2, 40 = 200 fit e= 128 e=128 é maxis about 20 bé < 40 5 < 40 = 2 let 6 = 2. 6=2 Plat 9 chart on the A table so that c = 1.0 also let Mg = 1.0 then 180 cleckkeg. = 9.0 inches c=1, M8 = 1. Tigalt Emit equations become $1. \quad 1 = \frac{m_3 m_6 a D}{326} = \frac{m_3 m_6 D}{4}$ 2. $1 = \frac{m_2 ec}{532} = 2\frac{m_2}{532}$ 117=1/2 $3, \quad l = \frac{m_y m_5 \, 6D}{32 \, c} = \frac{m_y m_5 \, D}{16},$ There are left 5 unknowns and two equations selected at random, 13=1/2 Let M3 = 1/2 M4 = 1/2 M5 = 1. my = 1/2 15=1 $1 = \frac{1/2}{16}D$ D = 32from 3. D= 32 1 = 12 16 32 M6 = 1/4 from 1 M6= 14 Check. $1. \ 1 = \frac{M_3 M_6 a D}{32.6} = \frac{1}{2} \frac{1}{4} \frac{1}{16} \frac{32}{32} = 1 \ V$ 2, 1= M2PC = 12 1781 = 1 V 332 - 232 = 1 V

67 Units (verticle) on Btable). E=128 revo / mit. Let 1/2 = 1/8 72=1/8 20 M2 = 128 = 51.2 inches per unit. Units (verticle)on A table. Let M, = 1/8. M, = 1/8 a = 16 = 6.4 miches/unit. Hongontal scale on A and B tables is the same and is equal to 9"= 180 elect degrees trial III Incase k = 0.05 or less the c scale can be doubled to 256 rev famit. The verticle scale would then become <u>e</u> = <u>258</u> = 102.4 inches/mit. and since c only appears in unit equat 2 be changed in the opposite sense to c $I = \frac{11 - ec}{532} = \frac{12 256 1.0}{32 \times 2} = \frac{1}{2} \frac{4}{12} \frac{1}{12} = \frac{1}{14}$ 1/2= 1/4 2 or e = 204.8 for 1/2 = 1/8 scales VII $X = 204.8 \quad m_1 = 1/4$ $X = 102.4 \quad ym \quad m_1 = 1/2$ Acules

69 of the field circuit. april 5/031. will retark the build of the field cirquit torque in approximately an exponential relationship. That is the much impresented for ce is acctually more equely represented by [Pm (1-2") sin 0]1 than (Pm shi 0]1. B do + B do + Em (1-5-2+) sin 0]2 = 12, are + Pa de + [Pm (1-3) hig] = P-Let t = 2 where 2 = 1 new variable. $a^2 d_{12}^2 + a_{P_j}^{P_d} d_{R} + \left[\frac{P_m}{P_j} \left(1 - \epsilon^{-\alpha k_a} \right) sin \theta \right] 1 = \frac{P_a}{P_j}$ $\frac{d^2 \phi}{d \chi^2} + \frac{Pd}{aP_j} \frac{d \phi}{d \chi} + \left[\frac{Pmi}{aP_j} \left(1 - 2^{-\frac{2}{a}} \right) \frac{m \phi}{d \chi^2} \right] 1 = \frac{P_{z}}{P_j} \frac{d \phi}{d \chi^2}$ now let appi = 1 or a = V Pgi. which gives dis + Fl de + [(1- 2) 1/10]1 = P_ Pm 0= J R. - k do - [1-5-2) mio/1/dida = $\int \int \frac{P_{n}dx}{P_{m}} - \int k \frac{dx}{dx} dx - \int (1 - \tilde{z}^{\frac{\pi}{2}}) Ain \otimes 1 dx dx$

- 23	-	1	Υ.	
	1	•		
	۸.	40	,	

Slip variations lac to a Pelutance torque

		Ger	1 1	-		-	1 1	1	1
		- li	qual	20.3P	m. I	alues 7	taleen o	from d	harts 1 to Pine
Chart	· LiRi	k.	Burry .	Omin	6-0	avg 0 0 + 0 m	8-0 5+5 20 mar.	952 80 101	
1.	1.15	D177	1,62	X4 T	,22	1.4	15.7	1×6.	
0.52.	120	л	2.05	1.88	117	1.88	2.05	,9.5	
012	,25	4	2.48	2.34	,14	2,34	5.98	3.92	
	.27	1.1	2.68	2,54	,14	2,54	5,52	4.45	
	28	11	2.76	2,63	,/3	2.63	4,95	4,5	
	.30	n	2.93	2.80	,/3	2.80	4.65	3.67	
	,15	27	1.63		.22	1,41	15.6	16.0	
	14		1,55		.24	1.31	18.35	17.4	
	13	11	1:46		.2.5	1.2.1	20.65	20,0	
	.12		1.38		.28	1.10	25.40		
					Que- Oa	va. ava.			
2	.14		3.48	2.61	,40	3.08		13,0	
	12	20	4.09	3.38	.34	3.75		9.07	
	,20		4.70	4.09	,30	4.40.		6.82	
	,23		5,30	4.17	.24	5.06		4.75	

Solutions with set up of page 68. scales TI. 51.24 72 april 8 1931 Cytudical rotor check. 2048 Ó. 00 P/Pan 6.6 Perfectateck of & Fine .05 12.0 0 0 close. 0.605 0 0 Đ. close ٢ de . 14 0 7.2 3 kacale thereby model if the Scales I 204. Sinche 2048 300 14:0 28,0 2064 0 4.6 0 0 in man 31.3 0 ,05 0 31,75 10 Initial slip = 14.25 180 0 Ċ. Second @ 05 @ 15 1 Ø 6,195 0 0 150 影 130 7.0 14.0 31 . 22 7.3 0 7.60 15.2 ,05 10.32 03 students f Ind 7.8 15.4

73 Changes of scales. Deagram on page 65 Given constants. a=16 e = ## (Dependo upon scales). C = 2 Mg = 1/2 (abecewere c= 1 Mg=1). The angle scales and plots remain the same as scales It and IT. Let Ma = 1/4 6=2 na = 1/4 This gives a 4:1 scale relationship between the output slip on the resuttant table of this THI against that of It and IT. Unit equations $I = \frac{M_3 M_a M_b a D}{32b} = \frac{M_3 M_b a D}{4} = \frac{M_3 M_b D}{32 \times 2} = \frac{M_3 M_b D}{16}.$ $I = \frac{M_2 M_k ec}{5 \times 32} = \frac{M_2 e}{4 \times 2 \times 32} = \frac{M_2 e}{128}$ (Let e = 204.8 as in III) or 204.8 in mit. Then 1/7 = 128 = 7 $I = \frac{M_{4}M_{5}}{32C} = \frac{M_{4}M_{5}}{32X^{2}} = \frac{M_{4}M_{5}D}{32} = \frac{M_{4}M_{5}D}{32} =$ Let no = 1 ny = 1/2 n3 = 1/2 My 715D= 32 D= 32x2 = 64 $M_6 = \frac{16}{N_5D} = \frac{16}{64} = \frac{1}{2}$

	and the second	1 11			- porting			
al	+ a	bril 11,	1931.		(6=1)	· Slip	variations.	
M. Caraller	6	24/0	de la	2 71		6 mart	tion inverse	20 20
				tamp orz		Emis Bara	- (Quini- Gave)	Demain Francis
10	102	1	331	6.67-	> 24/1		1. 360 1.95 1.389	210 20.8
		.2	6.66	1232		1213/840	1. \$\$3/360/ 825 1.642	13.69 12,36
				120				
	.03	,3	10.			/强 :4:11	1340 1.611	x8.87
	.03	.24	13,53	26,66		1-360 1.997	1355 1.617	674 _ 6.0 l
						245	5 20.	
	. 63	,5	16.67	33,34		360 1.689	- 1360 1.666 -	5,065 5,2
	e					310 3	309	1/2 1/1
	als	13		20,0		360 Q.S.G. 1	360 9,135	4.00 7.1
	.24					369 . 17	新。 41	
				mena	time to		and and to	regine 3 Pm
11	1		6.0	10	Colon	dical ,	Tor Until	Pita
- later	100		0,0	no	J			
	.03	.28	767	1534	Ú.	0	Ven Stable.	
				122				
	.03	,39	13	26.	0	ø		
	03	4/2	14	28.		0		
	08	.40				0		- in the second s
	, 83		13.66	27.3		0		
12.	-,03-	,23		15.352	180	۲	very.	1007 30002
	108	.24	8.0		180	0	close. 40	0 +
	,83	, 25	8.33		180 .	Ø	dose Tries	g quet.
	.0.3	26	- 8,64	17.33	150	0		
			anal	e- El	1.	= 1/2	10	
12	S.			in the	-		110	
12	06	.70	.11.67	12535	0	0	50 5	1
	20		1.83	25,65	09	0	2º Aug 3	
	106	1/2	12.0	24.0	0	0	2 acost 1 .	
	- 90	110	1010	1811	0	-	10021 R	20
11	190	100	0100	15.0	180		18 to spart	
	20	55	60	1010	180		12 E	N
	190	100	-1.11-	10122	180	0	9	

abril 12,1931. $J. \overline{z}. Sugerton.$ Reverse solutions. k = 0.06 $P_R = 0.3 P_m.$

Chart. L.R. D. Slart ang turn k .48 129,5 128. V 8. 16 14 0,06 .51 128.0 126.5 V 19 ,54 125.5 124.0 18. .57 123,5 122,0 ~ 19 ,50 121 119.5 0 . 63 119 117.5 V 21. .66 117 115,5 -22 ". . 69 114,5 113.0 / Forward solution ". . 63 0=8 23. @ very stable? !! .06 .69 meanly critical of just bareley Good check! Some trouble was experienced with the integraph due to two much load on the angle shaft. This way explain some of the discreptancy of the days results.

April 14, 1931. Data from hitegraph Solutions. 0=100. 0=0 Chart ho. Omay Davy. Do avg. Omage max. k. Do inst. 8. L.R. Barrey 275. .0177 180 ,12 3.1 In 113 1.38 1.22 .0475 2.02. .36 3.38 180 6.05 3.0 113 5 ,0635 .51 180 3.59 1.87 3,22 6.0 1.12 ,085 3.52 1.50 1.11 7 180 61 3.16 5.7 .04+ .41 .66 3,32. 1,40 8 1,56 .01 180 9 220 1.14 ,21 .805 1.56 ,03 180 71 1.52 ,05 9. .88 2.0 180 .38 .76 1,16 .795 180 .10 ,36 5.61 .3,2 1.72 19 .02 Chart 14. intersections. he = 0.06 PR = 0.3 Pm. Steady State average wax min Imin. 55 transient Bay L.R. 8 Do. .48 76-,51 .54 ,57 .60 .63 .66 .69

77

April 18-193/ Detup as outlined on page \$\$ 73 Damping scale = 204 Finches / mit on table \$ 2. Reverse solutions. k. L.R. FINAL Fart Chart ang. Turns 16 ×.47= .7.83 0.06 .49 129 127.5 14.15 8.17 16.1/3 16. 2/5 ,06 ,50 127,5 126.0 16 2/3 .06 .51 127 125.6 50 127,5 126.0 ,06 Speed variation due & reluctance torque. 16 0.06 10 10 20 15 30. April 19,1931. Cont of speel variations Pulling into step equa turns 10 180° & turns 16. o just! . 475 protate, 17. 10.84 2/.65 ,06 ,65 0 · quite stable ,06 .67 0 0? belt off. 22,30

Reverse Solutions Pr = 0.3 Pm b=0

le LR Ofinal Start Dang Grows. D. D. chart 17 0.04. .32 141.5 140 8 16 9Þ° 225 139. 138.5 .36 9 ·n. 256 18 40 135 133.5 69.0 10 283 20 .44 /32 130,5 11 48,5 307 22 .48 128.5 127.5 12 24 13° 345 86,0 243 34 140.5 139.0 8.5 17.

18

0.08

-08

Forward tests 8.18 inch • very close 20+3°.

08 ,81 0 1013 2026 20.50 0 0

0. 180°

180

.64

,645

é tur.

8,07 1614 47°

16

8

80 apr. 20. 1931. Reverse Solutions 6.14 0.00 = 2,045 Thart k. L.R. final start average turns. *O*, *O*, P.02. 276 .26 147,5 19. 26 22,0 339 146 13 .24 149,5 . 48,5 310 148 241 12 ,22 151.5 15 290 150 11 22 V ,20- 153.+ 151.5 17,5 274 20 / 10 .18 - 155.5 154.0 9 18 V . 84 258 .17 158 155.0 17 2 94 249 156.5 8 99 240 -15 159 157.5 75 15 .14 / 160 158.5 -14 1 7 108 220 13 161.5 160.0 6.5 13. Forward solutions. 6.14 1. = 10,23 Ó turns 0. 20. 0.10 0.91 9.1 18,2 12°
8° 0 94 .92 9.2 18,4 0 93 contical 93.5. 92 ,10 194 9.4 just 18.8 0 0 91 o just. gust! apr 2/. 10 .8 8,0 16,0 180 1º togo. 15.8 180 .79 1.9

to = 16 units 10-16 D = 64 ver/mit. 2 mit. 100 mits 64 100 × 6x = 6x00 rev 1 6400 = mich = 202 64 revunit = trev/mit. n= 400 = 16. = 1/2 inch/mit ?? = 1 in finit or 5 mits / mak Ship. Results against time. 614× to = 4,095 k L.R. Do . Org turns , .31 180 7.75 15.5 ,30 180 7.5 15.0 ,29 180 7.25 14.5 .04 0 64 140 80 .48 0 12 24 64 D

81

Pulling into step with mag 1, 1931. alr field current. memittant only when the field is connected give motor action it might be possible to full into step he & heavier loads, The stroboscopie rela can be arranged to that the the angle lies between & and 180 electricity degrees then if a the first swing it may her from will not be driver for ther from synchronism when the angle is such ago give generation since the field will be opened ther. as shon fldon figure the field first goes um ok. Slip motor fails to pall in and reade feld will be taken off and and the motor will start to gain its with field in connected to the degrees the from a smaller slip
Myratin Oscillato for kning strobosopergrids The frequency by the Rand the cianity the changing the bias voltage one the grid. A They Thou you and they are t 10-150 volts 200× ,63 = 126, volts RC = 1/60 sec = 0.0167 = 20,000 C $C = \frac{.0167}{.3.0,000} = \frac{1.67 \times 10^2}{2.\times 10^4} = .8 \times 10^6 = .8 \text{ me}f.$ Dr make R= 100,000 ohms. $C = \frac{.0167 \times 10^{-5}}{10.\times 10^{4}} = .167 \times 10^{-6} = .167 \text{ mf}.$ to make it oscillate to cycles free C = 167×6= 1002 mf. le mole it oscillate 5000 cycles C = .167 = .0167 frant. een ce min min certon to stato grid human - an elliptor The soor the source or the source or the source of the so D 4

85 Photocell operation with May 51931 Stroboscopic Light. 1. 2. 2 gerton 1.5. Pray. mains motin, 1 60. cy = ± 2200 M6002 theyide and I the I have the light from the thorator operall When the frequency of 804 A (alternative was less than the mains the frequence light gradually ingreased to a maximum and then snaped off. Na Rypl Alf-5) Rypl time With the frequences of to greater than the mains the variation of the light is the

86Field Switching Scheme. entron motor field aothat it is algoring in a sense as to give motor action. This can be accomplished by anguing a strolos spice light tight from the path of the stronger cell. The phase of the obstruction will be so any fight to strike the will allow they light to strike the photocelopohen interesting angular isplacement is between zeroand 100 electrical degrees. Apole votor, · SHAFT STROBOSCOPE PHOTDELECTRIC CELL. - control Ex BEX when the light obstructed one way

87 Cont. These can le. one trang Jun Contactor to open when machine pulls in Thoto cell and amplifiero \$ connect are arran the proper rectifier the field to make it give This circuit was shown to me on May 5, 1931 by H. E. Edgerton at Mass. Inst. of Jecknology, Cambridge, Mass. Charles Kingsley Jr E. L. Powles W. Anened may 13, 1931

Mary 6,193%. Accoperated variable frequency Stroboscope. Betongrids Steps. 400 = 4 ohnes, RC = 4× 6×10 = 24 ms. 300 1000,000. + RC sec $f = \frac{1}{RC} = \frac{1}{R \times 10^{-6} \times 6}$ $60 = \frac{1}{R \times 6 \times 10^{-6}}$ R = 60 = 10×10 ohno. RC - 6 x1 × 10 × 10 = 60 sec $R = \frac{1}{60 \times 6 \times 10^{-6}} e^{-\frac{10}{360}} = \frac{10}{360} = 3000 \text{ ohm} 3.$ The RC ty 2 mf for discharge and 4 others in disc circuit R= 60 x 2 x 10 6 = 120 = 10,000 ohmo. 5,005 - 30,000 ohmo. chog unt 0.5 to 4 mf. condenn

89 ,25 ,5 304 100 Cor 1.0 2.0 000 1100 8000 ohus - 20,000. 5000 25 = 50 ma. wating 8000 4. ohno, to 16 mf 32m+ 20,000 0 for - variable swit 60 cmc 5,000 5 wine cable the lamp, to The resistm light is. ight ? theore e 100 amppeake. No .25×10-× 8000 = . 002000, × 10 = .002 Dec 500 cycles. max freq. 500 x60 = 30,000 ,002. = Nº. 3.75 × 23, 10 × 10° = r.p.m. , 090,000 , tog = 10 cyc. 660 range

91Field Sustiching Scheme for a Synchronous motor. may 14 193/ A. E. Edgerton LOAD MOTOR Small motor under no-load condition. - to field switching circuit. A Commitator to have one to pair of poles. > moulation. Through the field switching an angement is only made when the two something commitations segments at the same time. Scheme is that the electrical contact is not made very long and so the impleses to the trip circuit needs to be amplified by some sont of relay. is that the small synchronous motor medgenty to does not need to be lined up with the big noton and can be placed any yohere on the

Field Switching Schemes. Cont Double grid thyratom FIELD. FIELD. Horon Load To give a peaked woltage. the thyration will not conduct until the two grids are positive. This only occurs when the angular displacement has a certain phase relation ship to the which is adjusted so that it areas at the most farmable switching angle, that is zero degnees. At would be more accurate to say that the thy ration does not conduct mutil there is a certain relationship between the potentials on the two frids. I the precessary wiltages to cause breakdown man be either positive or slightly negative.

93may 16 1931 At Edgiator Constancy of the frequency of the storboseope shown on pages 88-90 depend upon a constant de voltage. Que method to get this is to have a large enough "It" eliminator so that the load current does not appreciably change the voltage. a load just like the stroboscope but arranged so that the owner of the to keep the frequency constant the files robo curent load current. 8000 mm 1 # 420 the sol Bias more set by charging cu

2 1 1 13000 18000 = 000

 $RC = \frac{1}{60}$ sec. $C = 2 \times 10^{-6}$ $R = \frac{10}{60 \times 2} = \frac{10^{44}}{1.2 \times 10^{8}}$

10,000 ohmo.

4×5

2.00

25 X =

=

material list for strobe 2 mit good for 200v. d.c. , 25 to 2 mf steps. 1- 8000 ohns slide 1 - "B" lattery 22 volts! 1 - 30 ohm slide wine. 76-27 and fill transformer.

1.

x= 2000 = 3000 2-347 = 3000

96 2= ,347h C - 2×10 g R= 2000 $\frac{R}{2L} = \frac{2000}{2\times,347} = 3000$ $120 - \left(\frac{R}{2L}\right)^2 = 1.43 \times 10^6 10 \times 10^6$ $\frac{1}{2c} = \frac{1}{.747} \frac{1}{2 \times 10^6} = \frac{10^6}{.7} = \frac{1.43 \times 10^6}{.7}$ 3.000 10 x 10" 3000 the arcint is over danked. Rmust be less than $\left(\frac{R}{2L}\right)^{2} < 1.43 \times 10^{6}$ $\frac{R}{2L} = 1.2 \times 10^3 = 1200$ R = 2×00.35 = 840 ohms. too complicated?? 00000 Dil 10 mfx 20 = 200 m.s. UN 250. 0.800 = 2. 2.

97 A R2 100,000 make Fr = 3. approx. This nakes the grid go positive before the come as soon as the condense has built up to 60 % of its final so the final value it would have if the tulu did not strike. - melojc 人気+ R + さす.=年.= F1. Flett = ar. addig + ar da + al q = aE 1. $= \left(p^2 + a \frac{R}{L} p + \frac{a^2}{Lc} \right) q = a^2 \frac{E}{L} 1.$ da Let a= 1 a=The $p^2 + \frac{p \operatorname{Fic}}{L} + \frac{(\operatorname{Fic})^2}{Lc} g = A C \frac{E}{2} 1$ $\left(p^{2}+\frac{R}{\gamma \in P}+1\right)q = EC1$

5.

98 (P²+ R/E P+1) = 0 for rooto. $\mathcal{P} = -\frac{R}{2\sqrt{\frac{1}{2}}} + \frac{1}{2\sqrt{\frac{1}{2}}} \sqrt{1 - \left(\frac{R}{2\sqrt{\frac{1}{2}}}\right)^2}$ critically damped case (.7=.41 $\frac{R}{2\sqrt{E}} = 1. \quad R = 2\sqrt{\frac{E}{c}}.$ = 2 (.35 2×10-6 $= 2 \times 10^{3} \times \sqrt{\frac{35}{2}} = \frac{800 \text{ olins}}{8 \times 10^{3}}$ In a similia many the co $\left(\frac{g}{dt} + R + \frac{f}{dt}\right)i' = E1.$ Let t = a r. adz + R + & dai= E1. $\left(\frac{d}{dx} + \frac{Ra}{L} + \frac{a^2}{Lc}\right)i = a\frac{E}{L}1.$ $a^2 = LC. p = dr.$ $\left(\begin{array}{c} p + \frac{R}{V_{c}} + \frac{1}{p} \right) \ddot{c} = \underbrace{E}_{c} 1.$ $(p^2 + p_{\overline{E}}^R + 1) 2' = p_{\overline{E}}^{\underline{E}} 1.$

 $z' = \frac{\beta E / (E 1)}{\left(\rho^{2} + \rho^{R} + 1 \right)}$

99 $\frac{P}{\left(P^{2}+2\alpha p+w^{2}\right)}^{1}=\frac{z}{\omega}\sin\omega t^{1}$ $\omega_0^2 \Delta \alpha^2 = \omega_0^2 - \alpha^2$ tan q = ω/α X= T $\alpha = \frac{R}{2\sqrt{L_{10}}}$ $\delta = \frac{E}{\sqrt{\frac{E}{E}}} \frac{2}{\sin(\lambda)} \frac{1}{2}$ Z= 2 EVE for x= 0 wo damping. $\begin{array}{l} \mathcal{L} = , 35 \quad \mathcal{C} = 3 \times 10^{-5} \quad E = 500 \\ \hline \\ \vec{\tau} = 2 \times 500 \quad \sqrt{2 \times 10^{-6}} \quad 1000 \times 10^{-3} \quad \sqrt{5.7} = 2.4 \text{ amps.} \end{array}$ to prevent shouting the - Hieley tube if the grid fails $\frac{12^2}{2} = \frac{1225}{2} = 112$ formes. E = 25 = 112 1 = 25 = 200 × 106 volt i 1 = 200 × 100 volt i 1 = 200 vol 10000 sec per cycle. 15 a Tomf. A 14. 6 == 10 mf. A 14. 6 == 10 mf. A 1x 10 there = time coust $1 \times 10^{-4} = 10 \times 10^{-6} R.$ $R = \frac{1 \times 10^{-4}}{10 \times 10^{-6}} = \frac{10^{2}}{10} = 10 \text{ obussly}$ Switch to start transients.

ns.L

1/10/17/1931 Deed - torque (acceleration) #.9. Degisto. measurement by means of the cathode ray os cillograph. CCC if speed. $L, dz_i \ll z_i r_i$ ERipple must be less than 05% Mat must give voltage enough to deflect beau. say samp = 5. am/ser = d? 1 sec 100 vote Mat $\frac{L_1}{L_2}$: $\left(\frac{N_1}{N_2}\right)$ M= 100 = 20. h. 100 = 200 ohuns. Ldi' = < 100 say 1 volt. L = 1 = 0.2 h. M= 12.2 $M = \frac{1}{2} \frac{1}{2}$ this transformen needs a very farge votio of times. (N2 = 4000 = 20,000 tumos. (N2) = 140.201 min. (N2) = 0.2 = 20,000 1500 turnes.

M=20h. 1 < .2 h m 2 4000h. Ratio of trans 150 to 1. Let = jwhi for ac: at 60 cycles. 3771 << 200 ohno. Jay 2 ohno. 2 - 0 if M needs to be from 15 to roo h. $\lambda = \frac{2}{377} = 0.053 \text{ h.}$ · Ma = (1) M= VLL mily coupling. $L_1 = \frac{M^2}{42}$ $L_2 = \frac{M^2}{4i}$ $\frac{N_2}{N_1} = \sqrt{\frac{L_2}{M^2}} = \sqrt{\frac{L_2}{M^2}} = \sqrt{\frac{L_2}{M^2}} = \int_{-\infty}^{\infty} \frac{L_2}{M}.$ $\frac{53}{N_2} = \sqrt{\frac{L_2}{L_1}} = \sqrt{\frac{4K^2}{L_1^2}} = \frac{M^4}{L_1^4}$ Let MA = 15 L = 0.053. $N_2 = \frac{15 \times 372}{2} = 2800 \text{ to } 1.$ 17= 100 4= 0.053. N2 = 100 × 372 = 18,600. to 1. 1 - 2000 1 - 20000 6=.05h (0.5 amp) no nou-linear effect.

- 4

101

102 Obijoratron May 191931. A.g. Showt light (peak), g off the are. fullin ind for storting. 500 150 amp peak cathode.

103 ma 500 40 Small visual stroboscope. Targe powerful starts to be tripped by the 2005 ohus. 500 - 1000 ohu no holding spot needed. The Gochange of the small strobs is for through a spack coil which for spot on the big tube's fool. T a Wrap externally with wine and connect anode

may 18,193, Cathode ray lests jerto coil. C.

=IH E. thi code. Ri « etc. E. Mintorque. Ldz' < E.

Jim Byrne

Dich mason.

with pulsationle free generator

May 191931

Photographistateen May 19, 1931.

J.B. nellure

Machine transiento

Spring 1931.

Stroboscope equipment

M. Stande

104 Man 18,193/. - Cathode ray lests peed-torgut coil. EC Idi code. L=FE. Ri « etc E. Minjague. Ldz' <= E. Jim Byrne Dich mesor. with pulsationless-May 191931

J.B. McClure

Machine transiento

Photographistateen may 19, 1931.

Stroboscope equipment

Laurence M. Stande 105

Spring 1931.

106 method of Betting Surdx on the Integraph Suvdx. - Sod Judy - Soudy. Sudx - Ju Dz In the sign dironous machine problem the terms (1-bcos 20) to dr can be solved inthis manner. fi-banzo) & Sdola. (1-5 cos 20) & 0. 8 = Andr J (1-60020) Let $y = \frac{d\phi}{dt}$. V= (1-60028).

the le

107may 22/93/ 12. Elgent. Cout of Strobo of paye 93. draw a current such that it will from the filter is constant. 80 055 ma. 1400 UX 250 thyration. 60 ma Design Resistances etc to so that the total annext is a constant. The chaging current increases the bias and reduces the current drawn by the 250. Tube.

lo

may 26, 1931. Stroboscope. up and tried. page 94 connected 50 ± 10,000 -minton 10,00 230 DC o to #5 volts bias used 6000. v. 6010 There is a periodic maniation of the flashes which is apparently due to the interfirence of the nottage on the filament. The 60 cycles beat with the friquen gof the flash circuit. an F.G. 33 did not work on this Jash tober the grid was connected to the and & but would not operate with the goid + 23 45 volts!

Stroboscopic mories May 28 1931 Scale with slots for the light to shine through staft - - - light 60 cyc sec flashes. Camera 16 m na film Pointers. driven at coust synchronous motor so that then would be 60 frames for second, a relay system would start the camera add the strobodcope simultaneously

nazg/931. Gield-Switching.for Gerto Synchronous nistos of a synchron supply on the field yade to supply intermittant field current by that the field is on from 0 to 180 degrees and is off from 180 260 (generation angles). Re Ella (m.q.

May 30 193/ A. 2. Edgenton. Those angle control of thyrations, Ref. N. Shottingham. March 1931 p.271. Characteristics of small find-controlled hot-cathed mercury and or thyratrons It in curves for du F. & 27 and a FG. The circuit that he uses depends upon a ondense after resiglande for the phase shifting The angle is calculated since Rand can known. This slift im phase onresponds to 1×103 seconds or 1000 mino sec. which is a very long, time. Lam somethal this question needs further investigation. It may be possible that the current in the grid circuit makes his calculation Sinch the Rand C must be in a steady state in order to compute $i\int x = 45^{\circ} \quad R = 1 \times 10^{\circ} \text{ ohmo.}$ $\chi_{c} = 1 \times 10^{\circ} \text{ ohmo.}$ line could z $T = RC = R \frac{1}{\omega \chi_c} = \frac{1 \times 10^{46}}{377 \times 10^6} = \frac{1}{377} \sec,$ of phase shifting circuit. =.00265 another factor which may make his angle colulations invalid and currents between the anale and grid before conduction. I have noticed such a glow between anode and grid the main arc strides.

June 16,1931. H.E. Edgerton Photograph movie Projection by means of intermittant light. projection ochemed use a concentrated light source sounce. at the present to be impossible with the mercury archamp. It may be possible however to use a line source of fight to advantage. I believe that an intense capiticianly can be built which will be small in diameter but very intense. a parabolic minor and parallel light shieldo may make it fight which may be directed lenses, light baffles to make the light Parabolic reflector to make Plance light source. I light grid to make bears parallel. During the last week I wonked at the Sprague Recialities company and Juincy on the motor driving the Visiova. These intermittand light schemes were discussed at length with Bill Dumn. constant speed film seems & have during

113 , Screen \square timuously moving film . by a nick on the film. For 16 mm film the Sprochet holes will accomplish this purpose.

	10	and the second second	The second	 -	-			 -	 _	 			_	_			 	 *	 	 13	11 mar	 And it is not the owned
	P.	190																				
	-	140		 -		-	-	 -	 -	 	-	 		-	-	-	 	 -	 	 		 -
	-										1											
1																						
1																				-		
1																						
2																						
																				4		
1																						
1																						
1																						
I																						
1																				1		
1																						
																				1		
1																						
																					3	
1																						
ALL NO.																						
1																				-		
-																						
P																						
l																				4		
F																						
H																						
1																						
																			+			
														0								
1	34																					

								_			1	 				-	1.3	and the second	 	ALC: N	100	-	. A		They	Contraction of the local division of the loc	1000
	C.	196	2																								
1	-	14		1	-	-	-			-		 	 	 	 				 			+					
l	-		4																		1						
																					1						
l																											
H																											
l																											
					+																						
H																											
l																								-			
F	-				-																						
and a																											
No. of Lot of Lo																											
and the second																											
l																											
					1																						
ł	Į																										
	-																										
to the second							1																				
ALCONT.																											
		11																									
				The second s																							A REAL PROPERTY.

4	m	-	1		1	 	-	_	 	 	 	 		1	 -	 	 and a	2	1	in the man	-	a llan	ALC: NO	-
1	- 1	128																						
l																								
T																			1					
					-																			
				*																				
																					-			
																					1			
		¢																						
Jen J																								

		-	-	in the		_	 	 			_	10.3			 and the second se	1 million	 -	1	11.5		here	Illion C	Contraction of the local division of the loc	
6	132																							
-	1		+		-				-	-		 	1	 						-				-
																								-
	,																							-
															4									-
																								-

And a state of the	and the second	 and the second	the country of the co	the second se
124				
104		 		
				·
from the				

	10	 								and the	12/14/2	a warden de	 C Stores	and the second second
-	136													
2			 	++-	 ++	 _	-		-					
													-4	
8														
ŧ!														
								•						

140

...

			1					_		_							 	X	100	a subs		and a	- Aller	
4	1														-									
4		142				4		-	 		 	g.	 	 	 	 	 				•••••			
T	Constra	<u> - 1197 - 1978 - 1977 - 1</u>	<u></u>				-prises		 	-	 		 	 	 	 	 	- 4/ - 14 - 14 - 14 - 14 - 14 - 14 - 14						
			x																					
																							a.	
					-																	-		
R	-				-																			
																						-		
																						1		
	1																							
1	1																							
					-																			
8																								
1																								
1	-																							
							•															_		
8																								
1				7																				
	rt.e.															3								
-																								
14																						-		

Notebook # 3

Filming and Separation Record

____ unmounted photograph(s)

____ negative strip(s)

/ unmounted page(s) (notes, drawings, letters, etc.)

was/were filmed where originally located between page _____ and ____.

Item(s) now housed in accompanying folder.

houts for determine tim J WRZ Osullation data If south V& Ead ICs uR2 time in Sea Cycles of Bull. 34 120/53 68.5 3.26 323 4.0 126.5/53 8.8 140" 11 32 ? 124 53 from 187 139 8.7 1, 20 29.75 294 123 3 139 8.7 KYA 30.0 +, 12003 309 36.5 machine 5.92 101 20 14 118 3 16 7 63.5 4.15 4 15 non cone 17.5 18.25 278 reactors 15 11 11 14 11 In one removed from reactors. 115/53 19.5 252 13 15 1.41 4.15 from 187 266 13 15 11 1.41 20 KVA 11 231/53 machine 1.41 134 8.3 20:25 30 250 machine operating from bus . 226 15 50 1.09 13.5 2.9 210

