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Glossary of symbols,
Thermionic constant, Eq. (9.1).
Ratio of radii as defined by Eq. (60.6).
Empirical constants of Eqs. (77.1) and (77.2).
Universal thermionic constant, Egs. (5.2) and (18.6).
Area of conduction specimen, Eq. (65.28).
Area of electron emitter as used in Eq. (82.5).
FowLER’s thermionic constant defined by Eq. (64.24).
RICHARDSON constant, Eq. (50.2).
Constant in general equation as in Eq. (50.8).
Symbol introduced into Eq. (26.1) to represent barrier properties.
Grid to emitter capacitance (Sect. 82).
Correction factor to pore-conduction equation to include porosity of specimens,
Eq. (65.28).
Correction factor in Eq. (65.9).
Capacitance calculated as in Sect. §2.
Distance between emitter and collector, Eq. (27.4).
Transmission over emission barrier, Eq. (26.1).
Average transmission of electrons from the interior of asolid across a barrier to
the outside, Eq. (64.22).
An abbreviation D (p, B) (Sect. 64).
Electron charge, Eq. (5.1).
Used as abbreviation of Ep in Eq. (64.6).
Electric intensity, Eq. (27.3).
Electric intensity at critical distance x,, Eq. (27.7).
Component of electric intensity, Eq. (23.3).
Activation energy defined by Eq. (65.13).
Energy level of donors relative to bottom of conduction band (Sect. 64).
Fraction of a MaxweLLian distribution, Egs. (33.2) and (34.1).
Maximum fractional distance from an emitter of very high capability to space

charge minimum, Eq. (61.3).
FL FERMI level (Fig. 2). . ,

F.(p, V, T) Probability of electron absorption by collector depends on momentum, potential
and temperature of emitter, Eq. (26.1).

F(S, a) Function given in Eq. (60.4) and computed for Table 10, plotted in Fig. 19.
F.(S, kT/w) Tabulated function applied to theory of electron emission from a cylinder in

a retarding field, Eq. (26.9).
F(V;, Vp, n) Defined by Eq. (62.6)
F(x) Force function, Eq. (27.6).
fly.) Function of collector region potential difference given by Eq. (46.14) and Table 6.
Fp.) A function applied to the collector space defined by Eqs. (38.4) and (39.5).
g Conduction per unit area, Eq. (65.28).
Em Transconductance (or mutual-conductance) defined by Eq. (82.5).
G Abbreviated form of G (¥) as in Eq. (27.11).
GIS) Electron flow in a retarding field between cylinders, Eq. (26.11), and Tables 2 and 10.

I This work was supported in part by the Signal Corps; the Office of Scientific Research,
Air Research and Development Command; the Office of Naval Research; the Research
Laboratory of Electronics and the Department of Physics of the Massachusetts Institute of
Technology.
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Geometrical function relating E to V,, Eq. (27.3).
Empirical value of constant of Eq. (79.1).
special form of General Electric tungsten wire (Sect. 70).
PLANCK'S constant, Eq. (15.1).
Extention in phase space per quantum state (Sect. 15).
Zmission current as in Eq. (82.8).
Electron current density, Eqs. (5.1) and (5.2).
‘Random’ electron current density in a cavity, Eqs. (18.2) and (18.4).
current density at the surface of a cavity. Same as I,,, Eq. (18.1).
“onstant of the ScHOTTKY Equation, Eq. (27.11).
‘urrent density at zero field as in Eqs. (27.14) and (40.1).
_urrent density defined by Eqs. (18.5) and (26.10).
Minimum current density with zero field at emitter computed by Eq. (46.12).
Maximum possible current density flowing across a diode with zero field at the
sollector, Eq. (43.2).
Maximum current density given by Eqs. (46.11) or (58.2).
Current density computed by Eq. (52.4).
‘urrent density under critical condition of zero field at the collector, Eq. (43.1).
Current density with zero field at the emitter and the critical temperature ©,
iq. (47.1).
30LTZMANN’S constant, Eq. (5.1).
A number defined by Eq. (64.14).
The LaNngMUIR-CHILD constant, Eq. (38.3).
Average free flight distance in a pore, Eq. (65.17).
Free flight distance in a semiconductor, Eq. (65.6).
“ree flight distance at some low temperature T,, Eq. (65.6).
Thickness of a test specimen for pore conduction in a high field, Eq. (66.3).
Designation of straight lines in Figs. 11 and 12.
Electron mass, Eq. (5.1).
Average dipole moment per atom, Eq. (73.2).
Dipole moment per atom at very low surface concentration.
Proportionality constant defined by Eq. (82.3).
“lectron mobility in a pore, Eq. (65.4).
Mobility of electrons in a pore over temperature range II, Eq. (65.18).
Electron mobility in a semiconducting solid, Eq. (65.3).
concentration of free electrons, Egs. (5.1) and (22.1).
Term index in summation of Eqs. (62.3) and (62.5).
Number of atoms per unit area, Eq. (73.2).
Zoncentration of electrons in cavity space, Eq. (18.3).
Jonor concentration used in Sect. 64.
idsorbed atoms per unit area in a monolayer, Eq. (75.1).
Electron concentration at cavity center of Fig. 3.
Maximum possible electron density at the center of a cavity, Eq. (24.4).
Concentration of electrons at emitting surface of cavity, Eq. (24.8).
A numerical constant defined by Eqs. (38.8) or (46.4).
Number of electrons that can cross a solid boundary out of a cavity per second
per unit area per unit range in energy, Eq. (17.2).
Number of electrons that can cross a solid boundary into a cavity per second per
mit area per unit range in energy, Eq. (17.1).
Jumber of electrons crossing unit area per second per unit range in ¢,, Eq. (16.1).
fomentum of an electron, Eq. (26.2).
Momentum component along x, ¥, z direction.

\verage momentum component, Eq. (33.3).
Momentum component in the x direction of an electron at the limiting part of the
arrier, Eq. (26.4).
Average gain in momentum as in Eq. (65.1).
Radial component of momentum, Eq. (60.1).
Same as p, at the surface of the emitter, Eq. (60.1).
~imiting value of initial radial momentum at the emitter for arrival at a potential
coint V; negative, Eq. (60.3).
Limiting value of tangential momentum at the emitter for arrival at a potential
point ¥, negative, Eq. (60.3).
langential component of momentum, Eq. (60.1).
same as pg but at the surface of the emitter, Eq. (60.1).



Glossary of symbols.

rr

Po
Abbreviation for contact difference in potential, Eq. (38.10).
Contact difference in potential at 0° K by extrapolation according to Eq. (38.10)
(usually not the true value).
Contact difference in potential (a function of temperature), Eq. (27.1).
Probability integral, Eq. (34.6).
Radius of emitter, Eqs. (26.5) and (27.5).
Radius between that of the emitter and the collector, Eq. (60.2).
Radius of emitter in Eq. (60.20).
Radius of collector, Egs. (26.5) and (27.5), or radius at potential minimum as in
Eq. (60.3).
Collector radius as used in Sect. 67.
A dimensionless measure of applied voltage defined by Eq. (56.1).
Dimensionless measure of applied voltage for zero field at collector, Eq. (57.1).
Retarding potential in dimensionless units, Egs. (26.8) and (56.5).
Slope of line in Fig. 11.
Slope of line in Fig. 12.
Dimensionless change in potential with zero field at collector as reference, Eq. (57.1).
Maximum value of collector potential change in dimensionless units (Fig. 14).
Value of S’ when current ratio is expressed as #2, Eq. (58.13).
Slope given by Eq. (52.8) and illustrated in Fig. 13.
Temperature on Kelvin scale (see also Vr).
Activation temperature (Sect. 75).
Matching temperature for relating thermionic constants, Eq. (50.5).
A low temperature at which a free flight distance /;, is known, Eq. (65.6).
Increase in temperature above the critical value @. Eq. (40.2).
Current ratio as in Eq. (57.3).
Maximum current ratio between space-charge limits, Eq. (57.4).
Current ratio defined by Eq. (58.3).
Average speed of electrons of low concentration, Eq. (65.6).
Applied potential, Eq. (27.1).
Applied voltage for current density I, (Sect. 47).
Applied voltage for current density I; (Sect. 47).
Voltage computed from observables as in Eq. (47.5)
Applied voltage for a calculated current, Eq. (52.1)
Defined by Eq. (52.2).
Defined by Eq. (52.3).
Observable applied voltage, Eq. (52.5).
Applied voltage for zero gradient at the collector (Sect. 57).
Applied voltage at critical condition of zero field at the emitter, Eq. (49.7).
Observable potential difference over temperature difference of AV with zero net
current (Sect. 86).
Internal potential due to surface charges as in Sect. 86.
Magnitude of true retarding potential in the space between the emitter and collector
in Egs. (26.5) and (26.6).
Potential with respect to the space-charge minimum of Fig. 3, see Eq. (22.1).
A constant depending on tube geometry and temperature. See Sect. 9 and Eq. (27.1 1).
Potential difference between emitter and collector as in Eq. (27.11) or potential
across the collector space as in Eq. (32.1).
Lowest temperature of range expressed in electron-volts, Eq. (49.1) and (11.3).
Highest temperature of range expressed in electron-volts, Eq. (49.1) and (11.3)
Voltage drop over an average pore distance of I, Eq. (66.2).
Retarding potential difference between surface’ of emitter and surface of collector,
Eq. (42.1).
Potential difference in emitter space as in Eq. (32.1) in Fig. 7.
Difference in potential between center of cavity and its boundary just outside the
conducting surface as in Sect. 24.
The electron volt equivalent of the energy 27, Eq. (46.9).
Electron-volt equivalent of minimum temperature for space-charge minimum of Vr

as in Eq. (82.7).
Electron volt equivalent of Tj in Eq. (65.6). ,
Characteristic temperature expressed in electron volts defined by Eq. (47.12).
Critical temperatures expressed in electron volt equivalent, Eq. (53.1).
Electron-volt equivalent of the critical temperature © and given by ©/11600 (Sect. 47).
Distance between plane conducting surfaces (Sect. 21, Figs. 1, 2, 3, and 7).
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Separation of surface charges, Eq. (73.1) (Fig. 34).
Potential energy difference shown in Fig. 2—Electron affinity of a solid, Eq. (17.4).
Electron affinity modified by an externally applied potential, Eq. (27.10).
[ntegration variable, Eqs. (26.11) and (60.4).
Distance variable as in Sect. 27.

Characteristic unit distance of space-charge theory, Egs. (35.1), (35.2) and (38.9).
Escape distance as in Fig. 5 and Eq. (27.6).
Distance from potential minimum to collector Fig. 7 and Eq. (38.2).
Distance from emitter to control grid of idealized triode. *
Location of mirror-image surface with respect to an arbitrary reference as in
Eq. (27.8).
Maximum value of distance from emitter to space-charge minimum, Eq. (46.10).
Integration variable, Eqs. (26.12) and (34.3).
Ratio of distances as in Eqs. (24.2) and (43.4).
Ratio of electron concentrations as in Eq. (24.11) or currents as in Eqs. (43.4)
and (51.2).
Arbitrary ratio of currents as in Eq. (52.4).
Arbitrary choices of 2, Eq. (53.1).
Current ratio defined by Eq. (58.7).
(d@/dVr) or the temperature coefficient of work-function with temperature expressed
in its electron-volt equivalent, Eq. (65.21).
Proportionality constant of Eq. (80.2).
Distance from potential minimum to surface at which yp, is infinite, Eqs. (24.1)
and (43.1).
Kinetic energy when potential energy is zero.
Energy, Eq. (15.1).
Permitivity of free space, Eq. (22.1).
Kinetic energy associated with motion in the positive x direction, Eq. (16.2).
»¥'/2m or kinetic energy over an image barrier as in Eq. (63.2).
{inetic energy associated with the x direction of motion in the cavity of Fig. 2.
Kinetic energy associated with electron motion in the semiconductor illustrated in
fig. 27.
Average kinetic energy of an electron, Eqs. (63.1) and (63.2).
Difference in energy between bottom of conduction band in the semiconductor and
that of the metal in Fig. 27.
Temperature critical for zero field at either the collector or emitter with space charge
(Sect. 31).
Fraction of surface covered by adsorbed atoms.
Coefficient of thermal emf (thermoelectric power) defined by Eq. (86.5) for a pore in
a semiconducting structure.
Coefficient of thermal emf (thermoelectric power) defined by Eq. (86.3) for semi-
conducting solid.
Approximately half of the characteristic pore length /,, Eq. (66.1).
FERMI level measured relative to bottom of conduction band as in Eqs. (16.1) and

(64.1).
A measure of donor concentration and temperature as in Eq. (64.9).
FERMI level in the metal illustrated in Fig. 27.
FrerMI level in a semiconductor illustrated in Fig. 27.

FerMI level in cavity (see Fig. 2).
FERMI level in solid (see Fig. 2).
Change in the FerMmI level with temperature relative to its value at T= 0° K as used
in Eq. (81.4).
Change in FERMI level with a temperature change of AV as in Eq. (86.2).
Number of electrons per unit volume.
Electron concentration at space-charge minimum, Eq. (35.3).
Temperature exponent in Eq. (50.8).
Integration variable representing energy in dimensionless units as in Figs. 23 and 24
and Eqs. (62.3) and (62.7).
Conductivity as in Eq. (65.2).
Surface charge per unit area, Eq. (73.1).
Conductivity over range I of Fig. 37.
Conductivity over range 11 of Fig. 37.
Pore conductivity over temperature range II, Eq. (65.19).
Change in applied potential in dimensionless units, Eq. (58.5).
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Scope and objectives.

Average time between inelastic collisions as in Eq. (65.1).
Average time of flight across a pore in a strong field, Eq. (66.2).
Average time for electrons in pores, Eq. (65.4).
Average time of flight across a pore in temperature range II, Eq. (65.17).
Average time for electrons in solids, Eq. (65.3).
True work-function and specifically defined by Eq. (19.1).
Reduction of true work-function by accelerating field (Sect. 27).
True work-function of collector, Eq. (27.2).
FowLER work-function or true work-function at 0° K for an N type semiconductor.

RicuarDsON work-function, Eq. (50.2).
True work-function of emitter, Eq. (27.2).
Constant in general equation as in Eq. (50.8).
Work-factor, Eq. (9.1), related to work-function in Sect. 50.
Activation energy for pore conductivity, Eq. (65.27).
Activation energy of Eq. (77.1).
Activation energy of Eq. (77.1).
Dimensionless measure of distance from the space-charge potential minimum,
Eqs. (22.4), (35.2) and (35.4).
Values associated with the arbitrary choices of ¢, and yp, (Sect. 47).
Collector region distance in dimensionless units, Eq. (37.8).
Maximum value of y, which is 1.806 as in Eq. (37.6).
Emitter region distance in dimensionless units, Eqs. (37.5) and (37.6).
Values corresponding to the potentials w.„ and w;., Eq. (58.11).
Value corresponding to w;pof Eg. (58.9).
Dimensionless representation of potential differences in units of AT.
Arbitrary choice of w. (Sect. 47).
Arbitrary choice of yp, (Sect. 47).
Collector region potential difference in dimensionless units, Eq. (37.7), Fig. 14
Dimensionless potential difference in the emitter space, Eq. (37.1), Fig. 14.
Change in y, as in Eq. (57.2) and Fig. 14.
Maximum value of collector region potential in dimensionless units, Fig. 14 and
Eq. (57.9).
Potential at the collector with reference to the potential minimum when current

ratio is 42, Eq. (58.11).
Maximum value of emitter region potential in dimensionless units (Fig. 14).
Potential at the emitter with reference to the potential minimum when current ratio

is #2, Eq. (58.10).
Empirical constant, Eq. (46.4).

A. Scope and objectives.
1. Definitions. The emission of electrons across the boundary surface that

separates a heated electronic conductor from an otherwise nonconducting space
has become synonomous with the term ‘thermionic emission”. The broadest
application of the word thermionic might include the emission of charged atomic
or molecular particles that may carry with them either a net positive or a net
negative charge. Since these phenomena are so very different basically, this
article will be devoted exclusively to the more fundamental aspects of the
experimental and the theoretical investigations of the phenomenon of electron
emission from heated conductors.

Thousands of experiments have been reported in the literature and serve
as the basic work material from which an explanation of the phenomenon in
terms of the fundamental principles of physics emerges. The studies relate to
four surface classifications which are:

1. clean homogeneous surfaces;
2. clean heterogeneous surfaces;
3. simple composite surfaces;
4. complex surfaces.



WavYNE B. NorTiINGHAM: Thermionic Emission. Sect. 2

To clarify these classifications an illustration of each will be given. Single
crystal wires of circular cross section have been used as sources of thermionic
electrons and provide the nearest approach to the realization of experimental
conditions appropriate to theoretical interpretation?! 23

Emission can be observed and investigated in detail from the more important
crystallographically homogeneous surfaces. These surfaces must be maintained
under such perfect vacuum conditions that an absolutely negligible fraction of
a monomolecular layer of impurity is present. Since fundamental studies show
that the thermionic emission is dependent not only on the atomic composition
of the emitting conductor but also on the crystallographic structure of the ex-
posed surfaces, it is evident that practically all investigations that describe the
electron emission from polycrystalline substances yield data characteristic only
of the particular specimen. In general such observations measure the electron
emission summed over an assembly of heterogeneous surfaces, which can never
be accurately described. Most of the work reported in the literature of the sub-
ject applies to these surfaces.

At a given temperature, the efficiency of electron emission from a given
conductor may be altered through many orders of magnitude by the adsorption
of polarizable atoms or molecules on an otherwise clean homogeneous or hetero-
geneous underlying conductor. The presence of a surface-layer coverage having a
density even smaller than 1/;,, part of a monolayer can be observed to alter the
emission properties?~7?. Such surfaces are classified as simple composite sur-
faces if the extent of the coverage is of the order of a monolayer or less.

The last of the above four classifications, the complex surface, is by far the
most important in terms of its usefulness as a source of electrons and includes
as its most important member the oxide cathode. The structure represents an
emitter which depends on the conduction of a heated metallic support such as
nickel or platinum upon which has been placed, after due processing, a layer of
alkaline earth oxide crystals. The surfaces of these crystals serve as the emitting
areas. These crystals are generally solid solutions of barium oxide and strontium
oxide of comparable proportions and sometimes have traces of other substances
added. It is not unexpected that such a complex emitter will have properties very
difficult to explain.

It is considered within the scope of this chapter to review critically some of
the important investigations that yield information relevant to all four of these
classifications of thermionic emitters. It is not the purpose of this chapter to
give an exhaustive bibliography; only such references as apply specifically to
the information given here will be cited. The reader may refer to a recently
published bibliography? on physical electronics which contains several hundred
references to contributions on thermionic emission.

2. Theory and experiment. It is an illusion to believe that the main features
of thermionic emission have been worked out theoretically and are in agreement
with experiment. In spite of the generality often associated with the thermo-

M. H. Nicuotrs: Phys. Rev. 57, 297 (1950).
©. SmitH: Phys. Rev. 94, 295 (1954).

&gt; Hutson: Phys. Rev. 98, 839 (1955).
? TAYLOR and I. .aNgMUIR: Phys. Rev. 44, 423 (1933)

BECKER: Phys. Rev. 28, 341 (1926); 33, 1082 (1929).
BECKER and G. E. Moore: Phil. Mag. 29, 129 (1940)

7x 3. NOTTINGHAM: Phys. Rev. 49, 78 (1936).
8 W. B. NoTTINGHAM: Bibliography in Physical Electronics. Cambridge, Massachusetts:

Addison-Weslev Press 1954



Sect. 3, 4. Discovery and identification of thermionic emission.

dynamic interpretation of thermionic emission, emphasis must be given to the
fact that this branch of theory cannot be relied upon to give accurate information
concerning the current flow across a boundary under experimental conditions
that violate the basic assumptions of the theory. The most important assumption
made is that the system under consideration can be bounded in a manner
that will still permit the actual measurement of an electron emission across a
boundary. Thermodynamic considerations can be applied to the electron gas
in the interior of a single crystal of conducting substance so cut out as to bound
the interior cavity by surfaces of perfect homogeneity as regards their crystal
structure. With the combined help of the equations of thermodynamics and
electrostatics the time average of the density of electrons can be specified as a
function of the coordinates within the cavity. The pressure that these electrons
would exert on the surface of the cavity can be computed with confidence and
from these quantities one might presume to calculate a current of electrons which
would flow from the interior of the conducting specimen across a surface bound-
ary to the region just outside the conductor. To assume that such a calculation
of the current would be directly related to an observable emission current is
wrong. No theory as general as this can predict the fraction of the electrons
which are reflected at the boundary.

Even though usually considered to be less general, the statistical theory of
an assembly of free electrons is more capable of giving valid information concern-
ing the thermionic emission process. It will therfore be appropriate to base
practically all of the theoretical analysis brought forward in this chapter on the
application of the statistics of free electrons to thermionic emission phenomena.

B. Historical highlights.

I. General background.

3. Introduction. It will be the purpose of this section to review briefly some
of the main events that have marked both the development of the theory and
the understanding of thermionic emission as well as the technological advances
which have been made during the past 70 years. Following this qualitative
review of events a detailed analysis will be given to review the present state of
our understanding with respect both to theory and experiment.

4. Discovery and identification of thermionic emission. That negative elec-
Lricity escapes from hot filaments was probably first established by THOMAS A.
EpisoN and later identified by WirLiam H. PREECE! as the “Ebpison Effect”.
The account by PREECE of his own experiments on the Epison effect does not
separate the phenomenon now recognized as thermionic emission from the
“blue effect’ which was evidently the ionization of the residual gas produced
by the electrons as they were accelerated from the negative hot filament to the
plate of the diode. The identification of the charge carrier emitted from the hot
carbon filament as a particle with a very small mass compared with that of a
hydrogen ion and with a charge equal in magnitude but opposite in sign to that
of the hydrogen ion was made by J. J. THomsonN2 In spite of the important
experiments of J. J. THOMSON, general agreement that electron flow through
conductors and electron emission from hot surfaces are truly different phenomena

- W. H. Preeck: Proc. Roy. Soc. Lond. 38, 219 (1885).
2 J. J. Tuomson: Phil. Mag. 48, 547 (1899).
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from ionic flow through substances and ionic conduction through gases did not
come until about 19141

5. RicHARDSon equations. Thermionic emission is so intimately associated
with the phenomenon of electronic conduction in solids that advances in these
two fields of scientific investigation are associated. The DrRUDE? development
of the theory of free electrons in metallic conductors paved the way for the
better understanding of thermionic emission which marked the contributions
of O. W. RicHARDSON. The basic idea of work-function as being a measure of
the energy per electron required to transfer charges from the interior of the
conductor to the field-free space outside of it is largely due to RICHARDSON 3,
Founded on a very literal classical interpretation of the free electron theory
of electronic conduction in metals, RICHARDSON¢ derived his first thermionic
emission equation which took the following form:

1 ep

I=ne( 2 JrTie sr2M

The recognition of difficulties encountered by the classical free electron theory
of conduction and its relation to the specific heat of metals led RICHARDSON3
and VON LAUE® to the “72” equation given as follows:

(5.2)
In its original form this equation depended upon thermodynamic arguments and
at the present time it is accepted as the correct expression for electron current
flow at a boundary which is in a system maintained under conditions of thermo-
dynamic equilibrium. The mistake generally made in the application of this
equation is that the current 7 is identified as the thermionic emission current one
should expect to observe in a laboratory experiment. The current density of
Eq. (5.2) is independent of reflection and of other phenomena that may alter
the distribution in energy of the electrons which do cross the boundary in an
actual emission experiment. A second common error in the application of Eq. (5.2)
to thermionic emission is the assumption that the true work-function @ is a con-
stant.

DusuMAN 7 was one of the first to apply quantum theory to the analysis upon
which Eq. (5.2) is based and he deduced that the constant A is a universal con-
stant. His numerical value for this constant was in error by a factor of 2 because
it was not known at the time that the “statistical weight” for a free electron
should be 2 in order to take into account electron spin.

6. SCHOTTKY mirror-image effect. Of the many important contributions made
by SCHOTTKY to the better understanding of thermionic emission. one of the

ep
T— AT2.e RT

' I. Langmuir: Proc. Inst. Radio. Engrs. 3, 261 (1915). — Gen. Electr. Rev. 18, 327
(1915). — Trans. Amer. Electrochem. Soc. 29, 125 (1916), (see p. 134). — The FREDERICK
GutHRIE [Phil. Mag. 46, 257 (1873)] report “On a Relation Between Heat and Static Elec-
tricity”’ has been interpreted by some readers to indicate thermionic emission. The low
temperatures involved in his experiments and the general phenomena reported can more
casily be interpreted in terms of ionic production, both positive and negative. than as a clear
indication of electron emission.

2 P. DrupE: Ann. Phys, Lpz. 1, 566 (1900); 3, 369 (1900). — H. A. Lorentz: Theory
5f Electrons. New York: G. E. Stechert &amp; Co. 1909.

8 O. W. RicHARDsON: Phil. Mag. 23, 263 (1912).
1 O. W. RicuHARDSON: Proc. Cambridge Phil. Soc. 11, 286 (1902).
5 O. W. RicuarDsoN: Phil. Mag. 23, 594 (1912).
6 M.v. Laue: Jb. Radioakt. u. Elektr. 15, 205, 257, 301 (1918).
7 S. DusamaN: Phys. Rev. 21, 623 (1923).



Sect. 7—o9. Empirical equations and work-factor.
L

most important was his recognition that the mirror-image force acting on an
electron as it escapes from the surface of a good conductor accounts for the major
part of the total work which must be supplied for an electron to escape!. Since
this mirror-image force extends over such a great distance compared with inter-
atomic distances, it is possible to counteract it by the application of an externally
applied accelerating electric field. This neutralization of forces results in a re-
duction in the work required for an electron to escape and as a consequence there
is an increase in the thermionic emission observed from a constant temperature
emitter as the accelerating field is increased. The correctness of this theory and
the supporting experimental data leave the “ ScHOTTKY Effect’ unchallenged.
Details of this theory are given in Sect. 27.

7. CHILD-LANGMUIR space charge. A second effect produced by accelerating
fields—an important one in the understanding of thermionic emission—was
recognized by LANGMUIR? and CHILD? and others as being accounted for by the
phenomenon of space charge.

As the temperature of an emitting conductor increases, the observed current
does not increase indefinitely, even though a fixed strongly accelerating positive
potential is maintained on the electron collector. If the number of electrons in
transit between the emitter and the collector exactly equals the total surface
charge maintained on the collector by the external circuit, then the electric field
at the emitter becomes zero. Further increases in temperature are followed by
very little increase in observed current because of the development of a retarding
field at the surface of the emitter produced by space-charge. Even though
space-charge effects are strongly dependent on electrode geometry and act in
the space well outside of the thermionic emitter itself, it is necessary to have a
full understanding of their influence. Thermionic emission is an electron flow
observed as a current between suitably placed electrodes and the phenomenon
of space charge seldom should be neglected in the interpretation of the observa-
tions.

8. SOMMERFELD’S free electron theory. SOMMERFELD* applied the statistical
theories of FERMI and Dirac to reconstruct the DRUDE free-electron theory
of conduction in metals to include the concept of quantization of phase space
and the introduction of PAULI's exclusion principle. This SOMMERFELD theory
of conduction by free electrons was applied by FOwLER® and NorDHEIM® to form
the basis of the quantum theory derivation of Eq. (5.2). It is from this begin-
ning that we have the means for the better understanding of the mechanism of
thermionic emission even though some phases of the theory are incomplete at the

present time.

II. Experiments with clean surfaces.

9. Empirical equations and work-factor. As knowledge of the thermionic
emission process has developed, it has become more and more evident that little
or no theoretical significance can be attributed to the application of the RI-
CHARDSON form of thermionic equation as given by Eq. (5.2) for heterogeneous

LW. ScuHotTkY: Phys. Z. 15, 872 (1914). — Z. Physik 14, 63 (1923).
* I. LancMUIR: Phys. Rev. 2, 450 (1913); 21, 419 (1923).
3 C.D. CHiLD: Phys. Rev. 32, 498 (1911).
* A. SoMMERFELD: Z. Physik 47, 1 (1928)
5 R. H. FowLER: Proc. Roy. Soc. Lond..
* L. NorpHEIM:Z.Physik30,177 (1929)
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surfaces whether clean or not. The experiments of NicHors?!, SmiTH2 and HuT-
50N3 have given data on homogeneous clean surfaces which will be shown later
in this chapter to yield the only data appropriate for analysis by the RICHARD-
soN form of equation. This statement is not a denial of the engineering use-
fulness of some equation by which experimental data on the thermionic emission
properties of clean metals can be expressed. The nearly universal application
of the RICHARDSON equation for the correlation of the observed data is in some
respects unfortunate, since the equation is in fact used purely as an empirical
one containing two empirically determined constants. An equation of the follow-
ing form is a far more useful empirical equation:

(9.1)
In this equation a is a thermionic constant determined by experiment to fit
the observed data. This constant depends on the substance from which the
electrons are emitted and also on the details of its crystallographic configuration.
[n general the experimenter describes his specimen as one of some specified com-
position and as “polycrystalline’”’. The use by others of empirical constants so
determined to predict the emission properties of other samples of the same
material implies that, averaged over the entire emitting surface, the hetero-
geneous distribution of crystal surfaces is reproducible. The constant @ of
Eq. (9.1) is referred to as the ‘“work-factor” and again it is dependent on the
detailed surface configuration of the specimen.

It is self-evident that Eq. (9.1) is easier to use as an empirical equation than
is Eq. (5.2). The computation required to determine the emission current for a
particular temperature is easy to make with either equation but the reverse
process of determining the temperature at which specified current density may
be expected is difficult with Eq. (5.2) but is straightforward with Eq. (9.1).
A number%5 of tabulations have been made of the empirical constants suitable
for use in the RicHARDSON form of empirical equation but no complete tabulation
has been made of the constants suitable for use in Eq. (9.1). For this reason,
tabulations of both sets of empirical constants are given in Appendix 1 to this
article. The equations for conversion from one representation to the other are
given in Sect. 50.

The ‘“ ScHOTTKY effect’ 8, which is the reduction in work-function at constant
temperature under the influence of an applied electron-accelerating field at the
surface of the emitter, accounts for an increase in emission current density pro-
portional to the factor exp (V/V). For this expression to hold, the geometric
relations between the emitter and the electron collector must be such that the
surface field at the emitter is everywhere constant and proportional to the
notential difference (V,) between the emitter and the collector. In this relation
the constant (V;) depends upon the geometry and the temperature of the emitter
and can be computed with accuracy [see Eq. (27.11)]. Experimental results
seldom show an increase in current with applied potential as predicted by this
factor, for two reasons. The “ScHOTTKY effect’ refers exclusively to the re-
duction in that part of the work-function that depends on mirror-image forces.
Electrons which escape from heterogeneous polycrystalline surfaces are acted

1 M. H. Nicuovrs: Phys. Rev. 57, 297 (1940).
2 G. F. SmitH: Phys. Rev. 94, 295 (1954).
3 A. R. Hutson: Phys. Rev. 98, 889 (1955).
t C. HErRrING and M. H. NicuoLs: Rev. Mod. Phys. 21, 185 (1949).
5 H. B. MicaAELsON: J. Appl. Phys. 21, 536 (1950).
5 W. ScHorTKY: Phys. Z. 15, 872 (1914). — Z. Physik 14, 63 (1923).
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upon by additional electrical forces arising from the work-function differences
that occur between different crystallographic faces of an otherwise pure surface
of the material being investigated. It follows, therefore, that the ScHOTTKY
effect experiment may be used to vield information concerning these other forces.

10. Periodic deviations from the ‘““ScHOTTKY effect”. A second and more
basic cause of the difference between experimental results and the “ SCHOTTKY
effect” theory relates to the fact that the accelerating field not only lowers the
work-function precisely as computed by SCHOTTKY but it alters the fransmission
of the barrier for the impinging electron stream~5. This escape probability and its
variation with the electric field is a matter not well understood in all of its detail.
Experiments®-78 show that this field-dependent effect results in a very small
“periodic” alteration in the integrated transmission probability that is indicated
by a periodic deviation with respect to the SCHOTTKY law of emission current.
The existence of this periodic deviation effect is the latest of the series of discov-
eries relevant to the thermionic emission properties of clean surfaces. More
details concerning this effect will be presented in Sect. 70.

III. Experiments with composite surfaces
(mainly the discoveries).

11. Oxide cathodes. WEHBNELT? discovered in 1903 that barium oxide and
other alkaline earth oxides could be applied to poorly emitting surfaces such as
platinum with the result that such a thermionic emitter would yield an emission
current many million-fold greater than that characteristic of the base metal in
the absence of the oxide. Resulting from extensive research, the oxide cathode
has become economically the most important thermionic emitter ever discovered
and is the most indispensable member of the group of inventions and discoveries
upon which our “Electronic Age’ depends. In spite of a half century of research,
many of the most fundamental problems related to the phenomenon of thermionic
emission from oxide cathodes are understood only in a qualitative manner.
Much disagreement exists among workers in this field.

12. Thoriated filaments. LANGMUIR and ROGERS? discovered in 1913 that
tungsten wire into which a small amount of thoria had been inserted could, by
suitable heat treatment, be made to emit a current density of electrons ata
given temperature 10° times greater than that observed from pure tungsten.
Later analysis by LANGMUIR and others showed that this enhanced emission,
produced as a result of the creation of a simple composite surface could be rela-
ted quantitatively to the average dipole moment per unit area created at the
surface by the polarizable atoms adsorbed on it. This discovery and the related
experiments, including the adsorption of the alkalies and specifically of cesium??,
led to a far better understanding cf the properties of thermionic emitters than
would have been available to us otherwise

! R. L. E. Serrert and T. E. Pairps: Part I, Phys. Rev. 56, 652 (1939).
’ E. GutH and C. J. MurLin: Phys. Rev. 59, 575 (1941); 59, 867 (1941); 51, 339 (1942)
* C. HErrING and M. Nicuors: Rev. Mod. Phys. 21, 185 (1948).
* D. W. JUENKER, G. S. CoLrapay and E. A. CooMEs: Phys. Rev. 90, 772 (1953).
&gt; S.C. MiLLER jr. and R. H. Goop jr.: Phys. Rev. 92, 1367 (1953).
5 W. B. NortingHAM: Phys. Rev. 57, 935 (1940) (L).
7 E. G. Brock, A. L. Houpe and E. A. CooMmEs: Phys. Rev. 89, 851 (1953).
8 D. W. JUENKER, G. S. COLLADAY and E. A. CooMEs: Phys. Rev. 90, 772 (1953).
9 A. WEHNELT: Verh. dtsch. phys. Ges. 5. 255, 423 (1903). — Ann. Phys. 14, 425 (1904)

10 1, LANGMUIR and W. RoGeEers: Phys. Rev. 4, 544 (1914).
1 7. B. Tavror and I. LANGMUIR: Phys. Rev. 44, 423 (1933}.
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13. Dispenser cathodes. The application of efficient thermionic emitters to
new contemporary cathode structures has stimulated the development of an
emitter which in many respects is a combination of the oxide cathode and the
simple composite surface typel. The various embodiments of this type fall
under a general classification of dispenser cathodes. A base metal of tungsten
or molybdenum, usually sintered, can be prepared with a high degree of porosity
so that active material, such as barium, can be diffused through it at a rate
suitable for maintaining on the porous structure of the exposed surface an activat-
ing layer of polarizable molecules or atoms. Another form of the dispenser ca-
thode has the activating material formed right into the sintered structure.
Although these cathodes are of commercial importance and go far to satisfy
certain specialized needs for high-current density as electron emitters, this
development is of such recent origin that important details concerning the basic
amission mechanism still remain to be established by experiment.

The first of these dispenser cathodes to become popular was that proposed
by LEMMENs. It is referred to in present-day literature as the “L” cathode.
This simple designation has been well received but is no longer quite appropriate
because there are new forms of dispenser cathodes that have superseded the
“L” cathode. It is therefore considered desirable to use the expression “D” ca-
thode for all of the more recent forms of dispenser cathodes.

C. Theory.

[. Statistical mechanics as a basis for emission equations.

14. Free electrons. The basic concepts needed for the derivation of thermionic
amission equations are very elementary and yet they are sufficient for the
purpose. One pictures the interior of a conducting crystal as an organized arrange-
ment of atoms characterized by specific interatomic distances which are sperific-
ally dependent on the atomic composition and the phase taken on by the crystal,
depending upon the temperature and the previous temperature history of the
specimen. Each crystal as a whole should be thought of as being electrically
neutral within any extended region in the interior. Any excess of charge either
positive or negative will be found at the surface only. Quantum theory indicates
that most of the electrons that neutralize the positive charge on the atomic
nuclei are localized near them and in general contribute nothing to the electrical
conductivity of the specimen. The valence electrons associated with these
atoms, however, occupy quantum states that extend throughout the entire in-
terior of each isolated crystal and it is to these electrons that the statistical
theory of the free electron gas may be applied. The free electron theory as applied
to these valence electrons describes their behavior in practically classical terms
and finally depends upon experiment to justify the applicability of the simplify-
ing assumptions. It is the purpose of this article to indicate as clearly as possible
that the most recent experiments serve to support strongly the concepts of the
mechanism of thermionic emission which can be derived from the theory even
though they are based on a semiclassical analysis of behavior of valence electrons
in a conductor.

15. Three basic assumptions. The first assumption made for the development
of this theory is that the inter-electronic forces can be neglected and therefore

"1 A.W. Huis: Phys. Rev. 56, 86 (1939). — H. J. LEMMENs, M. J. Jansex and R. LoosJES:
Philips techn. Rev. 11, 341 (1950). — R. C. HUGHES and P. P. Corpora: Phys. Rev. 85, 388
(1952). — J. Appl. Phys. 23, 1261 (1952).
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the electrons behave as though they were particles of three degrees of freedom.
The phase space suitable for representing the behavior of an assembly of electrons
can therefore be taken to be a six-dimensional phase space in which a represen-
tative point exists for each electron in the assembly. The six bits of information
needed to localize this representative point are three coordinates and three
components of momentum. The second assumption is that for each quantum
state an extension in phase space of size 43 is needed and that a representative
point cannot be localized (nor need it be) more specifically than to indicate
that one representative point lies within the quantum-state region. Actually
this is not quite the whole story because quantum principles permit two electrons
to occupy a single quantum state if their spin vectors are always antiparallel.
A factor 2 that appears repeatedly in the equations derived on these assumptions
is therefore this weight factor which is thus incorporated into the theory.
Already the third postulate has been mentioned, namely, the PAuLl Exclusion
Principle, which limits the number of electrons in a given quantum state to two
with antiparallel spin vectors.

It is the purpose of a statistical theory to find an expression for the distrib-
ution of representative points in phase space which is consistent with basic prin-
ciples of thermodynamics and has associated with it the greatest likelihood of
occurrence. The function thus obtained, without the need for introducing any
additional assumptions, is the following:

dxdydzdp,dp,dp, i

le) dxdydzdp,dp,dp,=2VLPs | (15.1)
e FT 4

Some explanation of this equation may make its use and meaning easier to grasp.
The energy ¢ is generally separable into two terms, one of which expresses the
kinetic energy of a particle whose representative point lies in a specified region
in phase space, and the other term is the potential energy expressible in terms of
the coordinates of a particle whose representative point is in that region in phase
space. The quantity u is a constant for a given problem which contains implicitly
the concentration of electrons and is a function of the temperature. The funda-
mental concept that determines the value of this parameter is that the integration
of Eq. (15.1) over the entire phase space shall exactly equal the number of elec-
trons in the assembly, that is, the number of free electrons within a crystal, for
example. Although this statement defines the manner in which the constant u
is determined, there is a second meaning to the constant which is interesting to
note, if it applies to a concentration of electrons of the order of 102° per cm.3.
The energy value u is that to be associated with that quantum state. for which
the probability of occupancy is exactly one-half.

For electron concentrations less than approximately 10° per cm.? the ap-
propriate value of u is generally a negative number. This statement demands a
word of explanation. The simplest application of Eq. (15.1) is made to regions
in coordinate space over which there is no change in potential energy. It is
therefore sufficient for the present purpose to apply Eq. (15.1) to problems in
which the potential energy may be taken to be zero. In that case the energy &amp;
will be the kinetic energy of the electron whose representative point lies in a
particular region of phase space. In problems of this kind which occur in connec-
tion with the theory of the oxide cathode, the algebraic sign of the quantity u
can be defined as negative, and therefore, it lies below the conduction band in
the energy, band system. All of the available quantum states associated with
the particular problem for low-density distributions of the electrons are less
than half filled if x is negative.
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Note that the extension in phase space (dx dy dzdp, dp, dp,)/h® represents
the number of quantum states in this extension, since the extension per quantum
state is 43, as mentioned previously. The factor 2 is the double occupancy of a
quantum state by the two electrons with antiparallel spin vectors.

Finally, the factor in the square brackets of Eq. (15.1) can be identified by
its name the “Fermi factor” which gives a direct means of computing the
probability that a given quantum state identified by its energy &amp; will be occupied.
The energy is given explicitly in terms of the momenta and the coordinate values
associated with the representative point in phase space. The name given to
the quantity u is the “FERwMI level”. It is evident at once that if the numerical
value of yu is positive, then there can be an energy level &amp; exactly equal to u and,
as mentioned above, the FErMI factor takes on the value 1/,.

16. The electron flow equation. Although Eq. (15.1) is the basic starting
point for all equations relevant to thermionic emission, the following equation
which is derived directly from Eq. (15.1) without the introduction of any approx-
imations is the most important equation applicable to thermionic emission.

 ExHp

N(e,) de,=227250in (fear ) de.
The independent variable in this equation ¢, is defined by

bi
om

(16.1)

(16.2)

By the use of Eq. (16.1), the number of electrons N(e,) de, that cross a unit area
in unit time with kinetic energy associated with the positive x direction of motion
can be computed for the energy range, de,. This equation holds for all values of
u, either positive or negative, and therefore applies to all densities of electrons
provided u is expressed relative to the energy level for which the kinetic energy
is zero or, in other words, with respect to the potential energy at the region in
space for which the number of electrons crossing a boundary perpendicular to
the x direction is being computed. The first application of this formula will be
to compute the “random” currents which impinge on various boundaries of a
pillbox-like cavity within the interior of a homogeneous crystal.

17. Electrons in a cavity. The pillbox problem is of interest because it is the
only example of the application of theory to an experimentally realizable structure
for which all of the essential details are easy to describe. The structure visualized
is shown in Fig. 1. The cross-hatched solid structure S represents a section
through the interior of a single crystal and the cavity within this crystal is re-
presented by C.

The perpendicular distance across that cavity, ab, should be visualized as
being not less than 107% cm. and can very well be any amount larger than this.
The requirement that the cavity be esentially pillbox form is necessary because
of the need to have the entire interior of the cavity of a single surface structure
type. The pillbox has the further advantage that the problem can be handled
exactly, even though sufficient electrons exist in the cavity to give an appre-
ciable space-charge field there. The first steps of the discussion can be carried
through without the introduction of space charge as a factor of any importance.
The space-charge solution of the problem will be introduced later (Sect. 21).

In the energy diagram of Fig. 2 the potential! energy of an electron is shown
as a function of distance as one progresses in the x direction from A to B. The

1 See Sect. 27.



Sect. 17. Electrons in a cavity.

region A to a, is the potential in the interior of the solid taken here to be uniform.
It will be shown later that the periodicity of the true potential is of no conse-
quence in the thermionic emission theory. The potential of the electron in the
space between a and b is shown to be higher than that in the interior of the metal
by an amount W,. This energy difference is the integration of all of the actual
forces that act on an electron as it escapes from the metal into the cavity. In
the absence of space charge the cavity potential will be constant at distances
greater than approximately 107% cm. from either surface, since the dominant
long-range force acting on an electron is the mirror-image force which at this
distance has fallen to a negligible amount. Eq. (16.1) may be used to calculate
the number of electrons which approach the boundary from the left at a, with
energy between ¢, and &amp;,+ de, associated with the x component of the mo-
mentum. In the space between a and b the corresponding energy state lies at &amp;’.

1d ds,
x

GE,

A

Fig. 1. Cross section of pillbox cavity. Fig. 2. Potential energy diagram for an electron in the pillbox
cavity problem.

5

For the net current to be zero it is necessary that the current in this band from
the left be equal and opposite to the current in the band which approaches sur-
face a from the right. This statement would in general not be true if it were
applied to a geometrical configuration in which currents were being observed
as electron emission currents in the usual way. An essential part of this analysis
is that the entire region surrounding the cavity be at a constant temperature
and of course this includes the cavity itself.

In the interior of the crystal the FErmI level, FL, is located at an energy u,
positive with respect to the potential energy line Aa relative to which the kinetic
energy ¢, is referred. The application of Eq. (16.1) shows that there is a simple
and yet a necessary condition which must be satisfied if the cavity currents are
in statistical equilibrium with the currents flowing in the solid. This condition
is that the FERMI level be continuous right through the cavity space. Relative
to the potential energy of an electron in the cavity, the FErMI level is negative,
the amount shown as u,. The formal writing of the two equations for the two
electron streams serves to illustrate this point and will be used for further develop-
ment. These equations are the following:

‘z=ls

N de.— 2leamil) in (1 +e FT Jae. (17.1)

_tame

N de = 2@7mAT) 4 (4 +e KT de. (17.2)
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It is clear from an inspection of these two equations that the necessary con-
dition for the equality of these two flows of electrons is that the exponents be
equal and the following equation may therefore be written:

Ex — Ms = Ex — Me: (17.3)

Eq. (17.4) gives additional relations as a result of the reorganization of Eq. (17.3)
which are self-evident:

&amp;.— &amp; = Us— ph, =W,. (17.4)
The final rearrangement of this equation is written as follows:

— u, = W, — u, = (true work-function) X e = ge. (17.5)

This equation stated in words demonstrates the fact that the true work-function
expressed in energy units is a direct measure of the location of the FERMI level
appropriate to the cavity space outside of a thermionic emitting conductor
when equilibrium exists between the conductor and the space.

18. The RicHARDson equation. The integration of Eq. (17.1) between the
limits of &amp;,=W, and co gives a means of calculating the total electron current
that impinges on the boundary at a from the interior with the energy range li-
mited, in such a way that any of the electrons included could have gone into the
space if reflection effects at the boundary a did not exist. This result is given
as Eq. (18.1). The integration of Eq. (17.2) gives the total current which would
flow into the conductor from the exterior under conditions of perfect equilibrium.
These two currents must be equal. These equations integrated give the follow-
ing results:

Wa—u
[ _ 2¢@amAT)RT 0 HT

Ss h3

AT)RT =
Fe adds ) [oT

r L A

(18.1)

(18.2)

The validity of Eq. (18.2) depends on the assumption that the numerical value
of pu, is not less than 5 £T for an accuracy of better than 1%. For smaller values
of u, other terms in the power series expansion must be used.

The fact that u, is clearly a negative number implies that the electron density
mn the cavity space is smaller than approximately 10 per cm.3. Under these
conditions the statistical theorv gives a suitable expression for u, which is the
following:

vm — KT |207TH]

[he substitution of this value for u, into Eq. (18.2) yields the following:
RT

I.=mn.e [= wm

(18.3)

(18.4)

in which x, is the concentration of electrons in the cavity space near enough to
the surface so that space-charge fields can be neglected and yet far enough from
the surface so that the mirror-image fields are negligible. This equation is the
familiar one from classical mechanics and may be explained in the following
terms: (n,/2) represents the concentration of electrons moving with a component
of velocity in any specified direction; 2 (kT/27 m)? represents the average of the
velocity component of these electrons in a classical distribution: ande is the charge
 nm an electron.
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The rewriting of Eq. (18.1) yields at once the RicHARDsON form of the equa-
on so often misused when it is identified with observable thermionic emission.

4nx m Re We ts
3 Bao T2e kT : (18.5)

The first factor of this equation may be recognized as the familiar universal
‘hermionic constant A.

47x m k2
A = "777 = 120 amp/cm.? 72. (18.6)

19. The true work-function and its temperature coefficient. An explanation
of the reason why Eq. (18.5) cannot be taken as a theoretical prediction of the
true functional relation between the observed thermionic current emission density
and temperature is in order. Three features of thermionic measurements stand
in the way of the direct use of this equation. First, the true work-function is
dependent on the temperature; second, the observed energy distribution of emitted
electrons is deficient in the low-energy range and, third, the evaluation of current
density is seldom correct because of the surface inhomogeneity. More particulars
concerning these points are given in the following section.

Eq. (17.5) may be rewritten to express the true work-function in the unit of
‘electron volts” Ww. —

true work-function = © = Lak2. (19.1)

In this equation, e is the charge on an electron of 1.61071 coulomb and both
W, and u, are expressed in the energy unit of joules. Over the temperature range
generally used for the determination of a RICHARDSON constant, the true work-
function (¢) is not independent of the temperature. For good conductors such
as the metals, the FERMI level (u,) is a positive quantity and always decreases
with an increase in temperature. It is not possible to make a completely generali-
zed statement concerning u, if the specimen is a semiconductor except when it
applies to the most important of the semiconductor emitters, namely, the oxide
cathode. In that case u, is generally negative and increases in absolute value as
the temperature is raised (see Sect. 64). At the surface of good conductors the
potential energy difference (I), (as measured between the “bottom” of the
conduction band and an electron at rest at infinity) is of the order of 10 electron
volts, whereas for semiconductors the value is close to one electron volt. This
quantity is given the name “electron affinity” and depends not only upon the
crystal structure of the surface but also on the average dipole moment of any
adsorbed atoms. The temperature coefficient of the electron affinity for clean
metallic surfaces is in all probability negative. That is, W, decreases with a
temperature increase. Notice, however, that @ may nevertheless increase or
decrease with the temperature depending on the relative rates of change of the
two terms of Eq. (19.1).

If electropositive adsorbed layers exist on the surface of a good conductor, it
is generally true that their dipole moment per unit area will decrease more rapidly
than uy, with increasing temperature. If follows, therefore, since the dipole moment
operates to reduce the electron affinity of the composite surface, that with these
electropositive layers, W, will actually increase with the temperature. The opposite
effect is to be expected for the adsorption of electronegative impurity atoms or
molecules.

20. The RICHARDSON equation and its relation to experiment. Eq. (18.5) can
oe accepted with a great deal of confidence since its validity is derived both
from a generalized thermodynamical argument and from the theory of quantum

Handbuch der Physik, Bd. XXI.
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statistics. It is not this equation that is tested in any of the direct experiments
asually associated with the measurement of the thermionic emission of electrons
{from practical specimens.

Since Eq. (18.1) and its equivalent Eq. (18.5) were derived directly from
Eq. (17.1) it is equally evident that the validity of Eq. (17.1) in its possible
application to the actual thermionic emission problem should be established inde-
pendently. The uncertainty with regard to the temperature coefficient of the
true work-function, which has just been discussed, does not in any way interfere
with the experimental determination of the energy distribution of the electrons
that are emitted. The prediction made by Eq. (17.1) on the distribution that
must be observed to make Eq. (18.5) valid, has been found by direct experiment
to be in error. Later in this chapter the detailed experiments by which Eq. (17.1)
has been evaluated as a true representation of the energy distribution will be
discussed. It is sufficient for the present purposes to state without qualification
that the energy distribution predicted by this equation is not found experimentally.
The observed distributions found in all experiments capable of yielding direct
information in answer to this question show that there is a marked deficiency
of low energy electrons. It cannot be stated at present, that the true explanation
tor this deficiency is a ‘‘reflection effect” at the boundary of the surface. The
nternal consistency in the experimental interpretation that comes very easily
from this hypothesis tends to support the view that the deficiency is caused by
reflection. An alternative explanation which qualitatively seems less able to
correlate the experimental results depends on the assumption that the extraction
of the electrons observed as electron emission current disturbs the population
of the quantum states near the immediate surface of the conductor. When those
slectrons capable of escape are taken away, the quantum states will not be refilled
continuously, as they would in the pillbox. and a deficiency in slow electrons may
be the result.

Finally, a third effect, which is seldom taken into account in the application
of the RicHARDSON form of the equation to experimental data, is the lack of
uniformity of emission over the surface of the specimen, since in most calculations
of current density the total area of the surface is used. If the emission current is
observed in the presence of a moderately strong electric field designed specifically
to sweep the emitted electrons over to the collector, then the emission is largely
dominated by the low work-function areas.

This discussion should serve to justify the statement made above that the
current density predicted by Eq. (18.5) should not be identified with thermionic
smission as measured bv the usual laboratorv methods.

II. The density of an electron atmosphere in an enclosed space’.

21. Introduction. In spite of the uncertainty with regard to the true energy
distribution of the electrons emitted from a surface, a solution can be given for
the distribution in electron density within a cavity bounded by parallel planes.
Even though this problem in itself is somewhat artificial and relates only indi-
rectly to practical needs, the solution can be worked out exactly and is of interest.
[n its qualitative aspects it bears most directly on the emission properties of
hollow cathodes, but, in addition, it may be of importance in connection with
‘he flow of electrons across the cavities within the body of oxide cathodes.

The solution to the “pillbox” problem depends on the assumptions that a
cavity is created within the interior of a uniform substance and that two plane

1 R. H. FowLER: Statistical Mechanics, 2nd edit., p. 366. Cambridge Univ. Press 1936.
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conducting surfaces are separated as shown in Fig. 1 by a distance w. It is as-
sumed that this separation between the surfaces is small compared with the
linear surface dimensions in order to eliminate the effects of the boundaries that
form the periphery of the pillbox. Because of the relatively high ionization
potential of atoms making up the emitting surface bounding the cavity, the
presence of positive ions can be neglected and at once, it becomes evident that
the distribution of electron density within the cavity will be a function only of
the distance variable, x, and that the electron density at the midpoint across the
cavity will be a minimum. To make the statement that the density of electrons
will depend upon the potential according to the BOLTZMANN relation is the equi-
valent of stating that the FErMI level is continuous from the interior of one
conducting surface right through the evacuated space to the interior of the other
conductor. Fig. 2 illustrates in a qualitative manner
the variation in the motive with distance from the
metallic interior at A through the surface boundary
at a and across the cavity to the surface at b anc
then to the interior at B if space charge is neglected.
The true potential distribution in the cavity is te
be found by the analysis which follows.

22. Mathematical formulation of the electron
density problem. It is mathematically convenient
to measure distances from the motive maximum (see
Sect. 27) which lies half-way between the two emitting
surfaces. Since the motive is the measure of the
potential energy of an electron in this example a
motive maximum is a potential minimum in the electrostatic sense. The potential
will be expressed as a function of x with reference to its value at this minimum
point. This potential, V, at any point x will be positive, since the diagrams of
Figs. 2 and 3 represent the variation in the potential energy of an electron which in
itself carries a negative charge. Fig. 3 shows the corresponding distribution in
electrostatic potential with space charge present. The two basic equations are
the following: d?V ne

dx? En
(22.1)

Nn — Na (22.2)

In Porssox’s relation given as Eq. (22.1), # is the concentration of electrons, € is
the electron charge and ¢, is the permitivity of free space. Eq. (22.2) is the
BoLTzMANN relation which expresses the concentration in terms of the potential,
V, with respect to the midpoint and the electron density, #,, at the midpoint.
Oualitatively the variation in potential with distance is illustrated in Fig. 3.

[t is the purpose of this section not only to outline as briefly as possible the
results that one obtains from the simultaneous solution of these two equations,
but also to show how those results can be fitted to specific boundarv conditions

for their application.
These two equations can be brought together and simplified by the intro-

duction of dimensionless variables defined as follows:

 eV
Y= 1°

. RT¢= with x [ETCe2n,

(22.3)

22.4
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By direct substitution of these equations into Eqs. (22.1) and (22.2) the following
relation may be written: dy

TZ = — ev
dy

The first step in the solution of this equation yields a relation from which the
electric field in the cavity can be calculated and is given as follows:

dY 15 (aw __ 113

dy = }2 (e¥ — 1). (22.6)

The second step in the solution results in the final answers expressed in either
of the forms that follow:

z=) arc tan Jer—1
p=1In (sec? X)127°)

(22.7)

(22.8)

An inspection of either of these equations shows that the total range for the
variable y, is 0 2 1 = (n/}/2).

23. Solution to the electron density problem. The solutions given as Eqs. (22.7)
and (22.8) may be rewritten in terms of the original variables to give the distance
at which any specified potential occurs or to give the potential found at any
specified distance. These equations are as follows:

3 eV 3
X= Ei arc tan (ehr — 1)

en,

RT en 4
 At 2x ( Yo“V - Insec (557%) |

The equation for the electric intensity E, or the field at any point is written as

follows: av [24Tn, 5 n An, \b
Ba) az)

Bu WV _ [24T (Ar 4)
dv En

(23.3)

24. The fit to boundary conditions. The difficulty with these equations as
they now stand is that the concentration at the center of the cavity, that is,
ny, must be known before quantitative calculations can be made. This concen-
tration depends not only on the properties of the emitting surfaces, a and b,
but also on the dimensions of the cavity (see Fig. 3). The following steps will
serve as a guide to one of the more satisfactory methods of applying these results.

An inspection of the diagram of Fig. 3 indicates that there is a distance, 8,
always greater than w/2 at which the potential approaches infinity for any given
value of the electron concentration, #,. Eq. (24.1) serves to define this value of 8
and the relation may be written as follows:

sr Fle 7°
en, 2

It is convenient for the purpose of calculation to define the ratio of the actual
half width w/2 of the cavity to this quantity 6 as follows:

— w

2 = 5 .

It is to be noted that if the concentration, #,, is very small then § would be very
large and it is therefore clear that the range in the quantity z is from zero to one.
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A rewriting of Eq. (24.1) gives an expression for the electron concentration
at the center of a cavity. 292 hs

n= 22 |(2)] Zh 7], (24.3)

Notice that the maximum possible value of the concentration occurs if z is unity.
Define this quantity as #»,,, and it may be computed in terms of the temperature
and the cavity width bv the following equation:

Nom = 9.4 X 10% Se electrons per m3. (24.4)

Let the concentration of electrons at the emitting surface of the cavity be
ng, and let the difference in potential between the center of the cavity and the
region just outside of the surface be V,. With these definitions the following
relations may be written from Eqs. (22.2) and (22.8):

evs
— RT — 2 [7Np = N.€ =7, COS (% 2).

I'he final equation which permits the determination of the appropriate value of
yin terms of the known parameters of the problem is given as:

Bot
Nom m \cos? ( &gt; :)

The equation which will serve for the computation of #, comes directly from the
act that I; of Egq. (18.1) is n,e(kT/2xm)* and may be written as follows:

AT)E 27.
 =Toms oe AT (24.7)

For this equation to be exact, the true work-function ¢ is needed and it is to be
dentified as (WW, — u,)/e. To simplify the calculation, the assembly of fundamental
sonstants may be evaluated and the equation written as follows:

weEP,
n.= 4.83 X10 Tie *T (electrons per m3). (24.8)

For any given problem, a numerical value can be established for the ratio
ng/n,,,) from Eqs. (24.4) and (24.8) and it is only necessary, therefore, to determine
“he correct value of z to satisfy Eq. (24.6). To make this procedure easy, values
of this function have been computed for the range of z from 0.05 to 0.99 and are
ziven in Table 1. Eq. (24.9) and (24.10) serve as the most convenient means of
salculating z in the extreme low range and in the extreme high range:

(24.9)= [Ze | for 0&lt;z&lt; 01,
"om

2 (Tom) for 0.98&lt;z&lt;1. (24.10)7 \ nl

[n terms of the density ratio, Eq. (24.9) applies when the surface density is less
than one percent of the maximum possible density at the center of the cavity
1y,, and Eq. (24.10) applies when the surface density is more than a thousand
mes greater than the maximum density at the center.

Since the maximum density will have been calculated already from Eq. (24.4),
the true density at the center of the cavity is given at once by the following:

No =ZN. (24.11)
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As an aid to computation, the solutions to this problem may be written in terms
of the parameter z and the controllable variables w and T.

The distance x from the midpoint of the cavitv at which a specified V is found
may be computed as

w ev. Vgx = ——arc tan (er — 4)
TO

I'he potential at any distance is given by

VA (secamz X).e w

(24.12)

(24.13)

The field may be computed at any distance point or potential by the following
squations:

E = — = (22%) tan =z 2),ax e w w

av [(2mk\ eT | £¥ §E, = — AV _(2ub) 47 (Sir — 1) A

The results of this analysis may be summarized by the following statements:

1. The maximum electron density that can be obtained at the center of a
cavity is proportional to the temperature and inversely proportional to the square
of the smallest dimension.

2. To attain approximately 90% of this maximum density at the center, the
concentration of electrons at the surface of the cavity must be greater by a
factor of approximately 200.

3. Further increase in the density of electrons at the surface of the cavity,
even though it be many orders of magnitude, cannot increase the density at the
center by more than 10%.

4. By the proper control of the porosity of the surface of a cathode, the effective
emission current density of the cathode can be made higher than the actual average
net current density that crosses the surface boundary which separates the solid
from the evacuated space within the pore. This property may have an important
oearing on the performance characteristics of suitably constructed oxide cathodes.

III. Field effects with current flow.

25. Three field effects. The three most important field effects that relate to
thermionic emission are: 1. the influence of retarding potentials, externally
applied; 2. the influence of accelerating fields, externally applied; and 3. the
influence of the combined effect of a space charge and external fields. The
theoretical aspects of these three field effects will be discussed in this order.

26. The influence of retarding fields. The earliest experiments on thermionic
emission established that the observed currents that flow across the space in
a diode structure are very dependent upon the applied voltage difference between
the electron emitter and the collector. If the emission current density is sufficiently
low, so that space-charge effects can be neglected, the two principal regions
associated with the applied voltage are: 1. the accelerating field range; and 2. the
retarding field range. These ranges are separated quite sharply because of the
fact that the current change in the first region is almost negligible, while in the
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second region the current change goes through many orders of magnitude for
each additional volt of applied retarding potential. Superficially, this pheno-
menon is accounted for as a measure of the energy distribution of the emitted
electrons. It is so difficult to satisfy the necessary experimental conditions which
will permit the direct interpretation of the results in terms of the electron energy
distribution that very few authentic data are available.

The starting point of any theory covering this phase of the subject is Eq. (15.1)
From this equation, it is possible to write a general expression for the current
received as a function of the applied voltage between the emitter and the collector.
This equation is the following:

Dz=00 py=00 pg=00

I= e I , J , | De, BYE, V, T)n(p)dp,dp, dp, (26.1)

D (p, B) = transmission over emission barrier; F (p, V, T) = transmission to and
over collector barrier.

2p, 1
n ee.A(#) hm (pi+pi+pd/2m—u

rt
~

Even though Eq. (26.1) gives the current observed at the collector per unit area
of the emitter, the two transmission functions D(p, B) and F (p,V,T) must be
known to make the calculation. Therefore to apply Eq. (26.1) to experimental
results, it is necessary to design the experiment in such a manner that simplifying
assumptions with regard to the transmission coefficients are legitimate. Since
the crucial part of this theory is dependent on these assumptions, the following
paragraphs will deal with the more important aspects of the restrictions needed.

The symbol D (p, B) used for the transmission of electrons over the emission
barrier has been chosen to call attention to the dependence of this factor upon
the components of momentum (p) with which the electron approaches the barrier
and the symbol B includes the properties of the emission surface barrier itself.
The simplest known surface barrier is that for a clean, atomically smooth single
face of a single crystal of a good conductor. The only experiment reported in
the literature which is designed to evaluate this transmission function specifically
is that of Hutson.

Although the experimental result obtained by Hutson does not lend itself
to a representation by a simple analytic expression for the transmission coef-
ficient, the results are in such excellent quantitative agreement with an analytic
function found empirically by NoTTINGHAM? that this expression will best serve
the present purpose. These results may be summarized by the following relations:

Clean single crystal surface
I. Range in (p2/2m) &lt;W,

D(p, B) =0.
II. Range (p2/2m) SW,

pm
Dp. BY — 1 _ (26.4)

where (p22m) =p2[2m—W,.
The interpretation placed on these conditions is that no electron can escape

unless it approaches a barrier perpendicular to the x direction with a kinetic

1 A. R. Hutson: Phys. Rev. 98, 889 (1955).
2 W. B. NortingHAM: Phys. Rev. 49, 78 (1936).
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energy associated with that component of the momentum which is greater than
the electron affinity W,. The usual assumption is that, if this kinetic energy
exceeds WW, then its probability of escape is unity. The expression given in
Eq. (26.4) indicates that the probability of escape approaches unity only after
the excess kinetic energy expressed as (p;%/2m) exceeds the empirical constant w
by a considerable factor. The empirical value of @ is 3.05X10°2 joules or
0.191 electron volt.

Even though this transmission coefficient given by Eq. (26.4) is in excellent
agreement with the experiments of both Hurson! and NOTTINGHAM? it yet
remains to be proven conclusively that the phenomenon is correctly interpreted
as a deficiency of slow electrons because of the “reflection effect’’ at the bound-
ary. Reflection can be established unambiguously only by the experimental
observation of it for very slow electrons which impinge on the external surface
of a clean, single crystal face. This direct evaluation is being undertaken by
LANGES.

If the surface is not uniform, the transmission over it may be far more complex
and may even be field-sensitive when the retarding field is small. Polycrystalline
surfaces, even though they are clean, generally exhibit different crystal facets
for the individual crystals that make up the surface. Since these facets are likely
to have different work-functions, local contact-difference in potential fields will
make the specification of a suitable choice for the electron affinity W, difficult,
if not impossible. The expression “patch effect” is used to describe this difficulty
qualitatively. It will become clear after a discussion of the collection coefficient
E(p,V,T) that all cathode inhomogeneities become more and more unimportant
as the retarding potential increases.

The transmission coefficient through and over the collector barrier is also
very difficult to evaluate. Factors that are important may be enumerated:
I. geometrical arrangement of the collector with respect to the emitter and all
other elements in the experimental diode such as glass walls, insulators, etc.
2. the surface structure of the collector including non-uniformities in work-
function that are derived either from a polycrystalline structure or a non-uniform
distribution of polarizable adsorbed atoms, 3. the energy distribution of the
electrons that impinge on the collector barrier since there may be a reflecticn
effect at this barrier which is energy-dependent, 4. changes in the surface properties
of the collector (specifically, its work-function) which often accompany changes
1 the current density being received as well as the previous history of the electron
bombardment of that surface?

If the purpose of the experiment is to determine the energy distribution of
the electrons emitted from the cathode, then every means must be adopted to
climinate as many of the complexities enumerated above as possible. Hence,
the reader is therefore warned in his future studies that results obtained from
experiments in which due consideration has not been given to these factors should
be viewed with scepticism.

A superficial examination of the problem suggests immediately that the ideal
geometrical arrangement for the determination of an electron energy distribution

1 A. R. Hutson: Phys. Rev. 98, 889 (1955).
2 W. B. NoTrTiINGHAM: Phys. Rev. 49, 78 (1936).
8 W. J. LanGE: Research in progress, Department of Physics, Massachusetts Institute of

Technology, Cambridge, Massachusetts.
4 W. B. NorTingHAM: Phys. Rev. 39, 183 (1932); 44 , 311 (1933); P. L. COPELAND: Phys.

Rev. 57, 625 (1940).
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would be that of a closely-spaced diode formed with parallel planes. It is safe
to say that such a diode is practically impossible to achieve since for it to be
successful the collector would have to be a single crystal capable of being heated
sufficiently to drive off all adsorbed films. Collectors such as these have not
been made!. The next best solution involves the construction of a diode with
coaxial cylinders. This structure, also, is subject to the difficulty of reflection
from the collector, unless the collector radius is large compared with the emitter
radius. The coaxial diode has the distinct advantage that electron reflections
from the collector are minimized because any electron which leaves the filamentary
cathode with sufficient energy to have been collected will, in general, find itself
repeatedly coming to the collector even though it may have been reflected one
time or more. Since the collecting cylinder can be constructed from a refractory
metal such as tantalum, the purity of the surface can be insured under proper
vacuum conditions. A structural form like this eliminates practically all the
objectionable features that might interfere with the correct interpretation of the
emission properties of the emitter in the presence of a retarding field. For a
cylindrical structure, Eq. (26.1) has been put into usable form by NOTTINGHAM?Z,

Theemitter transmission function D (p, B)is taken to be that given as Eqs. (26.3)
and (26.4). The factor F,(p,V,T) which represents the probability of electron
collection at the collector, has two ranges that can be explained most concisely
by the following equations if the z direction is along the axis, the x direction
along the radius and the y direction tangent to the emitting filament at the surface
point of electron emission.

I. Range:

II. Range:

DZx p2= CR
i BD 8en m) amml —_ WE )

"(h ion~ eV

26.5)

(26.6)

In these expressions the potential (V) is defined as the retarding potential in the
space and is the work required to carry an electron from a point just outside the
emitter surface to a point just outside the collector surface. Since it is a necessary
condition that the radius of the emitter (#) be small compared with the radius
of the collector (R) in order to minimize the effect of reflection at the collector,
the condition equation given above (which was derived from an analysis of the
electron trajectory between coaxial electrodes) can be approximated by one’s
neglecting (#?/R?) in comparison with unity. It is this condition on the probability
of transmission to the collector that establishes the limits of integration not
specified explicitly in Eq. (26.7). This equation gives the electron emission current
density expected as a function of the temperature and the retarding potential.

ge — Wars HS HS A PEN py RE1=2 0 [Of [heme fe Tamir agian, ap,. (26.7)
D=

1 H. SHELTON: Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, is experimenting with a single crystal tantalum collector to receive
an electron beam collimated by a magnetic field.

2 W. B. NoTTINGHAM: Phvs. Rev. 49. 78 (1936).
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In spite of the apparent complexity of this equation, it can be integrated and
put into the usable form indicated by the following equations:

eV 11 600

S=37="71
I=1I,,[G(S) —F(S, kT|o)]

4mmbe ~ Ft
Io = €

hel

G(S) = x Ste-S+1— 7 [eran
0

(26.8)

(26.9)

(26.10)

(26.11)

(ery a1 kT

Ps To) =r |e) dy +1— = ear] (26.12)(SM) = ar Gr) / i=
Since the controllable variables are the retarding potential V and the temper-

ature 7, the function expressed in Eq. (26.12) must be worked out in tabular
form with sufficient detail so that smooth curves can be drawn for the purpose
of interpolation. An inspection of Eqs. (26.11) and (26.12) shows that Eq. (26.12)
reduces exactly to Eq. (26.11) as (#T/w) approaches zero. It is, therefore, not
necessary to tabulate the function G(S)?!, of since the values of this function
for the range S from 0 to 10 will be found in the first row of the Table 2.
A graphical representation of Eq. (26.9) is shown in Fig. 4. Three of the curves
show the computed result for the three temperatures, 813, 1160, and 1852° K
The value of w used is the one found experimentally: 3.05 Xx 1072 joules (0.191 ev).
The fourth curve in the diagram is the universal curve expected for a trans-
mission coefficient D (p, B) of unity for all positive values of #;.

Even though retarding potential measurements often have questionable
validity for the determination of the true energy distribution of the electrons
emitted from a thermionic source, an analysis of these measurements may yield
other useful information. The temperature of the emitter may be determined
sufficiently accurately to be useful information if the rate of change of emission
is determined as a function of the applied voltage for the largest retarding poten-
tials. Observations in this range demand the measurement of the smallest currents
possible consistent with the insulation properties of the diode structure. At
high retarding fields, cathode inhomogeneity in structure and reflection effects
oecome less and less important. The accuracy of the agreement found by Fan?
and HuNG3 also supports the view that cathode temperatures may be determined
in this manner under specialized geometrical conditions.

An analysis of this problem by IKEHARRA® has supplied a method of deter-
mining the temperature of oxide cathodes by evaluation of higher order har-
monics observed in the output of a diode (or its equivalent) while a small range
in the retarding potential characteristic is swept by a sinusoidal voltage variation.
For additional discussion see Sects. 60 and 62.)

1 W. ScHoTTKY: Ann. Phys., Lpz. 44. 1011 (1914). Tabulated by L. H. GERMER: Phys.
Rev. 25, 795 (1925).

2 H.Y. Fan: J. Appl. Phys. 14, 552 (1943).
3 C. S. HunG: J. Appl. Phys. 21, 37 (1955).
lS, IKEHARRA: J. Appl. Phys. 25, 725 (1954)
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A second use for thermionic measurements in retarding fields is in the quanti-
tative determination of changes in the work-functionofthecollector. The work
of I. LaneMUIR and Kncpon! and also of D. B. LANGMUIR? may be cited as
examples of the use of a retarding potential method for the determination of
the variation in the work-function of the collector.

Although the current received by a particular collector operated at a high
retarding potential is practically independent of the emission properties of the
cathode for a given applied potential, 11606
the current observed is a very sensitive SV a
function of the anode itself. The reason
for this sensitivity is that the applied
sotential measures the difference in
energy of the FERMI level of the col-
lector with respect to the FERMI level
of the emitter. The motive3®maxi-
mum over which the electrons must

flow in order to register as a current
at the collector is higher than the FERMI
level of the collector by its own work-
function. Therefore, even though the
applied potential be maintained con-
stant, the change in the work-function
of the collector can alter the current
that flows to it in a very significant
manner; while a corresponding change
in the emitter is generally of no meas-
urable significance under these condi-
tions. To use this method as a quanti-
tative measure of any change in the
work-function of the collector, it is
necessary that other fields that might
possibly alter the electron trajectories
remain unchanged or else some method
must be used for normalizing them.
This method, which is adaptable for
the study of surface conditions and alterations in these surface conditions,
should find a wider application than it seems to have at present.

Two additional precautions need to be mentioned in association with the
analysis of retarding potential measurements. Gross inhomogeneities on the
emitter surface, such as are found on partially coated oxide surfaces, must be
considered. Care must be exercised to confine the range of emission current
density to that for which space-charge effects are negligible (see Sect. 83).
Development of a space-charge limitation first occurs at the collector as the
retarding potential is reduced, and then the maximum in the motive for an
escaping electron progresses across the diode as the applied potential to the
sollector is made more positive. This motive maximum is produced bv the

1 I. LANGMUIR and K. H. KnGDon: Phys. Rev. 34, 129 (1929).
? D. B. LANGMUIR: Phys. Rev. 49. 428 (1936).
+ See Sect. 27.
4 I]. LANGMUIR and K. H. Kingpon: Proc. Roy. Soc. Lond., Ser. A 107, 61 (1925).
5 P. W. BRIDGEMAN: The Thermodynamics of Electrical Phenomena in Metals. New

York: Macmillan Co. 1934.
$ CC, HERRING and M. H. NcyoLs: Rev. Mod. Phys. 21, 185 (1949).
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space charge and limits the emission. In simple geometrical cases, a theoretical
analysis can be applied to determine the space-charge distribution and, there-
fore, the emission properties in the presence of space charge. In most practical
tubes, it is not profitable to try to work out a detailed theory to be applied
to a particular structure.

27. The influence of accelerating fields. In order to discuss the influence of
electron accelerating fields on thermionic emission phenomena, it is desirable
to treat the problem under conditions such that the total charge of electrons
mn transit from the emitter to the collector will be negligible in comparison with
the net surface charge on the collector. This limitation is the equivalent of stating
that the influence of space charge is negligible. It is also necessary to define
explicitly the potential field in which the electron is moving. Since mirror-image
forces must be considered, the potential is defined in a special way and is given
the name “motive” as suggested by I. LANGMUIR. The definition of “motive”
may be given in LANGMUIR’S words:

“The motive is thus defined as a scalar quantity whose gradient in any
direction and at any point represents the force component per unit charge which
must be applied to an electron or an ion to hold it in equilibrium at the given
point.” The gradient of the motive is the “motive intensity” and is therefore
a vector which measures the force per unit charge on an electron at the point in
the space at which the gradient is taken. It is to be noted that this definition
differs from that of “electrostatic potential’”’ and of “electric intensity” in that
definitions for these are given as the limit of the time average of the work or
force, respectively, per unit charge as the charge approaches zero. It is appropriate
to state at this point that even the BoLTzZMANN equation for the electron density
dependence on motive is always applicable. The potential and the fields that
enter into the solution of PoissoN’s equation deal only with the “electrostatic”
contribution to the motive. It was for this reason that the formulation and
discussion of the pillbox problem in Sect. 22 defined the potentials used there
as directly applicable at distances greater than 10-3 cm. from the surface. This
is the distance at which mirror-image forces are usually negligible.

As an electron leaves a conducting surface, it is acted upon by short-range
and by long-range forces. The short-range forces dominate for a distance of the
order of 1 or 2 interatomic distances (1077 cm. or less) and depend on the surface
composition, that is, the orientation of the actual surface with respect to atomic
or crystallographic arrangement of the interior and with respect to the adsorbed
atoms in the immediate neighborhood of the emission point. Even though there
can be no doubt about the existence of these forces, no experiments have been
formulated which yield quantitive information other than the knowledge that
the integral of all of the forces with respect to distance determines the true work-
function. It is this variation in the short-range forces from substance to sub-
stance and from surface to surface that accounts for the observed differences
in their true work-functions. The most important of the long-range forces was
identified by ScHOTTKY? as the “mirror-image” force.

The second kind of long-range force arises from cathode inhomogeneity. No
practical electron emitter has ever been constructed which is truly free from
inhomogeneity. For example, a single crystal of tungsten formed as part of a
wire and used in a coaxial diode always exhibits in its surface a variation in the
crystal structure which depends on the orientation of the crystal axes with respect

1 I. LANGMUIR and K. H. Kncpon: Proc. Roy. Soc. Lond., Ser. A 107, 61 (1925).
2 W. ScHoTTKY: Phys. Z. 15, 872 (1914).
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to the axis of the wire. For the present purposes it is sufficient to say that the
greater the linear dimensions of the areas of inhomogeneity, the greater the
distance into space near the cathode that these local field effects will extend.
Since extreme differences in work-function are unlikely to exceed one or two
electron volts, these very extended fields will be correspondingly weaker the
larger the area of each patch of high or low work-function. Neighboring high
work-function areas cause local fields to exist over the low work-function areas

which inhibit the emission of electrons from the latter. As the externally applied
accelerating field is increased, it can be made larger than the local field at a
relatively low value of applied potential. After the influence of the local field
has been largely wiped out, the emission obtained from the various patch areas
is that which would have been available, expressed as emission current density
independent of the presence of inhomogeneity. The total emission is the sum
of the emissions from the various areas and is therefore dominated by low work-
function regions. It will be shown in Sect. 71 that since there is such a wide
variation in the current density over the surface of a single-crystal tungsten
wire of circular cross section, approximately one-half of the wire emits all of
the observed electrons.

Basically, the reason that electron emission increases as an externally applied
accelerating field is increased is that more electrons become available for emission
as the maximum in the barrier over which the electrons must escape is reduced
relative to the FERMI level in the interior of the emitter. Spurious effects can
occur which conceivably cause a decrease in emission as the field increases.
These spurious effects always reflect lack of stability of the surface conditions,
which can be brought about either by the ionic migration in the interior of the
solid near its emission surface or by the adsorption on the surface of electro-
negative gases (cathode poisons) that often arise as a result of the bombardment
of the anode or an associated insulator by the electrons. The yield of such poison-
ous products is often negligible for an electron energy of five volts or less but
it continues to increase after onset with the increase in electron energy.

There are two ways of evaluating the reduction in true work-function with
accelerating field, if one carries through the experiment in such a manner that
the emitter surface remains unchanged. These ways are: 1. direct measurement
of the actual energy distribution of the electrons, 2. the measurement of the varia-
tion in the integrated thermionic emission as a function of the field. The therm-
onic emission method depends on the validity of certain assumptions which can
be explained most easily by a quick review of the detailed theory applicable to
this experiment.

The motive function for an electron as it léaves a conducting surface is rep-
resented qualitatively by the solid line of Fig. 5a. Corresponding to this motive
function, there is a force function per unit charge which is represented by the
ine in Fig. 5b. This motive intensity is obtained, at least in principle, from the
gradient of the motive as defined above. In the presence of an accelerating field,
the modified motive function is everywhere lower than the zero field curve and
the computation which must be made in order to determine the extent of the
lowering is most easily seen in the force-function diagram of Fig. §b. Over
the range in distance from x, to x, the force function in the absence of space
charge is diminished by an amount directly proportional to the accelerating
potential V, multiplied by a geometric factor G(x). The accelerating potential

1 J.D. Hoes: Energy Dependence of Electron Produced Poisoning of Oxide €athodes.
Master's Thesis, M. I. T., 1954.
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is defined as the applied potential v corrected for by the contact difference in
potential P, as shown in Eq. (27.1).

V.—=v— Py. (27.1)
The contact difference in potential is defined as the difference between the true
work-function of the collector and that of the emitter when these work-functions
are expressed in electron-volts. This relation is given as Eq. (27.2).

Pr=gq,— ¢,. (27.2)
The electric intensity (E), shown in Fig. 5b, may be a function of the distance
from the emitter surface depending on the geometrical arrangement of the emitter

124 and the collector. The general expres-
 ZZ. sion for the intensity is the following:

E=V,G(x). (27.3)
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The specific expression for parallel
planes separated by distance D gives
the field as independent of x as follows:

E=V/D. (27.4)
For coaxial cylinders of radii » and

zz RR, the field depends on x and is

1
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Notice that the field in the neighbor-
hood of an emitting cylinder of radius 7
1s constant for distances from the sur-
faces which are small compared with the
emitter radius.

An inspection of Fig. 5b permits
one to write the expression for the

reduction in true work-function as a function of the accelerating potential.
This result is written as follows:

X=X%e Xx=00

Am—V, ff Glixdx+ f Fix) dx. (27.6)

It is evident from this equation that if the force function F(x) is known,
the reduction in work-function can be computed, since at the critical distance
(x,) the force function and the accelerating field are also related by Eq. (27.7):

V.G(x) + F(x) =E,+ F(x,) =0. (27.7)

The converse of the above statement is also true: that is, if there is an ex-
perimental way of making a direct determination of the change in work-func-
tion Ag with field, then the force function F(x) can be determined. Both of
these procedures have been used and will be illustrated below.

The method followed by SCHOTTKY was to assume the force function per unit
charge (motive intensity at zero external field) to be dominated by the mirror
image. This function is the following:

af €

Hx) = — rT a newtons per coulomb (or volts per meter). (27.8)
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This function serves as a means of difining the location (x,) which can be taken
as the “perfect” image boundary of the conductor. The original distances used
in the above equations were presumably measured from some arbitrary point
x =0 considered to be at the surface of the emitter. If the long-range forces at
some distance from the surface are given in terms of Eq. (27.8), it is as though
the actual force were matched to this equation in such a manner that, if the mirror-
image function continued in exactly this form down to x, it would become in-
finite. The finiteness of the actual integral (i.e., the electron affinity) establishes
that the true forces against which the electron works as it escapes are weaker
than the mirror-image force at short range. It has been pointed out by DE BOER,
LANGMUIR, and others that, in a qualitative manner, the difference between
the true motive-intensity function and the mirror-image function should be
related to the interatomic spacing of the surface atoms or to the roughness of
the surface through which the electron is escaping. For a smooth and closely
packed surface, such as the 110 surface of tungsten, the short-range forces are the
strongest and the integral of these forces gives a very high electron affinity. It
follows directly from Eqs. (27.7) and (27.8) that the escape distance (x,) is given
by Eq. (27.9):

/ e &amp;

Ye = KO (eG) ’

If the structure of the diode is such that the geometrical function G(x) is de-
pendent on the distance, full knowledge of that function is needed in order to
carry through the evaluation indicated by Eq. (27.6). If over the range of distance
from the surface to «x,, the value of G(x) is a constant (as is the case for parallel
planes and cylinders if the distance is small compared with the radius of curvature
of the emitter), it is possible to carry through the integration. The result is the
well-known SCHOTTKY equation which shows that the decrease in work-function
is directly proportional to the square root of the surface electric intensity. This
equation checks with experiment only if the dominating long-range force, that
acts upon an electron as it escapes, is the mirror-image force.

The only direct observation of this ““ SCHOTTKY effect” was made by Hutson 2
even though indirect observations have been made both in association with
thermionic emission and with photoelectric emission.

One needs only to refer to Eq. (26.1) to realize that the introduction of this
accelerating field effect can best be made by incorporating it into the definition
of D(p, B) which expresses the probability that an electron can escape from
the emitter. Ifit is possible to substitute for the electron affinity, WW,, its modified
value as given in Eq. (27.10), then the analysis can be carried through very simply:

W.=W,— (de) e. (27.10)
A necessary condition for the application of SCHOTTKY’S results to an ex-

periment in thermionic emission is that the energy distribution of the electrons
as they pass over the limiting barrier at the distance x, from the surface remains
ndependent of the externally imposed electric field.

It could be assumed from the NOTTINGHAM? experiment that the energy
distribution of the electrons observed at zero field was one deficient in low-

energy electrons, but there was no evidence prior to the HuTsoN experiments

1 J. H. bE Bor: Electron Emission and Adsorption Phenomena, p. 18. Cambridge Univ
Press. 1935.

2 A. R. Hutson: Phys. Rev. 98, 889 (1955).
3 W. B. NortiNGHAM: Phys. Rev. 49, 78 (1936).
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that the same energy distribution was applicable to the electrons emitted in the
presence of a strong accelerating field. He showed that the distribution was
invariant with the applied field. It is this result which could not possibly have
been predicted that warrants the use of Eqs. (26.3) and (26.4) for the transmission
probability. There is one minor difference, however, and that is that W, as
defined by Eq. (27.10) must be used to establish the ranges for the use of
Egs. (26.3) and (26.4) and that the momentum component (p,) used in Eq. (26.4)
is defined as the momentum of the particular electron as it passes over the limit-
ing barrier at the distance x,. With these limitations in mind it is possible to
write the SCHOTTKY equation immediately, both in the direct form and in its
logarithmic form. These equations are the following:

a e | e ]8 (GV)|DL) T |

in I = In Ip +0.4402CFL

(27.11)

(27.12)

logo I = logo Io + 0.1912" (27.13)

{n these equations the current I, is a constant of the equation which super-
ficially represents the ‘observed’ emission current at zero field, that is, when
the accelerating potential V, is zero. Experiment shows, as discussed in detail
in Sect. 70 that the observed current at zero field is always less than the value
predicted by these equations when it is compared with the empirical value of
the constant I, that best fits the data observed at high field strength.

Undoubtedly, one of the most important influences in this disagreement is
the inhomogeneity of all laboratory specimens. The high field data apply more
directly to the emission from the low work-function areas, uninhibited by the
ocal fields brought about in these areas by the neighboring high work-function
~egions.

It was pointed out above that if the change in work-function were known as
a function of the accelerating potential, the force-function could be deduced by
the proper application of Eq. (27.6). To obtain this change in work-function
from thermionic emission directly, it is necessary to make the assumption that
the actual energy distribution of the electrons is independent of the applied voltage,
but it is not necessary to assume that the emission is a true MAXwELLian distribu-
tion. A reflection deficiency of the type described in connection with the deriva-
tion of the SCHOTTKY equation and illustrated originally by Eq. (26.4) will
not alter the result. The current is related to the decrease of the work-function
by an amount A4¢ by Eq. (27.14)

edo

I =1,e kT (27.14)
[n this equation the current I, is that found at a given temperature before any
modification has occurred in the work-function. The actual choice of I; is not
50 verv important in the analysis since it is the change in emission that is used.

Eq. (27.14), in its logarithmic form. can be differentiated with respect to V,
to obtain the following result:

d(Ag) kT d(Inl)

This equation shows that if In I is known as a function of the accelerating voltage,
hen the slope of that curve, multiplied by (kT/e) will give the rate with which
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the change of work-function shifts with voltage. One needs only to differentiate
Eq. (27.6) with respect to the accelerating voltage to obtain the result given
in Eq. (27.16) 2

ade) _

In order to obtain this equation, it was necessary to make use of the equality
of the force-function and field as given in Eq. (27.7). Since in most applications
the geometrical function G(x) is constant over the important range from x,
to x,, the integration can be carried forward and one obtains, by combination
with Eq. (27.15), the following value for the critical distance:

v.— LL (27.17)

Having determined the critical distance x, from the observed data, one then
makes use of Eq. (27.7) to determine the value of the force-function which is
effective at that distance.

Although it is possible to deduce the fact that the force-function is of the
mirror-image type at applied potentials great enough to overcome the patch
fields, it is clearly more practical to use the SCHOTTKY equation first and plot,
as is indicated in Eq. (27.13), the logarithm of the current as a function of (V,)#/T.
[f the plot gives a straight line of slope 0.1912G#, the experiment shows that
SCHOTTKY'S mirror-image force dominates. In general, experiments carried out
under suitable conditions yield results that agree well with this equation over a
considerable range in surface field. A small systematic variation has been ob-
served which will be discussed in the next section.

28. Periodic deviations from the SCHOTTKY theory prediction. A very detailed
study of the increase in thermionic emission with accelerating field by SEIFERT
and PHipps! showed that the so-called “SCHOTTKY Plot” is not a straight line
out deviates in a regular manner as a function of the surface electron accelera-
ting field. Since the average slope of the plotted data is that predicted by the
SCHOTTKY mirror-image theory, there is a temptation to describe the observed
deviation as a “periodic” deviation with reference to this line. Although the
effect is extremely small, it has been verified by a number of researchers?.

The nonlinearity of the SCHOTTKY plot acquires significance mainly because
it can be explained only on the basis of a complete wave-mechanics understand-
ing of the behavior of electrons as they escape over a mirror-image barrier in
‘he presence of a strong field. The theories of GUTH and MuLLiN® have been
oresented and also discussed in considerable detail by HERRING and NicHOLS®.

The theoretical explanation of the periodic deviations brings the conclusion
that a small reflection effect exists, and that the integrated influence of this
reflection is dependent on the location and shape of the mirror-image barrier
modified by the external field. Since the extent of reflection effects at the surface
of an electron emitter is clearly an open question, the details of the theoretical
analysis will be omitted from this presentation. A brief review of the experimental
evidence will be given later in Sect. 70.

+ R. L. B. SEIFERT and T. E. Parpps: Phys. Rev. 56, 652 (1939).
2 W. B. NoTTINGHAM: Phys. Rev. 57, 935 (1940) (L). — E. G. Brock, A. L.. HoupE and

E. A. CoomEs: Phys. Rev. 89, 851 (1953). — D. W. JueNKER: G. S. CoLLapay and E. A.
CooMEs: Phys. Rev. 90, 772 (1953).

8 E. GutH and C. J. MuLLIN: Phys. Rev. 59, 575 (1941); 59, 867 (1941); 51, 339 (1942).
! C. HErrING and M. H. Nicuors: Rev. Mod. Phys. 21, 185 (1949).
Handbuch der Physik, Bd, XXII.
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IV. LANGMUIR’S space-charge theory.
29. Statement of the problem. Early observations showed that for a given

diode structure and a particular applied accelerating potential on the collector,
the thermionic emission current increased exponentially with the temperature
up to a fairly sharp limited current and showed very little further increase as
the temperature exceeded this critical value. The limiting current was found
to increase approximately as the 3 power of the applied voltage and, of course,
the critical temperature at which current limitation took place was voltage-
dependent. The first step toward the theoretical understanding of this problem
came when CHILD! and also LANGMUIR? applied the Poisson equation and the
equation for current continuity as a pair of simultaneous relations.

Further study indicated that the current limitation was really due to the
motive® maximum (for electrons) between the emitter and the electron collector
because under the conditions of the experiment there were more electrons carry-
ing negative charges in transit between the emitter and the collector than the
total of positive charge on the surface of the collector. This motive maximum
acts directly as a retarding potential and, therefore, limits the emission. It will
be shown in this analysis that the magnitude of this retarding potential is directly
proportional to the temperature in excess of the critical temperature at which
the surface field at the emitter shifts from an electron accelerating field to zero
field. The theory to be presented also may be applied in the retarding potential
region near zero field. The correct analysis to this problem therefore involves
the solution of three basic equations which are: 1. PoissoN’s equation. 2. The
BoLTzMANN density relation by which the energy dependence on temperature
enters. 3. The equation of continuity of current. LANGMUIR? gave one of the first
analyses of this problem which will be summarized here? 6:7.

In the discussion of an electron atmosphere in a cavity (given in Sect. 21)
mathematical simplification resulted from the choice of a “pillbox” which per-
mitted the exact computation on the basis of an electron density variation with
respect to distance which was a function of a single coordinate. For the same
reason this analysis will be applied to a “plain parallel diode’ structure. One
surface of this diode is assumed to be capable of electron emission and its motive
at all points over the surface at a distance of about 107% cm. differs in energy
from the FERMI level in the interior of the emitter by the true work-function of
the surface. This work-function must be assumed to be uniform all over the
surface.

In the analysis which follows, the potentials and the potential gradients will
apply only in the space between the two elements of the diode and will not in-
clude the distance over which mirror-image forces are appreciable. The electron
collector must be assumed to be a perfect receiver of electrons. Any reflections
or secondary emission that might occur at the surface of the electron collector
must be assumed to be negligible. With these restrictions, it is obvious that no
practical diode can satisfy the detailed requirements necessary for an exact
application of the theory to experiment. In spite of this limitation, the theory
certainly aids in the interpretation of experimental results.

Lt C.D. CHILD: Phys. Rev. 32, 492 (1911).
¢ I. LANGMUIR: Phys. Rev. 2, 450 (191 3).
3 See Sect. 27.

* I. LANGMUIR: Phys. Rev. 21, 419 (1923).
5 P.H. J. A. KLEYNEN: Philips Res. Rep. 1, 81 (1946).
8 A. van DER Zier: Philips Res. Rep. 1, 97 (1946).
’ H. F. Ivey: Advances in Electronics, Vol. VI, p. 137 . New York: Academic Press 1954.
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Even though experiment has established that the distribution in energy of
the electrons emitted from smooth surfaces constituting a measurable emission
current is deficient in the low-energy group, it would complicate the analysis
to attempt to bring this fact into the theory. The strict application of the theory
as it will be developed here can be made only after qualitative consideration has
been given to all of these special limitations in terms of emitter and collector
properties.

30. Uses of space-charge theory. The qualitative aspects of space-charge theory
are well known and often used, but application in a truly quantitative manner
is not widespread. The coverage of this subject in most text books is incomplete
because the incorporation into the theory of the energy distribution of the electrons
is usually treated superficially. As the properties of oxide cathodes have become
setter understood within recent years, more and more research effort has been
directed toward the solution of the cathode evaluation problem. It has not been
easy to devise generally acceptable methods for cathode evaluation because the
asual tests carried out at the normal operating temperature of the emitter border
on being destructive of the cathode under test. Even though the tube structure
under investigation can withstand the high voltage required to evaluate cathode
smission properties by sweeping out the space-charge for a very short period of’
ime, the validity of the results is definitely open to question. The practical use
of the emitter is generally under a condition of strong space-charge limitation.
An alternate method of cathode evaluation involves an analysis of the emission
as a function of the temperature and with relatively small applied voltages over
the temperature range below and up to the critical temperature at which space-
charge limitation sets in. This method also has its drawbacks, since it does not
svaluate the emitter at or even near the normal operating temperature. Indirect
methods of cathode evaluation based largely on empirical procedures have been
developed and are widely used (see Sects. 80 and 82).

[t will be the purpose of the following sections to develop the theory of space
charge in a plane parallel diode with the ultimate objective of applying it in a
practical manner to the quantitative evaluation of emitter properties in the
aseful range in temperature and in a completely nondestructive manner.

The development of methods for the application of the theory depends on
the combination of three factors not hitherto applied to this problem. The basic
formulation of the problem is that of LANGMUIR. His final results were made
available in tabular form. Although these tables are a necessary step toward
the final application of the theory, the derivation of empirical equations adapted
to represent the tabular data with the required accuracy has made it possible
to carry LANGMUIR’S results nearer to experimental applicability. Another
factor that simplifies the analysis is the introduction of the emission equation
given as Eq. (9.1).

The tangibly observable quantities are emission currents, applied voltages,
emitter temperature, and the geometrical configuration. The emitter and collector
properties are the intangible factors that actually determine the relations between
the four observables. One must, therefore, use the space-charge theory to discover
the emitter and collector properties that are most consistent with the laboratory
observations.

31. Potential curves and the critical temperature. Figs. 6a and 6b apply,
respectively, to the application of accelerating fields in the space between the
electrodes and that of retarding fields. The straight line (I) in each example
represents the distribution in electrostatic potential in the absence of space
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charge from a point just outside the emitter to the corresponding point in space
just outside of the collector. The second line (II) shows qualitatively the po-
tential distribution after the temperature of the emitter has been raised to exactly
that critical value designated as @ at which the gradient of the potential at either
of the electrodes is exactly zero. In Fig. 6a the surface charge on the collector

TL is measured directly by the gradient of
the potential at that surface and the
total of this surface charge is exactly
zqual to the total volume charge of all of+ (Applied,

Emitter =
v (Applied)

 SL[FL
Emitter

Collector
Fig. 6a. Potential distributions for three different cathode
temperatures. Constant applied potential; positive temper-
ature coefficient of work-function. I) No space charge.

II) Zero field at emitter. III) With space-charge
minimum at x...

Fig. 6b. Potential distributions for three temperatures.
I) No space charge. II) Zero field at the collector.

III) With space-charge minimum.

the electrons in transit between the emitter and the collector. Under these con-
ditions no lines of electric intensity extend all the way from the one electrode to
the other. In Fig. 6b Curve (I) shows the surface charge on the emitter positive
and the number of electrons in the space is negligible. The surface charge on

-— the collector is negative. As the tempera-
© ture of the emitter increases, its surface

charge becomes still more positive and
finally is exactly equal to the total charge
in the space. At this temperature, ©, the
potential distribution of Curve (II), has a
zero gradient at the collector. In both
examples (accelerating and retarding),
temperatures in excess of @ produce a
potential minimum (motive maximum for
electrons) which is located between the two
electrodes. Under these circumstances the
mathematical theory which is applicable is
the same for both figures, since positive
charge will be found on both electrode sur-
faces. The sum of all of these positive
charges will exactly equal the total charge
of the electrons in the interelectrode space

=

Fs
Ds

32. Boundary conditions with positive
applied potential. In general, there is

more interest in the analysis as it applies to Curve (III) of Fig. 6a. The curve
in Fig. 7 represents the electrostatic potential as a function of the distance either
way from the potential minimum, which will always be found between the elec-
trodes if the temperature is greater than © and the current is limited by space
charge. The problem to be solved is that of determining the actual value of the
potential as a function of distance which will satisfy the experimentally describ-
able boundary conditions. The requirements are: 1. emitter to collector separation

Fig. 7. Electrostatic potential with a space-charge
minimum between the emitter and collector with

applied accelerating potential.
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is w; 2. the true work-function of the emitter is ¢,; 3. the true work-function
of the collector is @,; 4. the applied difference in potential v establishes the FERMI
level of the collector with respect to the FErMI level of the emitter; 5. the differ-
ence in potential between points just outside the collector and the emitter is
related to the applied difference in potential by the following equation:

V.—Vi=v—(p.— 9;

6. the temperature of the emitter is T', which is greater than the critical temper-
ature 6.

33. Formulation of the general space-charge problem. With the above param-
eters specified, the density of charge in the immediate neighborhood of the
cathode will be given by Eq. (24.7). Notice, however, that this equation applied
only to the ideal cathode and that no real cathode ever satisfies the necessary
ideal conditions.

Subject to the conditions specified above, a potential minimum will be found
at a distance x, away from the cathode and with reference to the potential at
this minimum; the point in space just outside of the emitter will be positive V;.
The corresponding point just outside of the collector will be V, positive with re-
spect to the potential minimum. The plane surface at the distance x, from the
cathode surface divides the interelectrode region into two parts which may be
designated as the “emitter space” and the “collector space”. The potential
function is not symmetrical about this dividing line, because in the emitter space
electrons are streaming in both directions from the emitter to the potential
minimum and back to the emitter. A small net current of electrons, which left
the emitter with high energy, stream over the potential minimum and result in
a current which flows in one direction only in the collector space.

[t is the purpose of this theory to formulate the solution to the problem
of satisfying PoissoN’s equation, the BOLTZMANN relation, and the continuity
of current requirement. These three relations expressed in equation form are
written as follows:

PoissoN’s equation:
dazv __ ve

dx? = en

BOLTZMANN relation:

(33.1)

py = (1, 647) f.
Continuity of current:

(33.2)

Du? 2 (33.3)

The new symbols used in these equations may be defined as follows:

v =— number of electrons per unit volume near any plane located at a distance x from

the potential minimum.
n, = number of electrons per unit volume that would be found in a complete MAXWELLIan

distribution at the potential minimum.
— the fraction of a complete MaxwEeLLian distribution found at any plane between

the two electrodes. For further explanation note that for a high-emission cathode,
this fraction may approach unity very close to the cathode. The fraction will be
exactly one-half at the potential minimum and may approach zero in the immediate
neighborhood of the collector, when it is operated at a high positive potential.

= electron current density in the direction from emitter to collector which is a constant
at anv plane between the emitter and the collector.
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pm = average velocity of the electrons that cross any plane in the direction emitter to
collector. Notice that this average velocity depends on the temperature of the
cathode and the potential, since it involves the actual energy distribution of the elec-
‘rons. The potential value at the point in question determines the gain in kinetic
snergy which the electrons have received from the electric field.

Clearly, any theory dependent on the above conditions applies only if any
change in external potential occurs very slowly in comparison with the average
transit time of an electron as it crosses from the emitter to the collector.

34. Equation from statistical mechanics. In order that there be no mis-
anderstanding with regard to the method by which f is calculated, the basic
equation which comes directly from the statistical theory of free particles is the
following: _ a _

Bares Lib Dz= +00 _ PI+oy IE
, / e PFT ap dp,dp,

:—00 pr=-AL)2meV ’

— 4.1(2x m RT)? G )

The writing of this equation comes directly from an inspection of the distribution
of representative points in momentum space. The proper incorporation of the
potential at the space point at which the fraction f is determined, comes in the
setting of the limits of integration with respect to p,. If the region in space
for which f is being calculated lies in the emitter space as shown in Fig. 7, then
the minus sign is used, whereas if the space location is in the collector space,
the plus sign is used. Eq. (34.1) can be simplified and made appropriate for
calculation by defining two new quantities as given in Eqs. (34.2) and (34.3)
and the substitution of them into Eq. (34.1):

 eV
PT
a _ PE
 “em 29m BT?

y=yt
1 2 eray,mtx fe| m.

f=13[14 Ph].

'34.4)

(34.5)
After the integration of Eq. (34.1), the plus sign corresponds to the emitter region.
The integral in Eq. (34.4) has been tabulated under the well-known designation
‘Probability Integral” defined as:

3w

1 2 _y2

Ph == [ era. (34.6)
n

35. Definition of distance unit &amp;,. In order to solve simultaneously Eqs. (33.1),
33.2), and (33.3) it is desirable to introduce a unit of distance which is exactly
the same as that used in Eq. (22.4) except for an additional numerical factor of
J/2. The similarity of these unit distances can be seen more clearly by the follow-
ing relation:

| kT ey] eng (RT|20 m)*w= 2 [Ato] She BTlmm)
78 7? vi

d= 2000 370x102 I = 2,963 x 4076 (35.2)
e (2x m)? T
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Note that in Eq. (35.1) the constant current density I is expressible directly
in terms of the density of electrons #, that can give exactly this current density
for those electrons of a complete MAXwELLian distribution which cross a boundary.
The actual concentration of electrons at the potential minimum is given by
Eq. (33.2) and allows one to write the following:

Vo = 3 Mo (35.3)
The direct substitution of these relations in Eq. (33.1) results in the single differ-
ential equation that follows:

az 1

= Pe. (35.4)
In this equation the plus sign is used for the emitter region and the minus sign
for the collector region illustrated in Fig. 7. With the unit of distance defined by
Eq. (35.2), the distance parameter y is defined as (x/#,) and x is measured from
the potential minimum.

36. Solution to give electric intensity. Even though an explicit algebraic
solution to Eq. (35.4) cannot be formulated, a step toward that solution can be
made and the result is the following:

d — 1 2 1\1*

7 =y2{[1 + Ppl] er — (1 + Zp) (36.1)
The next step in the complete solution of the problem would normally require

the solving of Eq. (36.1). To find this solution explicitly seems to be impossible,
but, of course, it can be accomplished by numerical integration. The solution
by this method is given in Table 3.

By using a combination of theoretical forms as well as the results recorded
in the table, the author has developed empirical equations which represent the
results with considerable accuracy. These equations will be given in Sect. 37.

Eq. (36.1) permits the computation of the electric field at any point at which
the potential is known. Note that the field is given by the following equation:

av AT \ dy LA LEN
In this calculation the temperature is characteristic of the problem and the
distance parameter x, is computed by Eq. (35.2). The emission current density I
carried across the diode must be known.

37. Empirical equations that represent the solution to the LANGMUIR equation.
In the emitter region the solution to Eq. (36.1) can be represented with good
accuracy by the two equations given here as Egs. (37.1) and (37.3). Notice that
each applies for a specific range.

Range 0= 4, = 1.4 (Emitter Region)

XS
p= 40.6 (00324 4),

XS
YP, == o + 0.6 (1001896 — 4).

Range 1.4 = y, = 1.806 (Emitter Region)

w, = 2 In [cos (x, — 0.235)] 7%,

y, = 4.605 logy, [cos (x, — 0.235)] 1.

(37.2)

(37.3)
(37.4)
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Attention may be directed to the fact that as Zs approaches 1.806, the value
of , approaches infinity. The symbol Xm = 1.806 will often be used for this max-
imum value.

The inverse relation to the above equations is also of value. Again, a single
equation cannot be used for the entire range but the two given below as Eqs. (37.5)
and (37.6) give quite accurate results.

Range 0 2 9,=2.0 (Emitter Region)

X = 29, + 0.724146 (37.5)
Range 2 Zw;

x; = [arc tan (ev — 4)* + 0.2352. (37.6)

The above equations are presented as empirical results that serve as a solu-

tion to Eq. (36.1) when the plus signs are used and are therefore applicable
to the emitter region. For Eq. (36.1) to apply to the collector region, the neg-
ative signs must be used and under these circumstances the following equations
give quite accurate results:

(Collector Region)
4

XE
=147 —2%v 1.17 1.68

1 + 40-681

x. = 0.8888 y} (1 + Hay

(37.7,

(37.8)

The numerical constants of the two equations are, respectively, (§}/z)} and
(4 Val).

38. The CHILD-LANGMUIR space-charge equation. As a step toward the writing
of a relation that is the equivalent of the CHILD-LANGMUIR equation, Eq. (37.8)
squared may be rearranged as follows:

,
4)n Y 1.413 \#=e (yy TE

This equation rewritten in terms of the symbols introduced as Egs. (34.2) and
(35.2) takes on the familiar form as follows:

48, (2e\b VE 1.413 \#

I = 0 (22) a(1 fer (38.2)
ET

It is clear from this equation that under many experimental conditions the
applied potential may be very nearly equal to that shown in Fig. 7 as V, and
that the distance x, may be very nearly equal to w. For large values of applied
voltage, the last factor of the equation is practically unity and the equation
then reverts to that of the CHILD-LANGMUIR equation. The constant of that
equation is given as follows:

EK. = "2 (228—333410.

It will be useful to define the y, function of Eq. (38.1) by the symbol F (w,)
given as follows:

1.413Fly) =p.(1+Sr)
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The true numerical values, that this function was developed to give, can be derived
as indicated by Eq. (38.1) from the tabular values of y,, since the relation is
given as follows: 9

 A 2Fi(y,) 4Vx Xc a 1.269 x2.

Two equations very useful in computation that are the equivalent of Eq. (38.2)
are given as Eqs. (38.6) and (38.7):

Fi 3

I—K, Zyl.
2

I=NZ%*Xvi
Xe

The numerical value of a constant N may be computed from basic physical
quantities as follows: ne 4

N=&amp; (22) — 2.963 X 1078. (38.8)

(38.7)

A final and closely related expression which serves to link directly the pro-
perties in the emitter region to those in the collector region is given in equation
form as:

4 3.

x SeNIT a ya NTYe Ye
(38.9)

Even though it may be said that solutions to the space-charge problem are
given by these various equations it is not easy to apply them to laboratory
results. There are basically five independent variables which may be listed as
follows:

1. The diode spacing w. The spacing to the potential minimum is related to w
in that the sum of x, and x, is always equal to w.

2. The emitter temperature expressed either as 7 or its equivalent Vi [see
Eq. (46.9)].

3. The zero field (at the emitter) electron emission current density of the emitter.
This may be related to the temperature by an empirical equation of the form
of Eq. (9.1) in which the two constants a and @ constitute a description of the
emitter.

4. The applied difference in potential which is directly controllable by the
observer.

5. The contact difference in potential including its temperature coefficient,
which depends both upon the properties of the emitter and the collector. Even
though the temperature variation of the contact potential must be expected to
be nonlinear, observations generally apply to such a limited range that it will
be assumed at the start of the analvsis that the contact difference in potential
may be expressed as: ap

Pr — 2, +Vr AV .

The remaining sections of this theoretical analysis relate in one way or another
to the bridging of the gap between the basic space-charge equations and their
application to the interpretation of experimentally obtained results.

39. Application of the theory to boundary conditions. The equation which
represents the thermionic emission current as a function of the temperature
for stable cathodes was given as Eq. (9.1) and is reproduced as follows:

_ 2 -2
I— ac *T — ge Vr
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This equation applies over that range in temperature for which the potential
distribution between the emitter and the collector lies between curve (I) and
curve (II) of Fig. 6a. At a very critical temperature 7 = @ the potential gradient
at the emitter is zero and this critical current I, is given by Eq. (39.2).

 2?
I,—ae kO (30.2)

In order for this critical temperature to be determined with accuracy, the emitter
must be very uniform, in regard to both its surface composition and its temper-
ature.

A specific use to which Eq. (38.2) may be applied is that of determining for
a given electrode spacing and given applied voltage v between the electrodes,
the current I, that will flow when the critical temperature @ is reached. Under
these conditions V, is related to the applied potential according to Eq. (32.1).
Note that V, is zero. The distance x, is identically equal to the spacing w. With
the temperature 7=6 yet to be determined precisely, a first approximation
for the space-charge limited current can be obtained by neglecting the correc-
tion term involving the temperature in Eq. (38.2). If the cathode properties
are known and specified by Eq. (39.2), it is easy to determine the temperature at
which the approximate value of current density will be obtained. This temper-
ature, now identified as @ may be used in the correction term of Eq. (38.2)
and a corrected value of the current density computed. Having thus determined
the most suitable 7,, one may make a very small correction to determine the
exact temperature @ from Eq. (39.2) that wiil yield a self-consistent set of data.

40. Determination of value of potential minimum. As the temperature in-
creases above the critical value @, the potential minimum develops and the
equation for the current is the following:

e(D+V5)
 emia BF (40.1)

If AT is the increase in temperature above the critical value ® then Egs. (39.2)
and (40.1) may be combined to give the appropriate value for the difference
in potential between a point just outside of the emitter and the potential minimum
illustrated in Fig. 7. AT RT I

An inspection of this equation shows at once that if the current density I did
not change at all with an increased temperature above its critical value I,
then the potential minimum would increase in value in direct proportion to
the temperature excess above the critical value @. The constant of proportionality
is the work-factor @. Under well-controlled experimental conditions the current /
will exceed I, by only a small amount AI for a considerable increase in temper-
ature. Under these conditions an approximate form of Eq. (40.2) may be written
by which the correction term may be evaluated most readily:

AT T AT AT AT
Vad" LP VL

‚= A 11600 I, PD 6 Vr I,

where V7; is defined as (7/11 600).
This equation is useful in its application to experimentally realizable emitters

under most circumstances, since the distance to the space-charge minimum x,
is generally smaller than the radius of curvature of the emitter. The steps by
which this critical distance is determined follow.
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41, Determination of distance to potential minimum. The first step is to com-

pute the value of yp: eV, De AT I
VS RS —-h—. (41.1)

This value can be computed from observable quantities which are specifically:
1. the work-factor @; 2. the critical temperature @; 3. the absolute temper-
ature T'; 4. the excess temperature A T'; 5. the current ratio (1/1). The correspond-
ing value y, may be computed directly from Eq. (37.5) or Eq. (37.6), depending
on the numerical value of yw, computed from Eq. (41.1). Since the current density
and the temperature are known, the correct value for the distance from the cath-
ode surface to the potential minimum may be computed directly from Eq. (35.2)
or Eq. (38.9) and the definition of y,.

42. Application of theory to the retarding potential problem. In the retarding
potential problem illustrated by Fig. 6b and Fig. 8 the magnitude of the retard-
ing potential applied is constant and given by

V.=V.—V. (42.1)
The expression that corresponds to Eq. (40.2)
of the previous example is given as follows:

AL(pV) +V.— Vln —. (42.2)fH I,

The procedure outlined above for the calcula-
tion of the distance to the potential minimum
can be carried through in an analogous manner.

An inspection of Fig. 8 and qualitative
considerations permit one to conclude that if
the retarding potential, V,, were increased while
at the same time the temperature and proper-
ties of the cathode were held constant the

potential minimum would shift toward the
collector until at a particular value of retard-
ing potential the electric field is exactly zero at this surface. If it is assumed
that there are no reflection effects at the collector, space charge will have no
influence on the emission current for still greater values of retarding potential.
It is of some importance to devise a means for determining this critical value
of retarding potential at which the onset of space-charge limitation takes place.
A review of the “Pillbox Theory” given in Sect. 24 shows that the method of
computation should follow much the same procedure.

43. Limiting retarding potential for onset of space charge. Egs. (37.1) and
(37.3) are directly applicable to this problem. The fact that y, cannot exceed
1.806 permits one to write two important relations which form the basis for
the method of calculation to follow. The numerical factor comes from Eq. (35.2).
These relations are given as:

(1.806)2x2.370X10712== 8% = 7.720xX10712

- I

7.720X10712= “7 g2,
GF

9.664X1078= m w= N22.

FL

Eq. (38.8) defines N.
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In Eq. (43.1) the current (I) is the actual current measured at the collector.
The distance § is the measure of the diode spacing for a diode of unlimited emission
current capacity which would yield the current, I, actually observed. In Eq. (43.2)
the current I, is the maximum current which can flow across a diode of the actual
spacing w and still achieve zero potential gradient at the collector. These two
equations lead to the next which is

w? Ir
2 == 5 = TI. .

If the emission current capability of the emitter at zero field over the surface
of the emitter is defined as I,, then the current I, will be given by the following
relation:

_ Vr

Ip=1Iye *® =I ez

[he combination of these. two equations is the following:

i, = erin .

(43.5)

(43.6)

Egs. (37.1) and (37.3) give the relation between w,p and yz. More accurate
data for this relation are given in Table 3 E. Note also that the relation between z
and y, is given as follows:

Ysr = 1.806 2. (43.7)

An abridged table has been prepared which relates the function on the right-
hand side of Eq. (43.6) to z. See Table 4.

44. Application of universal function to problem solution. The method by
which the universal function can be used will be outlined as follows. Experimental
data on cathode properties must be depended upon to yield the numerical value
of I, as a function of the temperature in terms of the two empirical constants (a)
and (®) as given in Eq. (39.2). At any specified temperature and for a diode of
specified dimensions Eq. (43.2) establishes the current density, I,,. The pro-
erties of the cathode and the spacing of the diode permit one to write the current
ratio, (Iy/1,,), needed in Eq. (43.6). The plot given in Fig. 9 or the tabular data
in Table 4 allow for the determination of the correct value of z to satisfy Eq. (43.6).
As soon as z is known, then Eq. (43.4) permits the correct determination of the
actual current Ix. A knowledge of this current and the specified temperature
will permit the determination of the precise retarding potential at which space-
charge limitation will begin. Ideally, for all values of retarding potential greater
than the one that satisfies these equations the current received at the collector
will be governed by the exponential relation similar to Eq. (43.5), with the cur-
rent I less than the limiting one associated with the solution to this problem.
This method of solution properly adapted also permits the user to determine
the temperature at which the onset of space-charge limitation occurs for a given
retarding potential V,.

Table 4 has been computed over the middle range for which an explicit
expression for z cannot be written. The following equation will serve as a means
of establishing the correct value for the verv small values of 2.

Range (I, /I,) &gt; 100

utWe n s(n1

44.1)
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For the highest range of z from 0.98 to 1.0 the following equation should be used:
Range (I,/I,,) = 800

2 In \b Im \}= 1 () =1-— 0.554 (7) | (44.2)
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“ig. 9. Plot of data in Table 4 for solution of Eq. (43.6).

V. Idealized use of space-charge method
for cathode property determination.

45. Statement of the problem. Even though the oxide cathode is the most
important thermionic emitter of electrons, no generally accepted method has
been developed for the evaluation of cathode properties under conditions that
approach those used in most practical applications. This section will develop
the theoretical background for the application of the space-charge equations
to cathode evaluation. A brief outline of the fundamental principles involved
may facilitate the direct application of the theory.

The following statements will serve to define the symbols used and the ex-
perimental conditions directly controllable.

1. The initial development of the theory will apply to a plane-parallel diode
with the emitter to collector distance w small compared with other dimensions.

2. The emission properties of the emitter may be expressed by the empirical
relation of Eq. (39.1) for which the emission constant a and the work-factor @
are to be determined.

3. The absolute temperature of the emitter is 7 and this must be capable
of determination either by thermocouple measurements, by pyrometry or by
the investigation of the electron energy distribution with verv high retarding
fields,

4. The temperature and the emission properties of the emitter must be uni-
form.

5. The collector must have a uniform work-function and be a perfect receiver
for the electrons that come to it.

6. The actual current density of the electrons, that cross the diode and there-
fore constitute the collector current per unit area, will be represented by I and
will be directly measurable under anv specified conditions.
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7. The applied voltage v will be directly measurable and will represent the
difference in energy between the FERMI levels of the collector and the emitter.
Notice that if there is a sufficient resistance between the emission surface and
the point of contact used for the applied potential measurement so that there is
an appreciable difference in the FERMI level from the point of contact to the
emission surface, then the measured applied potential must be corrected for the
“IR” drop. In the formulation of the theory it is assumed that the applied
potential v is identical with the true potential difference between the FERMI
level of the collector and that of the emitter at its immediate surface.

Although the above statements serve to define the important directly con-
trollable variables, other symbols will be introduced in the development of the
theory. Basically, there are four unknowns in the list given above, which are:
the emission constant a, the work-factor @, the contact difference in potential,
and the temperature coefficient of the contact potential. The contact difference
in potential Pj is the difference between the true work-functions of the collector
and the emitter. In principle, four suitably chosen experiments should permit
the evaluation of these four quantities. Although a minimum of four measure-
ments is required, it will be shown that practical results can be obtained more
2asily from a larger number of measurements. It is, therefore, the purpose of
this theoretical discussion to present the principles on which the suitable choice
of measurements can be based.

All of the information desired can be obtained by retarding potential methods,
if measurements outlined below are made at four or more temperatures. A
second avenue of approach depends on a similar set of measurements made with
accelerating fields applied. The final method to be discussed depends on a com-
Hination of the first two; it involves making observations at only three temper-
atures with suitably chosen applied potentials that give both retarding potential
and accelerating potential data.

a) Emitter evaluation by accelerating potential methods.
46. Basic space-charge equations. The potential distribution between the

smitter and the collector is shown by the curve of Fig. 7 for a given applied
potential difference v. The relation between the applied potential and the other
potentials pertinent to Fig. 7 and analvsis of this problem is given in the follow-
ing equation:

v=V,—V. + Pr.
Eq. (38.2) may be rewritten in a more useful form as:

FF (wc[= Ky — 00 (7).
24 —w (1 %)

[he following equations serve as definitions of the symbols used here:

4 2e \* _

K= (22) — 2.334X1078,

N=c¢ (22) — 2.963 X 1078Nam) 4

Am = 1.806 [from (37.4)],
_

Ye = ET?

(46.1)

(46.2)

(46.3)

(46.4)

(46.5)

(46.6)
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Fi (p) = = 2 = 1.260412 (46.7)

1.413
Fy.) =v. (1 + Soh

RT T
Vip stim ss ree

(46.8)

(46.9)

In order to facilitate the use of these functions, tables of values have been pre-
pared for various useful powers of F(yp,). See Table 5. Notice that this function
results from a direct application of Eq. (38.2) to the problem.

Inspection of Eq. (46.2) permits the following conclusions to be drawn. At
any given temperature V; and a specified value of y,, the current which can flow
across a diode (of emitter to collector separation w) is a function only of the emitter
to potential minimum distance x, and
this is the only variable dependent on the
cathode properties. The minimum current
that can flow and still have Eq. (46.2)
applicable occurs with zero field at the
emitter, that is, with x, equal to zero.
This situation establishes a limiting condi-
tion for an emitter of minimum capability
at a particular temperature. For a given
emitter let this temperature be represen.
ted by the symbol ©.

Fig. 10 has been prepared.to show
qualitatively the change in the distri:
bution in potential between an emitter
held at a constant temperature and a
collector maintained at a fixed applied
potential v. An emitter of very low emis-
sion capability is identified by condition
A of this figure and the current is not limited by space charge. An activation
process may lower the work-function to condition B and the critical situation
of zero field at the emitter is shown by this curve. Further lowering of the
work-function to conditions C and D results in the development of the space-
charge minimum and its progression across the interelectrode space toward
the collector.

 po

Collector

The above description applied specifically to a change in emitter activation
and to no change ini the applied potential. The analysis of experimental data
that will lead to an evaluation of emitter properties can be simplified by taking
the potential difference V, in the collector space as constant instead of the applied
potential. Under this condition and with a constant emitter temperature it
follows that, as the emission capability increases, the potential difference V,
across the emitter region increases at a slightly lower rate than Pj (the contact
difference in potential) in order to permit an increase in current without a change
in V,. This result follows because the emitter region distance x, increases, and
it is evident from Eq. (46.1) that the applied potential v must be increased.

As the activation process continues, Eq. (37.6) becomes a controlling factor
and x, approaches a maximum value of X; which may be computed by Eq. (46.10),
as it will be shown. The following equation may be derived by the elimination
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of the parameter x, between Eqs. (37.6) and (37.8) and it serves as a direct means
of making the calculation of

X = 2 1 a omni FÜ 7% ; (46.10)
mt 3 . * (We 1 + A

t+ 3 (1.806) Fwd Am

The numerical constant is written out to show the direct connection with

Egs. (37.6) and (37.8).
The maximum current is given by the following equation:

3 vi
Iy= 7.729X 1078 — 9.664X108 (46.11)

Let the current I; represent some of the factors in Eq. (46.2) and be expressed as

Fy, 3 c
I, =K, pe ) (Vz)? = NE (Vt. (46.12)

The ratio of this current to the maximum current may be expressed as follows:

\2X?Ir =(1— 2)Tar w (46.13)

For any specific value of emitter temperature and collector potential relative
to the potential minimum, namely V,, the current I; can be computed for a
given diode structure by Eq. (46.12). The introduction of the value for the
maximum distance X; as given by Eq. (46.10) in Eq. (46.13) gives an alternative
method for the determination of the maximum current as the product of the
current I; and a universal function which has also been computed and recorded
n Table 6. This relation is given as

2m)? (46.14)„035 \2 __ )= I [1 +2).IST =I, f(y.) L x

47. Application of basic equations to cathode evaluation. As the basic equa-
tions are applied to determine emitter properties the only two directly controll-
able and observable variables are the emitter temperature and the applied differ-
ence in potential. The unknowns which it is the purpose of the study to evaluate
quantitatively may be listed as follows:

I. The work factor ©.

2. The RicHARDSON work-function gg.
3. The thermionic constant a.

4. The critical temperature @ or its equivalent Vp which is the minimum
temperature at which a given emitter will operate with the current limited by
space charge for a specified value of V,.

5. The contact difference potential P, at any temperature.
6. The temperature coefficient of the contact difference in potential which

is also the negative of the temperature coefficient of the true work-function of
the emitter.

7. The contact potential P, which is the value at absolute zero of temper-
ature determined by a linear extrapolation from the observational temperature
region to absolute zero. For stable emitters with emission current given by either
Eq. (39.1) or the RICHARDSON type of equation, the temperature variation of
the work-function is dominated by the first power term. It will be shown in
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Sect. 81 that for oxide cathodes higher power terms are needed. The present
analysis depends on the use of a suitably chosen average temperature coefficient
and a corresponding Po.

There are still other quantities which can be considered as indirect variables.
The analysis depends on the arbitrary choice of two or more values for y,. If
it is assumed that this analysis applies to the evaluation of an oxide cathode, or
its equivalent, then the choice of values of y, between 15 and 50 will correspond
to the application of accelerating potentials such that the energy with which the
electrons bombard the collector will lie between 1.5 and § electron volts. For
a particular choice of p,, Eq. (46.12) permits the preparation of a table of values
of I, as a function of the temperature. In particular these values should be com-
puted for the normal temperature of operation represented by V, and for a range
of lower temperatures. The value of I; may also be computed directly with the
aid of the tabulated function expressed in Eq. (46.14) as f(w.). The analysis
which follows will show the method by which the unknown quantities can be
related to the directly and indirectly controllable variables.

Eq. (40.2) may be rewritten in terms of the variables presently useful in the
analysis, as follows: Vo — Ve 7

Vs OA Ve (47.1)
In this equation I, is the current density which flows to the collector at the
critical temperature @ when the value of V is zero for a particular value of y,.
The current I is the current density at any higher temperature for the same
value of y,. Eq. (46.1) may be rewritten in terms of the quantities now defined,
as follows:

dP DB Iv=Vept 5 — po FI) + Bt ©. (47.2)
For this equation to hold exactly, the correct value of I should be known. Since
its value cannot be determined in advance of a determination of v, an experi-
mental procedure must be used.

With good cathodes, the current I will be very nearly equal to I,, for an
appreciable range in temperature above and below the normal operating temper-
ature expressed as V,. The experimental procedure is to compute I,, as well
as I; for each temperature and the specified value of y,. One establishes by
experiment the applied potentials »"" and v" which are observed to be required
to give diode current densities of I; and I, respectively. The equation for the I,
characteristic curve is the following: .

dP V,
Ve a tf) + SFE) ++ (473)

since

nM—tn2(VE=In[7p]4+21n(12)). (47.4)
Over the high-temperature range the characteristic curve for the I; data follows
an equation identical to Eq. (47.3) except that a lower value of vy, is applicable.
It is possible to compute this lower value of w, but it does not serve a useful
purpose in the present analysis. The more useful result to keep in mind is that
a linear relation between an observable quantity and the temperature can be
formulated from Eq. (47.3). This relation depends on an observable voltage
quantity defined bv the following:

} |

 SAFE A
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Note that the computation of the correction term depends on an estimate of
the critical temperature Vo. The means for making this estimate will be de-
scribed in connection with the discussion of the data presented in Fig. 11.

With this definition of the voltage v**. the following equation may be written:

ap PD
*k =ve Var + &gt; 2 +P +d. (47.6)

At the critical temperature Vg, Eq. (47.2) relates to the observations made
along the I, characteristic curve and satisfies the requirement as expressed in
the following equation:

dP D
MES ————| +P . .vo =Vo [pot oo — 2) + Pt ® (47.7)

A comparison between Eqs. (47.6) and (47.7) shows that the purpose of this
analysis is to establish an accurate value for the critical temperature Vg. The

28 straight line described

"Applied potential for hy the plotted vajues of
wyl— current "fy.Eq(46-11) p*¥* as a function of the

w=ele 50 temperature Vz over the
. . 1igh-temperature range

“=o Si pry Rs intersects the voltage
@ 96 scale at the zero value
Ss 2 .2 of V, to give a measure

&amp; 32 of (Py+ ®). At the criti-
5 cal temperature, v** is

29 identical to vo which
establishes the fact that
the intersection of the
straight line described
with the observed I,
characteristic curve, as

shown in Fig. 11, deter-
mines the exact value
of Vo to be used.

It is to be anticipated that in carrying out the experiment, observations
would not be made at this exact temperature, and yet, if the observations were
made at temperatures slightly above and below this temperature, it is easy to
interpolate between the observation points and determine the suitable value
of Vo. The insertion of this value of temperature in Eq. (46.12) gives an accurate
measure of the zero field emission capability of the emitter. This result is ex-

pressed as follows:

Fn

I = 1 — N —— Vo0 LO 3ap2 ( 2. (47.8)

The application of these principles can be illustrated best by the numerical data
presented in Figs. 11 and 12. For these curves, typical values of all of the con-
stants are assumed in advance so that the curves can be drawn to scale.

The solid and the dashed curves of Figs. 11 and 12 join a set of points that
represent, as a function of temperature, the directly observable applied po-
tentials needed so that the computed current densities I, and I; are the ones
actually observed. Note that Fig. 11 applies to a value of y, of 50 and Fig. 12
is for y, of 16. Before the corrections can be applied that correspond to the ap-
plication of Eq. (47.5), an estimated value of the critical temperature Vg must
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be determined. A sufficiently accurate choice may be made by drawing a tangent
to the smooth curve designated as I, at the highest temperature and then deter-
mining the intersection of this tangent with the dashed curve designated as I.
This approximate value of the critical temperature, Vj, can be used in Eq. (47.5)
to locate the points identified in these figures by solid dots. An inspection of
Eq. (47.6) shows that a straight line drawn through these points has an intercept v,
on the voltage axis at the zero of temperature. The intersection of the straight line
designated L,,, with the dashed experimental curve is indicated by the square []
on each of the figures. The exact value of the critical temperature, Vy, is deter-
mined by this intersection. It is anticipated that this exact value of the critical
temperature will not differ enough from the previously determined approximate
value to make it necessary to re-evaluate the potentials computed by Eq. (47.5).

This analysis of experimental data as illustrated by Figs. 11 and 412, should
yield a single value of the intersection potential v; for both choices of yp, of 50
and 16. If the initial
analysis of the data for
the two cases gives
slightly different values
for v;, an average value
should be taken and new
straight lines should be
drawn to correspond to
the best representation
of the entire set of data.
Alack of self-consistency
will generally indicate a
failure to satisfy the
uniformity requirements
either with respect to
emitter temperature or
the surface conditions of
the emitter and collector.

If the contact potential variation with temperature cannot be represented well
enough by Eq. (38.10), then experimental points will not fall exactly on a straight
line but may deviate systematically. This may indicate that the best straight line
will give a good mean value of the temperature coefficient and the corresponding
P, that will be useful only over the observational range in temperature.

The slope of the line L,, is given by the terms contained within the square
brackets of Eq. (47.6). There are essentially two unknowns in this expression
for the slope; they are the temperature coefficient of the contact potential and
the work-factor. The acquisition of data at the two chosen values of yp, identified
here as yp, and y,, instead of 50 and 16, permits the determination of the work-
factor bv the following relation:

d — (Sa — So) — (Wa — Wo) |

1 1

Vor Vea
Use may be made of Eq. (47.8) and an alternative method of computing the

work-factor @ may be employed as in the following equation:

21n Za + 3 Voa
BD — X 2 . Vor
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2i

501 002 0.03 00% 005 006 007 008 009 a0

Temperature inn volt units(£2)

Fig. 12, Applied potentials for emitter evaluation at pw, =16.
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In this equation the values of y, and yx, are those found in Table 3C corresponding
to the selected values of y, and y,. A direct calculation of the thermionic constant
expressed as Ina may be made from either set of data taken at y, or ,. The
following equation will be written in terms of the choice of y, and is:

2 73 D

Ings=In v2vg] + (47.11)
To facilitate calculation, it will be convenient to define a characteristic

‘temperature’ that in effect describes the diode spacing. This symbol is defined
hy the following equation:

2

VE=_2
7NY

The substitution of the symbol ¥, in Eq. (47.11) gives the form by which the
‘hermionic constant can be computed most easily.

one 3 wo SDIna = 2ln To &gt; In (7 + Vox’ (47.13)

48. Determination of contact difference in potential and its temperature coeffi-
cient. Since the intercept of the straight lines on the ordinate axis can be deter-
mined and identified as v;, the contact difference in potential may be computed
as follows:

Pa= vu. — BD. (48.1)

Since the slopes S, or S, are known, either one can be used in the following
squation to determine the temperature coefficient of the contact potential ap-
slicable over the observation range

iP dg _ @may (St FE): (48.2)
49, Determination of the RICHARDSON work-function and the true work-

function. If the work-factor @ is known, it is easy to calculate the most appro-
priate value for the RicHARDSON work-function @ that will best represent the
lata over any specified temperature range, as shown in the next section. Assume
for this calculation that V, represents the highest temperature of interest and
that V,, corresponds to the lowest temperature of interest. The RICHARDSON
work-function is then given by the following equation:

or=D—V,+V,). (49.1)

With the temperature coefficient of the work-function known from Eq. (48.2),
the best value for the true work-function is given as follows:

d

50. Determination of the RICHARDSON constant Ap and its relation to the
‘hermionic constant a. When they are considered as empirical equations to re-
present the temperature-dependence of thermionic emission, the simplified equa-
tion and the RicHARDSON form are equallv valid. These two equations are written
as follows:

Log

I=ae Vr&gt;

ro...
PB

a - Vr

Ap 12e

(50.1)

50.2)
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Since the range of temperature of practical interest is generally less than two to
one, it is possible to express relations between the empirical constants such that
either equation will represent the experimental data within the accuracy of the
temperature scales used. By differentiation it may be shown that the slope of
the simplified equation plot is related to the RICHARDSON slope by the following

equation: ®— ppt 2V;. (50.3)

Since the average temperature over the range of interest is (V, + V,)/2 it is ap-
propriate to take this value for V; of Eq. (50.3) and the following relation is

obtained: D— gut V.+V,. (50.4)
With this relation between the work-factor @ and the RicHARDSON work-

function gg, the thermionic constants a and 4x should be chosen so that the
two equations give exactly the same values of current density at some inter-
mediate temperature 7,. This temperature should preferably be approximately
one-quarter of the range each way from the midtemperature so that the devia-
tions that must exist will be more or less equally divided and there will be two
points at which the equations give precisely the same value for the current den-
sity. As a result of this matching procedure, one may write the following relation:

 23+ Tn,Tt10 = ——In (50.5)

If the matching temperature T, is chosen to satisfy this relation, then a con-
venient means of calculating the thermionic constant a in terms of the RICHARDSON

tant 4p follows:constant Apr follows 4 —10A4,T2. (50.6)

The inverse relation is useful as it applies to the results obtained from the analysis
of Sect. 47:

a
Ap=—.

R™ 40712  (50.7)

Although the name “work-factor’” has been found to be a convenient term
for @ as Eq. (50.1) is applied specifically to thermionic emission data, an equation
of this form has been used as a means of expressing the conductivity of semi-
conductors as a function of the temperature. In the conduction process, there
is also the problem of the temperature coefficient of the FErmI level. In the
discussion in Sect. 65 it is shown that the temperature exponent of the theoretical
equation that best represents results is—(#) instead of 2 as in the RiCHARDSON
empirical formula given here as Eq. (50.2) and therefore a more general conversion
formula is needed. In the application of Eq. (50.1) to these conduction problems
the quantity @ has acquired the name “activation energy”? 2. Actually, it is
no more a direct measure of the true activation energy in the conduction case
than it is a measure of the true work-function in the emission case. In both analv-

ses it is simply an empirical constant.
Since data found in the literature are often expressed this way, however,

it will be convenient to write general forms for the conversion of the empirical
constants representing data according to Eq. (50.1) to suitable choices for the
empirical constants in the generalized equation given as follows:

— 22,

I =A Te Vr (50.8)
t N. B. Hannay, D. MacNair and A. H. WHITE: J. Appl. Phys. 20, 669 (1949).
2 R. LoosyEs and H. J. Vink: Philips Res. Rep. 4, 449 (1949).
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This equation gives the same variation in the quantity In I with respect to V1
as that given by Eq. (50.1) at the temperature V} if the following condition is
satisfied: 0, = Dr. (50.9)

The two equations will give the same value for the quantity I at a chosen tem-
serature if the relation between a and A, is given by

a

A= gm (50.10)

One generally wishes to choose the constants so that they will give comparable
results over a specific range in temperature. If the extent of that range can be
bracketed by V, and V,, (or 7,, and 7,,) which carries the interpretation now that
the first of these temperatures is the maximum temperature of the range and
the second the minimum temperature of the range, then the best choice for the
relations between the empirical constants may be written according to the fol-
lowing two equations: 2

(50.11)

(50.12)

b) Emitter evaluation by retarding potential methods.
51. Basic space-charge equations. A general statement covering the objectives

of this theory of cathode evaluation is given in Sect. 45 and should be referred
to in order that such limitations as necessarily exist will be clearly understood.
Oxide cathodes generally operate at a temperature for which the emission current
is strongly limited by space charge and, therefore, it is appropriate to present
a theory of cathode evaluation which depends on the direct application of space-
charge theory to this practical problem. The basic equation has already been
worked out by which one can calculate the maximum current which can flow
across a diode of given dimensions if the cathode is operated at a specified tem-
perature and the potential gradient at the collector is exactly zero. This equation
was first presented as Eq. (43.3) and may be written in terms of notation presently
useful as follows: 3

_ 10 78 4

For a good oxide cathode this equation gives the observed current when zero
field exists at the collector for the temperature range higher than 800° K. For
lower temperatures the actual current obtained under the zero field condition
is lower than I, and the ratio of these currents is defined as in Eq. (43.4) as
follows: I

= (51.2)
The analysis which follows shows the means by which the correct value of z
can be determined. With z known, it is possible to give a quantitative value to
the true retarding potential that exists across the space between a point just
outside of the emitter and the corresponding point outside of the collector. When
this retarding potential is known, the emission capability of the emitter will
also be known at the specific temperature at which z has been evaluated.

The current received at the collector can be expressed in terms of cathode
properties as follows: ®+Va

I.—ae Vr (51.3)

In this equation the constant, a, is a measure of an emitter property and is to
be determined by the series of experiments to be described. The work-factor is
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®, and the true retarding potential is V3. It is to be noted that the symbol Vy
is appropriate, since it measures the true difference in potential across the emitter
space as described in Sect. 31. In the present example there is no collector space,
since the zero gradient of the potential distribution occurs at the collector. The
relation between the applied difference in potential v and the true retarding
potential V is the following:

y= Pp — V5. (51.4)
The true contact difference of potential including the temperature variation of
the emitter work-function is Pr. See Sects. 45 and 47. These relations permit
the following equation to be written:

apr 1v— Vell, =V;|o-—Ina—In| + d+ Pp,
2,2
2.0!
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Fig. 13. Emitter evaluation by retarding potential methods.

52. Application of basic equations to cathode evaluation. Over the high-temper-
ature range of approximately 800° to 1200° K for oxide cathodes it is to be ex-
pected that Eq. (51.5) can be simplified to read as follows:

Vs — Von I, =V;| 22 nl + @ + P,. (52.1)aV

Over this range 22 is so near unity that its logarithm can be neglected. The
experimental observations grouped on the left-hand side of the equation involve
first, the computation of I,, by means of Eq. (51.1) and the observation of the
applied voltage v, required at each temperature to give the corresponding current
density I,, in the test diode. The voltage vf can be defined as in the following
equation and a plot made of this voltage as a function of the temperature

n¥ =p. —V,.InlI,,. (52.2)
Computed points typical of observational data are shown in Fig. 13. A tangent
may be drawn through the points in the high-temperature range and the intercept
of this line on the voltage axis may be identified as follows:

"= DA PD.
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As the temperature is lowered, the observed points will deviate very gradually
as shown in Fig. 13. At each of the known emitter temperatures, observed applied
voltages may be determined to give a set of points corresponding to some arbitrarily
chosen values of 22. For example, 0.2 and 0.01 may be selected. The current
that is observed in the experiment can be related to the computed current I,
by the following equation:

II =2z12] .

The reason for the change in notation from Ij to I, is that, in the first case,
the current flow I, indicated that particular value for which zero gradient
existed at the collector for a known or specified value of 22. In that case, the true
retarding potential between the emitter and the collector would be identical to
the emitter potential relative to the space-charge potential minimum which has
been identified as V,. For a given emitter there is only one temperature at which
this condition is satisfied if the value of 2’? differs appreciably from unity. It
has already been mentioned that for good oxide cathodes there is a very useful
range in temperature for which 22 is so near unity that its variation is not de-
tectable. For any choice of 2'2 and of temperature such that a potential minimum
does mot exist between the emitter and the collector, the collector current is
controlled exclusively by the true retarding potential and is independent of space
charge. Let this true retarding potential be represented by the symbol V, and
the corresponding applied potential be identified as v,, These two potentials
are related by the following equation:

o=P.—V. (52.5)

The new equation that corresponds to Eq. (51.3) and relates the observed current
to the true retarding potential for the whole range for which V, is greater than
V., may be written as:

ok
I'—=ge Vr (52.6)

The three equations above may be combined to give the observed relation
between the temperature expressed as V; and the observed applied potential v,
which yields the observable current I. after a definite choice has been made for
the value of 2'2

; dPr 1ANA ALTE nA+@ + P,. (52.7)

It is to be seen that this equation has exactly the same form as Eq. (51.5) and
it indicates that observed points will fall on a straight line of slope S,, as defined
by the following equation:

dP ; 1

S. =-——— Ina —In—.

Note that all lines should be expected to have a negative slope increasing in
value as 2’2 decreases and all lines intersect at the same voltage point v,, as given

bv Eq. (52.3).
Under ideal conditions of emitter uniformity the observed points will fall

on the straight lines described for all temperatures in excess of the critical tem-
perature for which the condition of zero gradient at the collector is satisfied.
As the temperature is lowered, below the critical value, the observed points break
away sharply from the straight lines, as shown in Fig. 13. With these critical
temperatures known for two or more values of z' appreciably less than unity,
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the properties of the emitter may be specified by the methods given in the follow-
ing section.

53. Interpretation of results. The location of corresponding critical temper-
atures, collector currents, and 2’ values leads first to a determination of true
retarding potentials applicable in Eq. (51.3). Since this equation involves the
two unknowns a and @, their numberical values can be determined from data
obtained at two temperatures. These temperatures and the corresponding cur-
rents may be determined as described in Sect. 52. The next step, to determine
the relation between Vj and z, still remains to be completed. Eq. (43.7) gives
the relation between y, and z and Eq. (37.1) relates y, to y, for the smaller values
of 4... Thus, for values of zless than 0.77 or 2% less than 0.6, Eq. (37.1) will be
found satisfactory for most calculations. The data in Table 3Ecombined with
an accurately prepared plot for interpolation may also be used.

Let the two arbitrary values of 2’ be identified as 2] and z; with z; being the
larger. The corresponding values of w, will be w, and wp, and the corresponding
critical temperatures will be V,; and V,,. With these quantities defined,itis
possible to solve for the work-factor and the result is the following:

 DB —
#2 | 3 In Farin (£5) + v=wn toh Vas

Vo, V.

(53.1)

Note that the quantity in the square bracket is essentially an arbitrary constant
of the problem that depends only on the chosen z values.

The numerical values of this constant for 22 values of 0.2 and 0.01 is 3.400.
With the work-factor @ known and the emission current given at a particular

temperature such asV,,, the value of the thermionic constant may be expressed as:

na= ++I L,). (53.2)

The slope of the line described by Eq. (52.7) may be expressed by Eq. (52.8)
and is a directly measurable quantity. This equation contains only the temperature
coefficient of the contact potential as an unknown and therefore it may be evalu-
ated. The temperature coefficient of the work-function is the negative of the
quantity (dP/dV};). The intercept on the voltage axis is a directly measurable
quantity and, combined with the work-factor as in Eq. (52.3), serves to evaluate
the effective contact difference in potential at the zero of temperature.

54. Criticism of the retarding potential method of cathode evaluation. In
Sects. 51 through 53 the theory of cathode evaluation by retarding potential
methods has been presented in order to prepare for the use of certain of its ele-
ments in the theory which follows. The next sections show the most practical
means of evaluating an electron emitter under conditions nearly identical to
those under which an oxide cathode is most likelv to be used in practical appli-
cations.

The. principal objection to the retarding potential method of cathode evalua-
tion involves the critical nature of the emission current and temperature measure-
ments at the low end of the temperature scale. The most basic quantity, namely,
the work-factor, depends so strongly on these temperature measurements and
on the identification of the critical temperature that cathode inhomogeneities
can be expected to interfere seriously with the accuracy of the results. Of the
three methods of cathode evaluation presented here the retarding potential
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method is the least satisfactory. The theory presented above, however, is basic
to an understanding of the combination method, undoubtedly the best of the
three, which will be described in the next section.

¢) Emitter evaluation by a combination of retarding
and accelerating potential methods.

55. Statement of the problem. Practical electron emitters such as oxide
cathodes cannot be expected to be perfect surfaces of uniform emission efficiency.
Any method of cathode evaluation which does not assess the cathode in the
presence of space charge under conditions similar to those of its practical operation
may very well yield misleading results. Evaluation methods that depend only
on the drawing of saturation current by means of an accelerating field at the
cathode evaluate patches of low work-function area, since these are likely to
yield a disproportionate fraction of the emission current. It follows that a method
which will permit evaluation of the emitter and which will include information
obtained at normal operating temperatures and with very low fields can be
expected to yield the most reliable information. It is the purpose of the next
few sections to present new methods for emitter evaluationbwtakingfulladvan-
tage of the space-charge theory!

The quantities to be determined are (1) the work-factor @, (2) the thermionic
constant a, (3) the average temperature coefficient of the work-function, and
(4) the contact difference in potential. These four quantities may be determined
by measurements made at a minimum of three different temperatures.

The method to be described depends on measurements made in both the
retarding potential and the accelerating ranges. Some previous knowledge of
the general properties of the emitter is presupposed in order that the temper-
atures most suitable for study may be selected. The highest temperature used
can be that associated with the normal operation of the emitter. For oxide
cathodes this would be approximately 1160° K. Temperatures of approximately
660° and 580° K are generally suitable for the other two temperatures. The analysis
requires that these temperatures be known quite accurately and, therefore,
thermocouple measurements combined with electron energy distribution measure-
ments should be used in their determination.

The methods of cathode evaluation, described in Sects. 45 to 54, required
observations made at five or six different values of temperature and a
knowledge of the diode spacing, with considerable accuracy, in order to obtain
reliable results. The method to be presented is more practical, since it depends
on the accumulation of data, for subsequent analysis, by making a large number
of current measurements as a function of applied voltage while the temperature
is held constant. It is for this reason that importance is attached to this phase
of the theoretical analysis.

To obtain the most accurate results, it is necessary to measure the emission
as a function of the applied voltage from currents of approximately 10? amp/cm.?
to values of about 4 xX 1073 amp/cm.2 for a diode of approximately 1 mm. spacing.
The normal procedure is to cover the range in the accelerating field region to

1 Although the author read the article by W. R. FErris [RCA Review 10, 134 (1949)],
some years ago, the present analysis has been developed independently. Since the author’s
objective is cathode evaluation, it has been necessary to go into far more detail in the theory.
It will be shown that FERRIS’ concept of a “Universal diode characteristic’ is practically
the equivalent of the “Master Curve’ described here. The theory is extended to make it
applicable to the evaluation of emitters with any ratio of (I,/Iz) and a means of adapting
it to the cylindrical diode is provided.
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an applied voltage of approximately 6 volts. It is necessary for the cathodes
to be very stable and the measurements must be reproducible with high accuracy
to indicate such stability.

56. Methods of comparison between theory and experiment. A graphical
method of analysis is the most appropriate means of comparing the observations
with the theory. In this manner the current flow under the various critical
conditions may be determined by experiment. The first of these conditions to
be discussed will be that associated with zero gradient at the collector for each
of the temperatures. This condition may be defined as that for ¢,=0. Two
other critical conditions involve the determination of the collector potential at
which zero gradient exists at the emitter for two or more of the lower temper-
atures chosen for investigation.

The first step in the procedure is to prepare a plot of the logarithm of the
emission current as a function of the observed applied potential expressed in
the dimensionless unit of (v/V;). Let this ratio define the quantity, s, as follows:

 S$ —=
7

Va) (56.1)

Depending on the polarity of v, the quantity s may be positive or negative.
The emission current density characteristic of the emitter itself, which it is

the purpose of this analysis to determine, is given by the following equation:
D

I,=a e Vr, (56.2)
With the true retarding potential, defined as V,, the emission current density
which arrives at the collector may be expressed as follows:

V,
Inl=Inl,—=-. (56.3)

Since it is generally more convenient for the graphic analysis to use semilogarith-
mic paper, Eq. (56.3) may be written in terms of common logarithms as

logo I = log; oly — 0.4343 S. (56.4)

In this equation, the dimensionless form of the absolute value of the retarding
potential expressed as S is related to the observable quantity defined by Eq. (56.1)
by the following relation

Pr v Pr

Even though the current I, and the true contact difference in potential P;
at the temperature 7° are unknown, it is nevertheless possible to compare the
theory with experiment by noting that the observed currents plotted as a func-
tion of s on semi logarithmic paper yield a straight line of slope 0.4343. This
straight-line relation applies over the entire range for which there is no potential
minimum between the emitter and the collector. At a critical value of s, a depar-
ture from the straight line can be detected. This departure serves as an approx-
imate indication of the maximum current which can flow across the diode under
the condition of zero gradient at the collector. The use of a nonuniform collector
surface can cause some uncertainty in the correct identification of the applied
potential required to give zero gradient at the collector. The more serious diffi-
culty standing in the way of a simple interpretation of experimental results is
the reflection effect at the collector. This effect makes the recorded current
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at the critical condition of zero gradient less than the true emission current,
since additional space charge is created by the reflected electrons as they ap-
proach and leave the collector without being recorded. Evidence for this enhanced
space charge will be presented in Sect. 83.

To establish a more suitable identification of the applied voltage which would
have been correct for y,=0 in the absence of reflection, it is necessary to observe
the rise in current with applied voltage through a sufficient range of positive val-
ues of yp, so that the observed curve can be matched by the theoretical curve.
The matching of curves in this region by the technique described in the following
sections makes it possible to evaluate accurately the ideal critical current Ig

for the zero value of y,. The method
also permits an evaluation of I, over
the lower range in temperature. See
Sect. 67 for the detailed application
of this theory to experimental data.

57. The onset of space-charge
limitation and the universal limiting
curve. For any given temperature and
emission property of the emitter, let
the critical value of applied voltage
for which zero gradient occurs at an
ideal collector be identified as vy and
the corresponding value of s as sg.
These quantities are related as in
Eq. (56.1). In Sect. 56 the absolute
value of the surface potential of the
collector relative to the emitter was
defined as S and the true retarding
potential was equal to S as long as
no space-charge minimum existed
between the emitter and the collector.
At a certain critical valu of s zero field
develops at the collector hd this value
of S is identified in Fig. 14 as Sg.

As S becomes smaller than Sj the current increase no longer follows Eq. (56.4)
because of the limitation by space charge which then sets in. With this critical
condition as a reference potential, the quantity S'S0may be defined by the
following equation:

S'=85—sp= Re '

(FL)s

| Vi
 er

Although the actual value of sg will not be known until the analysis is carried
further, it is to be expected that a “universal” relationship may be found between
the current expressed as a ratio and the value of S” (Sect. 58). Thus the logarithm
of the current ratio as a function of S’ will create a curve which will serve as a

means of determining the location of the exact value of sz. The relation between
the observed current and s determined experimentally may be plotted on semi-
logarithmic paper and for comparison with theory may be superpositioned on
the plotted set of ‘“Master curves’ described in Sect. 58. It will be the purpose
of the next few paragraphs to derive this relation from space-charge theory.

The relation between S’ and other quantities of interest is best illustrated
by Fig. 14. Three curves are shown. The dashed line represents the distribution
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in potential for S’=0, that is, the whole difference in potential in the space is
exactly w.rp. The applied difference in potential expressed in dimensionless units
is sg. As the applied potential is changed to a more positive value by an amount S’
as expressed in Eq. (57.1), the potential at the surface of the collector changes
exactly the same amount and is related to the change in the emitter region
potential Ay, and to the change in the collector region potential y,, by the
relation given as follows: S' = Ay, +. | (57.2)

The intermediate potential distribution to which this equation applies is shown
by the dotted curve of Fig. 14. This change in the emitter region potential
results in an increase in current from the critical value I to the new value I
given as

(57.3)
Eq. (57.3) serves to define the quantity «2? which is (I/I).

A very important limiting condition of potential distribution is illustrated
by the solid line of Fig. 14. A cathode of finite emission capability I, has zero
‘ield at its surface when the current carried across the diode is exactly equal to
[,. This condition may be related to the previously defined critical situation
of zero gradient at the collector by the following equation:

(57.4)eVuz =‘o —

Ip

Since the current I, is directly related to the emission capability I, this property
of the emitter establishes the zero reference for the quantity S’ defined by Eq. (57.2)
and illustrated in Fig. 14. With space-charge theory dominating, the maximum
permissible value for S” occurs when the current flow across the diode is I, and
is associated with zero gradient at the emitter. Let this maximum value of S’
be represented by Sy. A very important universal curve relates uj to Sg, since
both of these quantities relate specifically to the emission capability I,. This
relation is to be derived.

From the basic considerations expressed as Eq. (38.9), the following three
zquations may be written directly:

2

I, =N Keb (Vo) &gt;

I= NEE (7)
R— w? IT)»

2

 Lh _ Keo 2,
Ip ASR (57.7)

[t is with the help of Eq. (57.7) that the relation may be written that ties together
“he two critical values of y as given in the following equation:

Xco = UgXsR = Asp SR (57.8)

This equation illustrates the plan of calculation by which the desired relation
can best be computed. The steps in the calculation and the results obtained
are given in Table 7. Note that y, and y, combined as in Eq. (57.8) yield a table
of values for y,,. From accurately made plots of the LANGMUIR data of Table 3C
or from Eq. (37.7) rewritten below as Eq. (57.9) the corresponding values of
Wo may be obtained: 4

Xo ,

eo — 1172 —= =~
1 + 70681

37.9)
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With the knowledge of the appropriate values of vw, and y,,, the correct value
of Si may be written as follows:

So = sr + Yeo- (57.10)
The desired universal curve is obtained as a plot of the quantity #2 of Eq. (57.7)
on semi-logarithmic paper as a function of S; of Eq. (57.10). This curve has been
plotted on Figs. 16 and 17 and is designated the “Universal Limiting Curve”.

The basic purpose for this universal curve is to serve as the means by which
the correct value of I, may be assigned as it applies to an experimentally measured
current-voltage characteristic. It is therefore equally important that a set of
master curves he developed to be used in association with this Universal Limit-
ing Curve so that the best value for the current I can be established for a par-
ticular case. At the same time a most appropriate value of I, will be obtained at
the intersection of the observed current-voltage characteristic with the Universal
Limiting Curve. The next section shows the means for deriving the required
master curves.

58. Equations and tables for the master curves. The first step in the deriva-
con leading to the desired set of master curves is to obtain the limiting curve
applicable to cathodes so copious in their emission that they become the “ideal
emitters” of essentially unlimited emission capability. This master curve will
form an upper boundary, illustrated in Figs. 16 and 17, to the set of master
curves applicable to emitters of limited emission capability. The first part of
this section will develop the theory by which the current voltage characteristic
applicable to the “ideal emitter” may be computed.

Even though the emitter has practically unlimited electron emission available
in the presence of a retarding field, it was shown in Sect. 43 that there is a max-
imum current J, that can flow across a diode of spacing w with an emitter at
a temperature }. and have a zero gradient at the collector. The value of this
current is given by the following equation which is essentially the same as
Eq. (43.3):

3

Vy
I, = Am N — (58.1)

For any positive value of yp, there is also a maximum current that can flow
across a diode from an ideal emitter. This current may be computed directly
from the following equation which is derived from the combination of Eqs. (46.10)
and (46.11):

2V. 2— 2 N_L Ke

These two equations may be combined to define the quantity U? as in the follow-
ing equation:

Ip _ Xe \2
 U (14 py |

The present objective is to express the relationship between U? and a variation
in the applied voltage with reference to the zero value established when zero
gradient occurs at the collector. When w, is zero, U2? is unity. Voltages expressed
in dimensionless units are best illustrated by Fig. 15 which, it will be noted, is
very similar in its construction to Fig. 14 except that, in this case, the condition
of zero gradient at the emitter is never reached. This figure will also define
symbols used in the following equations.
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The increase in current expressed in terms of the current ratio U? is related
to the change in the potential across the emitter region by the following equation:

[72 — 4%: (58.4)

With the change in applied potential represented by the symbol X, the follow-
ing equations may be written:

X=y,+Ay,=vy,+InU2,
— Xe \2

Z=y, +1 + 2) .

The “master curve’ that forms the limiting set is obtained from a plot of
the corresponding values of U? and 2X’; its value is computed by Eq. (58.6).
These corresponding values are given in
Table 8.

All real emitters have finite emission
capability and yet practical emitters,
such as oxide cathodes operated at their
normal temperature, can be expected to
have such high emission capability that
‘heir operation is characterized by a z%
value close to 0.998, as defined in the
following equation:

I
= w= 22,= (58.7)

FE.

Eq. (44.2) and an estimated value for the
emission capability of an oxide cathode
operating at 1160° K of 10 amp/cm.2 was
used to determine this value of 2% that
approaches so near unity. The value of z%
for a good cathode operated at one-half
its normal operating temperature will be
close to 0.66. These figures are quoted to show that over a considerable range
in temperature, practical oxide cathodes of good quality can be expected to
approach in their performance very close to that of the ideal emitter of unlimited
capability.

For every value of I; expressed in terms of #2, as in Eq. (57.4), there is a
corresponding value of 2% and a characteristic current-voltage relation that
covers the range of current from I, to I,. The parameter u? expressed as follows
serves as a measure of the current 7.

f
fo ,2=

Ip (58.8)

Just as it was the purpose of the previous paragraphs to find the relation between
U? and 2, the following analysis is designed to show the method of calculating
the relation between u? and S’. The steps for obtaining this relation are rather
involved and yet, because the result is so important, the details are given.

Again Fig. 14 serves as the reference by which the variation of the potentials
and the current may be linked in a simple and yet completely correct manner.

From Eq. (57.4) the following relation may be written:
— 2Yr=Inu2. 5 2 oO



54 WAYNE B. NOTTINGHAM: Thermionic Emission. Sect. 58

When the potential difference between the emitter and the collector is exactly
Yr, the value of S’ is zero and the value of y, is also zero. As the potential of
the collector is made more positive with respect to this limiting value, a differ-
ence in potential of an amount which is symbolized by w,, develops between the
potential minimum and the collector. Under the same conditions of current flow,
identified by a particular value of u, there is also a difference in potential of y,,
between the emitter and the potential minimum. The relation between the
measured current I and the emission capability I, is given by the following
equation:

I 2
In" —=In% —

7 2 Ysu- (58.10

Egs. (38.9) and (57.6) may be combined and solved to form the following
basic relation:

Yew Xsu= (+) tex (58.11)
With a substitution from Eq. (58.8) in Eq. (58.11), it is possible to express the
direct correspondence between u, y,, and y,,. In principle this relation serves
to locate the potential minimum between the two electrodes when the particular
current ratio #2 obeys the equation

UXsR— Xsu= Xcu- (58.12)
The corresponding value for ¢,, can be obtained either from Table 3C or from
Eq. (57.9).

Since Eq. (57.3) relates #? to the change in the emitter space potential as S’
increases from zero, Eq. (57.2) may be rewritten as follows:

These equations, from Eq. (58.8) through Eq. (58.13) form the basis for the
procedure by which one is able to calculate characteristic curves of current as
a function of applied collector potential for emitters of all capabilitv, as measure
by the parameter «{ expressed by Eq. (57.4).

The method of calculation involves nine steps and these are outlined very
briefly as follows:

1. An arbitrary choice is made of the u for which the calculation is to be
made. Calculations have been made for a set of selected values of u? between
2 and 200 as shown in Table 9.

2. Each selection of #§ gives by Eq. (58.9) a specific value of 9,5 and also a
corresponding value of y, ».

3. Corresponding values of y,, and y,, may be copied from Table 3E for
the range 0 &lt;9, 2 1.0 to make a good working table for the best choice of
values.

4. It follows from Eq. (58.10) that a suitable set of #2 values may be obtained
from the following relation

u? = ule Vsu, (58.14)

5. A reference work, such as BARLOW’S Tables, serves as an excellent aid in
converting these u? values to u. ;

6. The operation described by Eq. (58.12) is performed to obtain the cor-
responding set of y,, values.

1 Barrow’sT ables, Edited by L. J. CoMRrIE, 4th ed. New York: Chemical Publishing Co..
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7. The y., values mayjbe converted by means of Table 3C or by Eq. (57.9)
to obtain the corresponding w,,,.

8. Logarithm tables may be used to determine In #2 values corresponding
to those recorded as step 4.

9. Since In #2 is related
to Av, by Eq. (57.3), all of
the data are at hand to per-
form the addition indicated
in Eq. (58.13) and thus to
obtain the correct value of S,,.

The desired curve that

relates #2? to S, for a parti-
cular value of #2 is thus
available. The manner in
which the master curves

are used as they apply to
experiment will be described
in the next sections. Typical
master curves are plotted in
Figs. 16 and 17.

59. General discussion of

the application of theory
to experiment. It has been
the plan of this treatise to
begin at Sect. 14 and to
present as much as possible
of the theoretical structure
of the science of thermionic
emission with a minimum of

references to specific experi- u
mental results. The theories 5,
have been developed with
the ultimate objective of ! st
applying them directly to / d
the experiments to be de- %
scribed in later sections. It
now becomes necessary to
discuss, in a general way
certain specific features of
experimental research to
justify the development of
more specialized features of
the. theory in advance of
the application of the entire
theory to the interpretation
of experimental research.

Basically, nearly all researches on oxide cathodes are performed with diode
tube structures. There are only two practical forms of the diode structure that
lend themselves to a complete theoretical analysis: (1) a diode formed between
parallel planes and (2) a diode formed by concentric cylinders. The fundamental
reason for this limitation in structure is that only these tube structures can

Handbuch der Physik, Bd. XXI
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yield a uniform field at the emitting surface and at the collecting surface for a
fixed applied difference in potential between them. Although the plane parallel
electrode system is easier to deal with theoretically, it is not as easy to construct
as the concentric cylinder diode. Although both structures are of practical
importance, the cylindrical emitter is used more widely and techniques for its
construction are more highly developed. It is therefore considered significant to
discuss the application of theories already developed to the cylindrical structure.

It is not only important to have the electric fields within the test diode uni-
form but also to have the temperature of the emitter uniform and known. With
the oxide cathode the best way to determine the temperature of the emitter over
he wide range for which it is desirable to have its value determined accurately
is by means of a thermocouple. A fine tungsten wire may be welded to the
interior surface of a cylindrical emitter sleeve and the thermal electromotive
force developed relative to a cold junction can be calibrated with satisfactory
accuracy. Since the entire length of such a sleeve cannot be maintained at the
desired temperature, some means must be chosen to assure that the measured
electron emission originates over the uniform section of the emitter. The two
methods most commonly used are the ‘““guard-ring’”’ method and the method
of limiting the activated area of the emitter. The guard-ring method involves
structural requirements far more difficult to satisfy than the other and yet, as
a research instrument, diodes created in this manner yield reliable results over
a wider range of research conditions than apply if the observer depends on the
imiting of the emission area by the application of the oxide coating to just the
central portion. The objection to the latter method becomes evident especially
in the retarding potential range. At a sufficiently high retarding potential the
nighly activated and the unactivated regions of the cathode contribute to the
observed current in direct proportion to their areas. In the intermediate retard-
ng potential range saturation currents will be drawn from the unactivated area
and under many circumstances of test such currents are small enough to be
aeglected. This lack of certainty about the origin of the observed current must
not be overlooked in the interpretation of experimental observations.

In order to carry a research investigation over the widest range in temper-
ature and to the greatest retarding potential one must design the test structure
50 that leakage currents are reduced to far smaller values than would normally
se acceptable in practical tubes.

In the immediate neighborhood of a cylindrical emitting surface, the electron
motion and the properties of electron gas are not appreciably different from
those at the surface of a plane emitter. At distances away from the emitter com-
parable with its radius, the fact that a cylinder is used becomes more and more
important in the interpretation of experimental data. Therefore, for practical
cylindrical structures in which the radius of the collector is greater than that of
the emitter by a factor of 1.5 or more, it is desirable to work out the theory by
which the observed electron emission collected can be interpreted with respect
to the influence of the radial and tangential momenta of the electrons as they
leave the emitter. Sect. 60 will present an outline of the theory and indicate
some of the methods by which tabulated functions presented there may be used.

Even though a given cylindrical diode structure is created with a well-defined
collector to emitter ratio of radii, in the application of space-charge theory to
the electron flow, the potential minimum crosses the diode as the collector space
potential expressed as yp, increases from zero to very moderate values of ap-
proximately 10 units of V;.. In order to understand the increase in current ex-
oected at the collector region as the potential is made positive, it is necessary
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to combine the theory for the electron flow in a cylindrical structure with an
evaluation of the location of the potential minimum between the emitter and
‘he collector. These relations will be presented in Sect. 61.

It was appropriate to develop the basic theories in the previous sections as
they would apply to emitters and collectors which exhibited no reflection effects.
The application of these theories to experimental data always seems to lead to
unexpected disagreement between theory and experiment if reflection effects
are neglected. At this time a theoretical basis for the existence of the reflection
effect has not been developed and most of the arguments that one may apply
in a classical manner to the transmission of electrons across the boundary between
a solid and a vacuum lead one to conclude that reflection cannot be of much

importance. Since all of the experimental data known to this writer, including
those of Fan! and HuNnG?2, are completely consistent with the reflection-effect
hypothesis—even though in some cases the writers do not interpret their own
results in that manner—the theory of the influence of reflection needs to be
presented. In the examples for which quantitative data are available, Eq. (26.4)
offers the most satisfactory form of expression for the transmission of electrons
out of an emitter or into a collector. This form may be assumed and equations
may be derived to interpret reflection effects either at the collector or the emitter
or at both. These equations will be presented in Sects. 62 and 63 along with a
discussion of the influence that a deficiency of slow electrons in the energy distri-
bution will have on the application of space-charge theory. This theory, developed
on the basis of LANGMUIR’S equations, depended on the electron energy distribu-
‘ion being MAXWELLian.

Sect. 64 will be devoted to. the evaluation of the temperature variation of
the FERMI level as it applies to the “N” type semiconductor. This theory is
essential to the interpretation of the temperature coefficient of both the work-
function and the contact difference in potential.

Sect. 65 will relate to the conductivity properties of the solid structure of
the semiconductor typical of oxide-coated cathodes and also to the conductivity
through the occluded pores in the coating. After the theoretical background
has been developed in Sects. 60 through 66, it will be possible to return to the
discussion of the theory of cathode evaluation in cylindrical structures. Sect. 67
will complete the theory of thermionic emission requisite of the explanation and
discussion of the experimental results presented in the last division of this treatise.

VI. General theory.
60. Electron flow between concentric cylinders. The principles of conservation

of energy and of momentum serve to establish the basic equation for the flow of
emission current from an internal electron emitter to a concentric cylindrical
collector. To establish this limiting condition the potential difference between
a point just outside the surface of the emitter and the potential minimum which
occurs at the surface of the collector in the absence of space-charge or at the space-
charge minimum, when one exists between the electrodes, is expressed as V,
see Figs. 8, 10, and 14). The surface of the emitter is thus V positive with re-
spect to the cylindrical surface at which the limiting condition for electron
arrival is being expressed. This surface either coincides with the collector or lies
between the emitter and the collector. The tangential (p,) and the radial (p,)

lL H.Y. Fan: J. Appl. Phys. 14, 552 (1943).
2 C. S. Hung: J. Appl. Phys. 21, 37 (1950)
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momenta are related to the potential difference and to the initial values of these
momenta at the emitter by the following equation:

2 2 2 2

aa + Ze + eV, = Pos TPs = const. (60.1)
This equation expresses the conservation of energy and the following expresses
the conservation of momentum: bo="1,Pps (60.2)

Since the limiting condition is that associated with p, being zero, the following
relation gives the limiting values of the momenta p,; and p;, at the emitter

for electrons to arrive at the potential point X; negative
with respect to the emitter at a radius of R:

2

2meV, = p2 + (1— 5) Bhs (60.3)
The basic equation for the calculation of current is

Eq. (26.7) and for the present purpose it will be best to
compute the integral on the basis that the transmission
coefficient expressed by Eq. (26.4) is one, or that w of
that equation is zero. The method of integration which
must be employed can be illustrated best by the momen-
tum space diagram of Fig. 18.

At the surface of the emitter the radial component of
the momentum is interchangeable with the x component
used in Eq. (26.7) and the tangential component is the
equivalent of the y component of that equation. The
exclusion area in the momentum space of Fig.18 is bound-
ed by an ellipse the equation of which is Eq. (60.3).
The integration method found most convenient involved

first, the evaluation of the integral in the entire area of positive p, values outside
of the circle drawn with a radius of (2m e¢V;)}; then, to this value is added the
contribution represented by the cross-hatched area of Fig. 18 which lies between
the exclusion boundary and the circle. The results of this integration are expressed

as follows: r ——
S 2 Ve

— 2 —S/(1—a? a

I= [143 [re ot / ed
Vita ou2x2(1 —

— _wo
VS

The two parameters of this equation, S and a, are defined by the following:

[-&amp; 1"

C Vs (60.5)

a (60.6)

It is to be noted that when 42 is small compared with unity, Eq. (60.4) reduces
to the essential part of Eq. (26.11) which was derived by ScHOTTKY for the limit-
ing case of a small filament coaxial with respect to a collector of large radius. As
a approaches one, Eq. (60.4) becomes identical with the simple BOLTZMANN
relation expressed as follows: I=1,¢eS. (60.7;
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For arbitrary choices of the ratio of radii, represented by the parameter a, the
function shown as Eq. (60.4) has been evaluated by numerical integration for the
entire useful range of S from zero to 20. These results are summarized in Table 10.

Smooth curves drawn through plotted points that represent the data given
in Table 10 are shown in Fig. 19 for selected values of (1/a) of 1, 1.5, 2.5 and
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Fig. 19. Plots from Table 10 and illustration of displacement method of conversion to equivalent of parallel planes.

mfinity. An inspection of these curves leads to the following conclusions: (1) for
small values of (1/a) the lines rapidly become parallel to the BOLTZMANN line,
and (2) the larger the values of (1/a) the greater is the displacement of the curve
from the BOLTZMANN line.

Mention has been made of the fact that the temperature of the emitter can
be determined by an analysis of the electron energy distribution at high retarding
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Fig. 20. Slope correction factor from Table 10

fields applied to a plane parallel structure. These results show that the electron
temperature may also be determined in a similar manner for a cylindrical structure
if the observed average slope is corrected by the slope factor characteristic of
the radius ratio (1/a) of the tube in which the observations were made. In Table 10
the slopes are given for the various values of (1/a) as a function of the quantity
In (I/Iy,). Smooth curves drawn through the computed points for the two cases
of (1/a) of 2.5 and infinity are shown in Fig. 20. These curves are offered by way
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of illustration of the usefulness of the data in Table 10. For very large values
of (1/a) they show graphically that the apparent electron temperature will be
7% higher than the true temperature if the average slope of experimental data

is determined for the range of
current ratio (1/14) 0f 1072101074.
With a ratio of 2.5 the correction
will be only 2% for the same
observational current range. Since
the evaluation of thermionic con-
stants is very sensitive to the
correctness of the temperature
scale, it is very important that
use be made of this tabular in-
formation in order to arrive at
a correct determination of the

temperature from the electron
energy distribution observed in
a particular structure. In the
application of these results gross
inhomogeneity of the emitter
must be guarded against to avoid
misinterpretation of the data.
See Sect. 83 for an example.

For all values of the radii
ratio (1/a), the lines illustrated

in Fig. 19 are displaced to the left relative to the BoLTzMANN line. Note that at
any particular value of S the excess of the current over the corresponding value
on the BoLTzMANN line is a direct measure of the contribution to the current

that arrived at the collector or at

the space-charge minimum be-
cause tangential initial momen-
tum contributed to the total
energy of the electron. The
symmetry of the function re-
presented by Eq. (60.4) shows
that an equally valid method
for converting observational data
taken with a concentric cylindri-
cal structure to its equivalent for
a plane parallel structure involves
the identification of the S-value
at which a particular current is
observed as illustrated at point
Si in Fig. 19. Note that the
horizontal displacement shown
there as AS permits the deter-
mination of the applied potential

, which would yield the same emis-
sion current (I;) from an emitter which had identical properties to that used
in the observation but was an equivalent parallel plane diode structure.

For a particular ratio of radii such as 2.5 for example, the displacement AS
is a function of the ratio (I/I,,) given by the separation between the “2.5” line

"08

06
;

04
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and the BOLTZMANN line. In general, there will be a value of I at which space
charge will set in and following that the effective radii ratio will decrease rapidly
from 2.5 to a value near to unity. As (1/a) approaches unity, tangential compo-
nents of momentum will no longer contribute to the initial kinetic energy needed
to pass the space-charge minimum. The data derivable from Table 10 for the
displacement term can be combined with the knowledge of the location of the
space-charge minimum and its movement across the space between the collector
and the emitter to correct, with fair accuracy, currents observed in a cylindrical
structure to the equivalent plane parallel structure (see Sect.61). These methods
make the space-charge theories developed in the previous sections directly
applicable to the cylindrical diode. Fig. 21 has been prepared to illustrate the
usefulness of these data recorded in Table 10.

in Fig. 21 the parameter used is the radii ratio (1/4). A second very useful
graphical presentation of the data is shown in Fig. 22. For this figure the para-
meter used is the S of Eq. (60.7) which is the equivalent of In (I/1,,).

61. Space location of space-charge minimum. The need for a simple method
of calculating the location of the space-charge minimum as it moves away from
the collector surface was demonstrated in the previous section. The distance
from the emitter to the space-charge minimum has been defined as x,,. With
a diode spacing w, the following equation expresses the fractional distance from
the emitting surface to the space-charge minimum.

foe Psu __ Xsu .

w Xcu Xsu

[his equation may be combined with Eq. (58.11) to give the following results:

— Xsu_7 ÜNXSR (61.2)

The details of the method by which this equation is used will be outlined below.
[t is of interest to note that for emitters of very high emission capability which
have ug = (Io/I5) &gt; 10%, the values of x, and y, x are so close to y,, that Eq. (61.2)
is well approximated by the following:

far —-
1

u (61.3)

When the value of #3 is much less than 103 the fractional distance from the emitter
to the space-charge minimum will always be less than (1/u), and it may be com-
puted with accuracy at any particular value of » by the method to be outlined.

For the lower values of I, a satisfactory approximation for #2 may be ob-
tained without the complete analysis necessary to determine this quantity
accurately by the measurement of the “saturation current”. In most practical
diode structures used for the evaluation of oxide cathodes such saturation currents
will be observed at less than 6 volts applied potential at the collector relative
to the emitter. With y, given by Eq. (58.9) the corresponding value of y,
is obtained from Table 3E. At intermediate values of # between unity and u,
the appropriate value of ,, is given by Eq. (58.10) and the corresponding value
of y,, may be obtained from Table 3 E. With these quantities determined, the
fractional distance from the emitter to the space-charge minimum in a plane
parallel diode structure is given accurately by Eq. (61.2). Experiments with
cylindrical structures indicate that the same formula gives an excellent approxi-
mation for the location of the space-charge minimum as it progresses from the
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collector surface toward the emitter surface as the collector is made more and
more positive with respect to the critical potential at which zero gradient is estab-
lished at the collector. This analysis, combined with the tabular information
developed in the previous section goes far to bridge the gab between the exact
theories applicable to the plane parallel structure and their use in association
with cvlindrical diodes.

62. Influence of multiple electron reflection on diode currents. In spite of the
fact that electron reflection effects at the boundary between solids and vacuum
are not generally accepted as fact, there are no published experimental data
that demonstrate conclusively the absence of reflection effects. GERMER! inter-
preted his experiment to indicate that reflection effects are absent, but NOTTING-
gAM’s studies? show that GERMER’s experimental data are in excellent agreement
with the reflection hypothesis. HuTsoN’s experiments® to be described in more
detail in Sect. 72 are most easily explained by the reflection hypothesis and
in fact yield a transmission coefficient in excellent agreement with NOTTINGHAM'S.
HunG* made a careful study of the electron energy distribution from an oxide
cathode source and interpreted the deviation between his observations and those
to be expected in the absence of reflection as the result of patchiness of the emitter
surface. It is true that patchiness can cause similar discrepancy.

It is the purpose of this section to make available the theoretical background
by which reflection can be included in the analysis of experimental data if the
observer finds it necessary. Sect. 81 will show that electron emission properties
of oxide cathodes, both in the presence and absence of space charge, can best
be understood if the reflection hypothesis is integrated with the theoretical
interpretation of the experimental data.

The most convenient expressions that best fit the quantitative data available
for the transmission and reflection of electrons at a solid surface are repeated
from Sect. 26 as follows:

For transmission:
_ (012m)

Dpy=l1 —e (62.1)
For reflection:

(62.2)
In these expressions for transmission and reflection, the quantity (p;*/2m) is
the kinetic energy associated with an electron which has a component of mo-
mentum #7 perpendicular to the barrier at the surface of the solid as the electron
passes so close to the barrier that the principal forces acting are the mirror-image
forces. Although it might be anticipated that the empirical constant entering
into these equations might very well be expected to be dependent on the externally
applied surface field, the researches of HuTsoN show that the constant does
not change appreciably for moderate field strength.

An emitter in the presence of a strong retarding potential can be expected
to deliver across its barrier all of the electrons that would be predicted in the
absence of any reflection effect. Over the energy range of 0.2 electron volts and
less, strong reflection effects would normally be expected. In the presence of a
retarding field. an electron atmosphere is built up outside the emitter with

_ zim

R(p)) —e m

1 1. H. GErRMER: Phys. Rev. 25, 795 (1925).
2 W. B. NortingHAM: Phys. Rev. 49, 78 (1936).
3 A. R. Hutson: Phys. Rev. 98, 889 (1955).
t C.S. Hung: J. Appl. Phys. 21, 37 (1950).
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exactly that concentration that would be found without reflection effects, because
in a region of this kind transmission and reflection exactly compensate so that
the normal density is maintained. The situation is different at the collector,
since electrons arrive there with a distribution of energy such that many of
them. cross the collector barrier with a very small energy. These electrons, if
reflected, return to the emitter with such high energy that they should be expected
to be completely reabsorbed by the emitter surface without multiple reflection.
Unless there are unexpected localized energy regions characteristic of the crystal
structure of the emitter which would result in a transmission characteristic far
more complex than that described by Eq. (62.1), an observer must expect to
find a variation in current received with retarding potential changes that will
follow the BOLTZMANN relation and therefore seem to indicate an absence of
reflection at the collector. This failure to show reflection even though it may
exist results from the fact that the energy distribution of the electrons arriv-
ing at the collector is independent of the retarding potential. The number of
electrons arriving depends on the retarding potential. The fraction reflected
will be independent of the retarding potential.

The situation reverses when observations are made in the presence of a small
accelerating field. If the minimum energy of the electrons arriving at the col-
lector is in excess of one electron volt and if there are no reflection maxima not
described by Eq. (62.1), then practically all of the electron current that arrives
at the collector will be absorbed by it. This statement holds true for that range
in applied potential for which secondary electron emission effects are negligible.

Even in the absence of space-charge, multiple reflections can occur when
the retarding or accelerating fields are very weak. The equations which are to
be developed in this section are capable of providing a description of the current-
voltage relation to be anticipated under geometrical conditions that involve an
equality of transmission and reflection effects at the emitter and the collector
boundaries. In the presence of space charge, the problem becomes somewhat
more involved, but the same principle is used. Over the retarding potential
range and before a space-charge minimum develops, a constant fraction of the
electrons that arrive at the collector will be reflected back and reabsorbed by
the emitter. As the space-charge minimum develops, the electrons which pass
over this minimum will have a higher transmission probability of entering the
collector, since the very slowest eléctrons will be received at the collector with
and energy of V, at the surface. Again, the space-charge which develops in the
immediate neighborhood of the emitter will be fully equal to that which would
be expected in the absence of a reflection effect, because of the self-compensating
action that takes place at the emitter barrier for the electrons passing into space
with insufficient energy to go over the space-charge potential minimum. As the
value of this potential between the surface of the emitter and the potential
minimum as expressed by V, decreases, the space-charge density will decrease
and finally become characteristic of the electron energy distribution which actually
comes from the emitter. This distribution will contain an abnormally high pro-
portion of high-energy electrons in comparison with the distribution that would
exist in the absence of a reflection effect.

[t should be evident from this preliminary discussion of the problem that,
if reflection effects are present, they would show in diode studies first because
a deviation from the BorTzmMANN distribution should be observed at a smaller

current that would be predicted by the computation called for in Sect. 43. Ex-
periments to be described in Sect. 83 will show that such a deviation is found.
Many other evidences in these studies of space-charge in diodes are entirely
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consistent with the reflection hypothesis and the features made available by
this hypothesis are needed to explain the observations. The computation which
follows applies directly to the circumstance and temperature range for which
space-charge effects are negligible.

In the formulation of this problem, there are two ranges of interest, designated
as the “‘retarding range’ and the “accelerating range”. It is to be anticipated
that the equations which are derived and are applicable to each of these
ranges individually will yield exactly the same answer at zero field. The vol-

RTT tages that enter into the equation
7 will be designated V, or V,. The first

) f will give the potential difference of
 the emitter surface relative to the

collector surface and will therefore
represent the actual magnitude of
the retarding potential (see Fig. 23).
Over the accelerating potential range
the symbol will be V, for the voltage
difference between the collector surface

and the emitting surface (see Fig. 24). Under this circumstance, the potential
will be an accelerating potential for the electrons emitted at the surface. The
aquation for the retarding range will be developed first.

Electrons which are emitted from the surface with sufficient energy to pass
across the diode and approach the collector will have a certain probability of
acceptance by the collector which is expressed by Eq. (62.1). Those reflected, with

a probability expressed by Eq. (62.2),
will return to the emitter where, again,
there will be a certain probability
of acceptance by the emitter given
oy Eq. (62.1) and a certain probability
of reflection to the collector. The
final equation for the current delivered
from the emitter to the collector must
represent the sum of an infinite series
which, under most circumstances,

converges so rapidly that three or four terms in the series are sufficient
to give high accuracy. This series is expressed as follows:

2

oo co V, AR „+ 6 A 5

[ = Ion 2, J tl (1 oe =); — eo) gg (62.3)

In this equation the quantity o is best defined by Fig. 23 in which it is shown
to be the energy of an electron in excess of that needed for entrance across the
motive maximum V, and is expressed in dimensionless units. The quantity I,
is defined by the following relation:

2 2 i...

I90 = ARMETaoVar—gT27 V2, (62.4)

In this equation ¢ is the frue work-function (not the RicHARDSON work-function)
and the current density expressed is that which impinges on the interior surface
for the group of electrons energetic enough to escape. The constant A of this
equation is the universal constant from the theory and it should apply to emission
from all substances.
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Inspection of Eq. (62.3) shows that, for each value of the parameter #, there
will be four terms in the final equation. These may be combined algebraically
to give the following results:

Ve, &amp;

I=TIye V2) FV, Vpn)
n=0

(62.5)
with

nl”

FV, Vp, mn) = © [7 Tw - 7. »
-tanttt2n@nt+)-L Z- +4 +3+ (2m +1) (20 +2) —-T ® Vr wm

— Vs

STE
(62.6)

The diagram which shows the symbols appropriate to the analysis of the
multiple reflection problem with accelerating fields is shown as Fig. 24. The
formulation of the problem is exactly analogous to that required for Eq. (62.3)
except for the definition of (oV;) which for the application of an accelerating
field measures the kinetic energy associated with the electron motion as it passes
over the emission barrier instead of the collection barrier as was illustrated in

Fig. 23. With this change of symbolization the new equation is of exactly the
same general form and is given as follows:

x oo oVrT Ve+0V
rs - 7 I Lm GC “) — 2 @eVr+Ve00 2, JS 1—e @ e © do. (62.7)

After integration, the solution is very similar to that given as Eq. (62.5) and
is the following: poo

I=142FV,V7, nm).
n—0

Since the function F (V,, V7, n) is exactly the same as that given above as Eq. (62.6)
except for the substitution of V, for V; this function will not be written out in
detail. Although in Egs. (62.1) and (62.2) w is expressed in energy units of joules,
it is far more convenient for computational purposes to express w in electron
volts. The value of this constant which seems to fit the experiments best is
0.191 electron volts or its equivalent 3.06Xx10718joules.

Although these relations have been worked out specifically for the plane
parallel electrode structure, they are applicable to the cylindrical structure if
the radii ratio is close enough to unity so that a large fraction of the electrons
reflected from the collector return to the emitter. If the emitter is of very small
radius compared with the collector then multiple reflection effects are unimportant
even though consideration must be given to the reflection effect at the emission
surface. The reason multiple effects are negligible for this geometry is that,
after an electron leaves the emitter, there is very small probability that it will
return to the emitter without having made many excursions to the collector
with a finite probability that it will be accepted there and record as observed
current each time it returns. The usual structures for emitter testing with oxide
cathodes make it necessary to include in the analysis the concept of multiple
reflection. The application of these theories to the analysis of electron flow in
the presence of space charge introduces still more complications.

For high values of V, or V,, Eq. (62.6) has a value only for the »=0 term.
The value of the function is given as follows:

1

f(V., Vr,0) To
+ 1

62.9)
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It follows that, for high retarding potentials, the current is given by Eq. (62.10)
and for high accelerating potentials it is given by Eq. (62.11) if one neglects
the reduction in work-function that results from the ScHOTTKY effect discussed
in detail in Sect. 27:

re
— V

I=1UI,,e r wo

= +

Range of retarding potentials V, &gt; 3w).

I= Too=g

(62.10)

'62.11)

‘Range of accelerating potentials V, &gt; Sw).
Since the observed currents in both the retarding-potential range and the

accelerating-potential range are lowered by the same factor which is given by
Eq. (62.9), the intersection of the extrapolated retarding-potential line and the
saturation-current line in the absence of space-charge will nevertheless give a
rather accurate determination of the “zero-field” condition. HuNG! observed
this intersection point as a function of the temperature. Although he did not
soint out that he had measured the temperature coefficient of the work-function
in this manner, the discussion of this problem in Sect. 81 will indicate that his
value of the temperature coefficient of the work-function for oxide cathodes
is typical of that expected for a well-activated cathode over the temperature
range of his observations.

63. Average energy of electrons transmitted across the mirror-image field
reflection barrier. For high retarding potentials, it has already been pointed
out that the reflection effect leaves the distribution in electron energy unaltered.
However, an analysis of the statistics shows that the average energy associated
with the component of momentum perpendicular to a surface across which
slectrons travel with a MAxweLLian distribution of velocity will be given in
the following equation:

aEy = om ShT=eVr. (63.1)

To calculate the average energy associated with the component of momentum
p. in the presence of a reflection effect boundarv one may write the following
basic equation:

co yo Ex Ex

[* px we =) ay,2m m

a

aA Tr | 7) ’‘Ze 1—e dPx

(63.2)

This equation, evaluated, gives the following result

14 2-2
_ AT

= kT ——
1+ RT

63.3)

- C. S. Hung: J. Appl. Phys. 21, 143 (1950).
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[f the average energy is expressed in electron volts, the equation takes on the
following form:

w

1+2— Fg =V.— IL.
‘x T ®

14+ —

Vr

(63.4)

This equation shows that there is a significant change in the average energy
of electrons emitted through a reflection barrier compared with the nonreflec-
tion barrier. With the expected value of w taken as 0.191 electron volts combined
with the normal value of 1; of 0.1 electron volts it shows that the average
energy under these circumstances is 66% higher than the usual 2T value. The
difference is still greater if one applies this equation to a lower value of V}. such
as 0.05. Under this circumstance the average energy is 80% above the usually
accepted value.

The indications are that over the average temperature range important
for oxide cathodes, it is to be expected that space-charge effects and other phe-
nomena that depend on the energy distribution of the electrons should be ex-
amined in the light of the fact that the average energy of escaping electrons will
be significantly higher than the value usually assigned of AT or, in electron
anits, V.. As space charge develops with an increase in temperature for a given
emitter, the reflection effect alteration of the average energy of the electrons
diminishes gradually and finally becomes small enough to be negligible for most
practical purposes.

64. Temperature coefficient of the FERMI level in N type semiconductors and
the FOWLER thermionic equation. As a starting point for this discussion, Sects. 14,
15 and 16 should be reviewed, since the derivation of the basic equation, Eq. (16.1).
depended on that material. This equation is repeated as the following:

Ex—HU

Ne) de, — 22740) 1 4 te 7 Jde. (64.1)
In this equation, the variable ¢, is the kinetic energy? associated with an electron
whose x component of momentum is perpendicular to the surface across which
N (e,) electrons cross in the positive direction per unit area per unit time per unit
energy range in ¢,. This equation gives the random current which crosses the boun-
dary at the stated energy value with respect to the zero of kinetic energy in the
conduction band. If the conductor is reduced to absoiute zero, then the highest
occupied electronic state in the conductor is a direct measure of the FERMI
level at absolute zero of temperature. It is most convenient to assign the energy
at this level its value with respect to the zero of kinetic energy in the conduction
band. For all of the common metallic conductors, the FErMI level designated
in this equation by u is positive and decreases in absolute value as the tempera-
ture increases. The rate of decrease is dependent on both the electron concen-
tration and the expansion properties of the crystal.

In all of the semiconductors of particular interest as they relate directly to
thermionic emission, the concentration of electrons in the conduction band at
absolute zero is generally zero and the FERMI level is negative. Although one
might consider the approach to absolute zero in the semiconductor problem to
yield an indeterminante value for the FErwmI level. it is possible to show that

+ If the temperature-energy AT is expressed in joules as in Eq. (64.1) then e, and pu,
and later pu’ and E, are expressed in joules but if the temperature-energy is expressed in its
electron volt equivalent then &amp;,, u, u’ and E are expressed in electron volts.
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at the zero of temperature, the FERMI level is exactly halfway between the zero
state in the conduction band and the highest occupied impurity level. The
energy level diagram of Fig. 25 will serve to relate the quantities mentioned here.

As the temperature increases from absolute zero, the position of the FERMI
level changes in a manner that depends on the donor concentration #, and on
the energy level or levels of these donors expressed in the diagram as Ep. Al
though equations! may be worked out by which the temperature variation of the
FERMI level can be computed for a multiplicity of donor levels (two such levels
are shown in Fig. 25), it will simplify the calculations to treat first the problem
for a single, well-defined set of donors. Fig. 26 may be used to describe the
situation at an intermediate temperature between absolute zero and the maxi-
mum at which structural changes can occur in the semiconductor. This range

Fermi level oo
at T=0°K

———llli—

: dan ETx=0

£0
n- Type impurify
levels all occupied
at T=0°K

n=Concentration of
elecfrons in ©
conduction band

Ex

d Increasing
energy Ex in
conduction
band

a

eo —o elo+a
np=Concentration of

n-type impurity levels

- Filled band

Filled band
Fig. 25. Energy states in a semiconductor. Fig. 26. An N type semiconductor at a high temperature

in temperature for the oxide cathode lies below approximately 1200° K. As
the temperature is increased from absulute zero, electrons transfer from the
donor states into the conduction band to maintain a steady state situation at
each temperature for which the rate of transfer from the donor states to the
conduction band is exactly equalized by the return of electrons from the con-
duction band to the donor states.

If the experimental evaluation of the theory depended on exact knowledge
of the true distribution of the electrons in the conduction band, then a quantum
theory analysis of the wave functions suitable for the particular crystals and
crystallographic direction of the solid would be demanded before any further
progress could be made in the discussion of the temperature variation of the
FERMI level. Such details are not necessary for the present purpose. since in
the final analysis, the center of interest relates to the random current rather
than to the true distribution of the electrons which gives rise to that current.

Since crystals having very different distributions in available quantum
states can be formed in intimate contact with each other and under thermal
equilibrium conditions there is no net flow of electricity across the boundary,
the random current flow in the interiors of the separate crystals must each
be exactly that called for by Eq. (64.1) or else the random flow must be exactly
zero in one or the other of the crystals. In the application of this principle, the
FERMI level is continuous across the boundary and therefore it is to be expected

I R. A. HUurNER, E. S. RittneR and F. K. DuPRrE: Philips Res. Rep. 5, 188 (1950).
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that for dissimilar substances, the location of the energy state &amp;,=0 will be
different in the two crystals. The FERMI levels in those crystals expressed rela-
tive to the g, = 0 of the individual crystal will differ in magnitude. These points
are illustrated in Fig. 27.

In Fig. 27 an energy diagram is shown that is applicable to a contact between
a metallic conductor and an N type semiconductor. This contact is considered
to be in thermodynamic equilibrium with no net current flowing across the
boundary layer lying between the planes 4 —A and B— B. These planes are
taken sufficiently far inside of each of the conductors so that the presence of the
boundary does not influence the random currents within the interiors of the
two conductors. In the metal, the FERMI level u, is positive, whereas in the
semiconductor its value is negative. The algebraic difference between these
FeErMI levels is equal to the
sum of their absolute values
and measures the displacement
in energy of the reference levels
at the bottoms of each of the
conduction bands. Since no

conduction takes place in the
semiconductor below the level
designated as ¢,,=0, all elec
trons that impinge on the bound-
ary A —A as they move from
left to right will be totally
reflected without changing ener-
gies at the boundary potential
and will return into the metal.
Thus the net current over this

energy band remains zero, in
spite of the fact that thereis no
corresponding current in the semiconductor. The electrons which move from left
to right across 4 — 4 with energy well above the motive maximum shown in the
diagram will pass directly across the boundary layer and enter the semiconductor
at its boundary B — B. In order to maintain zero net current across these bound-
aries an exactly equal number of electrons must return from the semiconductor
into the metal no matter how complex the energy band structure of either the
semiconductor or the metal may be. For that electron group which has energy
within the metal greater than Ae (shown in the figure) and less than that corre-
sponding to the maximum in the motive shown between 4 and B, there will be
a partial transmission from the metal into the semiconductor. Exactly the same
reflection and transmission properties must be assigned to this barrier for the
electrons which approach from right to left within the semiconductor. It follows
that the random current in both the metal and the semiconductor, even in this
energy band of incomplete transmission, must be exactly the same and may be
computed by the introduction of the correct values of the FERMI level relative
to the zero energy state in the individual conductor by Eq. (64.1).

This discussion concerning the .universality of the random current found
in all conductors gives the basic condition upon which the simplifications needed,
to avoid the impossible problem of working it out exactly as it would apply to
a practical oxide-coated, rests. The exact method would demand a detailed
examination of the distribution in quantum states that would come from a
wave-mechanical analysis.

Ex=0

leA) le =

Donor levels
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Subject only to the restriction that there are no forbidden bands in the
energy-level system above e,= 0, the random current density in any conductor
is given by the following formula:

Cle) A, (2amkT)e | In\1 —e ATI=2-A hT TF de,. (64.2)
£,=0

In all cases of importance to thermionic emission from semiconductors,
u is negative and its absolute value is large compared with 27. Under these
circumstances, the exponential part of Eq. (64.2) is small in comparison with
unity over the entire range of &amp;, from zero to infinity. This fact permits the
integration of Eq. (64.2) to give the following result:

I =wn 3 BREA ERTamkT) ekT OAT (643)

Considered superficially, this equation does not appear to contain the concen-
tration of electrons in the conduction band, since the concentration appears only
implicitly in the value of u.

An ideal free-electron gas at low concentration has a random current ex-

pressed by the following relation:

Dane AL)2m m
(64.4)

Since these two equations must yield exactly the same current, they may be
equated and in this manner may express the functional relation between the
free-electron concentration # and the value of u required for the electron gas
within the semiconductor to be capable of existing in thermal equilibrium with
a free-electron gas. The value obtained for yu by this procedure is the following:

4 — — ET In 2(2x m kT)?
 nun hd (64.5)

In an “N” type semiconductor, the number of electrons which make transi-
tions from the filled valence band into the conduction band at the temperatures
encountered with oxide cathodes is so small in comparison with those which
transfer from the donor levels to the conduction band that only the latter need
to be considered. Since the FERMI factor [Eq. (15.1)] expresses the probability
that an electronic state will be occupied, the following equation will give the
concentration of electrons as a function of the temperature, the donor concentra-
tion, and the energy level of the donors expressed relative to the conduction band
reference at ¢,=0

1 n

a KT | 4 fe FT

This equation may also be solved for u to obtain the following results:

u __E

WTI oefT
np(22. — 1)

(64.7,

Eq. (64.5) and (64.7) may be combined to obtain an explicit expression for
‘he electron concentration as a function only of the temperature for a given
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donor density (np) located in a level at E with respect to the bottom of the con-
duction band. The equation obtained without the introduction of any approxi-
mation is the following:

N—
__E

| 2nphde FTIE + RE

(2xmRT}

2np
14

1

'64.8)

For the purposes for which these theories are being developed the approximate
forms of this equation?! are not suitable.

Eq. (64.8) may be put into a more useful form for the purpose of computation
by expressing the energy E in electrons volts. At the same time one may use to
advantage the electron-volt equivalent of the temperature expressed here as
I; defined by Eq. (46.9). It is also convenient to define a quantity x’ by means
of the relation shown as:

&gt; 3 3 vi
ve 2(2mmeVr)®  4(2xme) oT

err = (mp2) hs h3 nn ' (64.9)

With the above substitutions, Eq. (64.8) may be simplified in its writing as
follows:

2np

TEER
14+ l148e 77

In order to obtain a direct expression for the FErMI level as a function of the
temperature, Eq. (64.10) can be substituted in Eq. (64.7) and solved for u. The
result is given as follows

_ WHE]

u=FE—V,In2+V;In tse vr | —17. (64.11)
The first step in the quantitative use of this equation involves the computation
of u’. Constants in Eq. (64.9) have been combined to permit the easy calculation
of u' bv the following relation:

oi =. [In 1.208 X 1028 31:208x10% 3 pyr), (64.12)

In order to assist in the use of these equations, values of the various functions
presented here are given in Table 11 for a wide range of values of #, and E.
A very important equation is that for the temperature coefficient of the FERMI
level which is given by the differentiation of Eq. (64.11) with respect to Vi.
The result of this differentiation is the following:

 +E

[2 E)se” “Vrdu _ u—E 2 Vr

TT EETEE (64.13)lisse Ve | _q||1+8e V7

In reviewing these equations, practically the only assumption which has been
made is that the numerical value of |u/V;| be approximately 5 or more.

To satisfy this condition without at the same time having a very small con-
centration of donor states, the value of (E/V,) must be of the order of 10. If the
value of 4’ as computed by Eq. (64.12) can be related to the temperature and

1 F. Serrz: The Modern Theory of Solids, p. 188. New York: McGraw-Hill 1948.
Handbuch der Physik, Bd. XXI.
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be found to give (u'/V;) a value greater than 5, then E may have practically
any value and the requirement that |u/V}.| be greater than 5 will be satisfied.

The combination of symbols described in the following equation occurs so
often in the use of all of the equations in this section that it will be used to define
a quantity K as follows:

iE
K2—8e Vr (64.14)

In this work, the principal application of Eq. (64.13) comes in the close relation
to the temperature coefficient of the work-function. If the electron affinity
W. is practically independent of the temperature, then the temperature coeffi-
cient of the FERMI level is a direct measure of the temperature coefficient of
the work-function.

This important phase of the basic theory of thermionic emission from oxide
cathodes has received very little attention and yet it will be shown in later
sections that by making a suitable choice of the donor density #;, and the asso-
ciated energy E, excellent correlation is found between the temperature variation
of the FERMI level and the temperature variation of the contact difference in
potential. See Sect. 81 and 83. Eq. (64.13) can be adapted to permit a direct
calculation of the temperature coefficient without the previous determination
of the numerical value of the FERMI level. The equation written in this form is:

&gt; _ 7)du in2 p+E | 1 2 Ir="=iIh[(K+1)f—K]———————————. (6441dVr 2 2 Vr In [KEN | 2[K?+1— K(K? + 1)?] (64.15)

With this equation it is possible to write expressions for the extreme variation
in the temperature coefficient of the FERMI level, since for very low temperatures
K is very small, whereas for very high temperatures K is large. In the high-
temperature range, for which the approximate expression gives very accurate
results, the value of K should be 5 or more. The following equations result from
this analysis:

High temperature range:

Wo (HF 43 po)=—(~The (4 +2 In2) = +0.8069)
Low temperature range:

db (#13pa) (HEwet —m2)=— (4% +0.8060). (64.17)
The significance of these two equations stands out strongly after the sub-

stitution is made from Eq. (64.12) for the definition of x’. Again for the two
ranges, equations may be written as follows:

High temperature range:

du 1.208X1028 3 —1 ALThm — [m A200 Sn (7) + 0.5069
Low temperature range:

du, 1[ -1.208x10% 3 40 (7-1Them= SE 0.8069] (64.19)
The two main points of this result are: (1) the total range in the variation

of the temperature coefficient of the FERMI level can be very little more than
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a factor of two and (2) the temperature coefficient depends only on the concen-
tration of donors and the temperature and is completely. independent of the
energy level from which the donors arrive. This latter result is of major signi-
ficance as it relates to the emission properties of oxide cathodes and related
semiconductor phenomena.

Various experiments on oxide cathodes which will be discussed in Sect. 81 and 83
indicate that the probable range in average temperature coefficient of the work-
function as expressed in the units used in these equations lies between 5 and 9
for well-activated, normal oxide cathodes. Since the probable value of E is
approximately 0.7 electron volts negative with respect to the bottom of the con-
duction band, the low temperature range requirement is satisfied with V,. approxi-
mately 0.05. With the donor concentration of §x 1022 donors per m.3, the value
of the temperature coefficient is 4.3. Since the average coefficient can be ex-
pected to be approximately 1.5 times greater, this calculation yields an average
value of 6.5. An increase in donor concentration by factor of 10 would reduce
the average coefficient to 4.2 and a decrease in concentration by a factor of 10
would increase the average coefficient to 8.8. The indication is that for normal
oxide cathodes, the expected range of donor concentrations will be §x102 to
5X102%. It remains to be shown, in the next section, that conductivity data
can be used to advantage to estimate the location of the energy level to be asso-
ciated with these donors.

FowLER! derived an emission equation applicable to the “N-type” semi-
conductor under specifically limited conditions. Note, first, that the intro-
duction of the ‘BOLTZMANN relation in Eq. (64.3) yields the true RICHARDSON
equation, which is Eq. (18.5) and is written here as follows:

(64.20)

In this equation, W, is the electron affinity of the semiconductor and, under
the conditions of special interest as they relate to oxide cathodes, u is actually
a negative number. The true work-function, which is (IW,—u) is, therefore,
the numerical sum of these two quantities. The equations given in this section
show clearly that u is a function of the temperature and, therefore, the true
work-function will be very temperature dependent. It could be said that the
purpose of the FOWLER equation is to take account of the temperature variation
of the work-function in a more satisfactory manner than to assume that its
average value will be a constant. Since his equation has often been used for the
analysis of thermionic emission data, observed with the oxide cathode, it will
be worthwhile to derive this formula to show very clearly the restrictions which
the user should impose but sometimes does not2

An examination of Eq. (64.8) shows, that, under the conditions of a high
donor concentration (np) and low temperatures, the concentration of electrons
in the conduction band can be small in comparison with the number of donors.
This condition holds when the principal term in the denominator is very large
compared with unity. Under these conditions, the concentration of electrons
in the conduction band may be expressed by the following equation:

V2amiT)} oa
n = m BEE) o2RT (64.21)

 R. H. FowLER: Statistical Mechanics, 2nd edit., p. 402. Cambridge Univ. Press 1936.
* J. Nagar, Y.INursHr and Y. TsuNe-cHE: J. Phys. Soc. Japan 10, 437 (1955).
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This equation, when combined with the current Eq. (64.4), gives a good approxi-
mation for the random current that crosses any boundary within the interior
of the semiconducting crystal. This random current, reduced by the BoLTz-
MANN factor exp (— W,/kT), gives the current density in the immediate neigh-
borhood of the crystal surface, when thermodynamic equilibrium applies. Again,
there is the problem as to whether or not all electrons which impinge on the
boundary from the interior enter the space outside the crystal. In order to in-
clude the possibility that some are reflected, the generalized transmission function
first introduced in Eq. (26.1) and illustrated further by Eq. (26.4) will be intro-
duced here in the final formulation of the FOWLER emission equation.

= Wa—(E/2)

1 = Dip Bin [20m [pm ar (64.22)

The symbol D (p, B) is designed to call attention to the fact that the transmission
will depend on the electron energy and the barrier itself. An example will shown
of the use of this equation in Sect. 81 and 83. In order to assist in computation,
‘he universal constant included in the brackets is evaluated as follows:

_ Lg

eVz@amirt _ oes qos. (64.23)
x

The units are such that, if the donor concentration is expressed in the number
per m.? and the temperature given on the KELVIN scale, then the current density
vill be expressed in amp/m2.

Although Eq. (64.22) can be used as an empirical equation in exactly the
same manner as the RICHARDSON form of equation, its most useful purpose is
that of determining an estimated value of the donor concentration. Assume
‘hat it is possible to measure experimentally the zero-field thermionic emission
current density from a semiconducting surface such as an oxide-coated cathode
and construct a plot of logy, (I/T%) as a function of (1/7). The slope of such
an experimentally obtained curve will determine (W,—0.5E). It should be
clear from the method by which this equation was derived that this quantity
ceally represents the true work-function at absolute zero. The true work-function
is of course temperature-dependent and the negative of the temperature coefficient
is given by Eq. (64.19). It is assumed that the temperature coefficient of the
slectron affinity W, is negligible. After the FOWLER emission plot has been
constructed as described above and the slope determined, any point on the plot
will serve to determine the value of the numerical constant defined as follows:

Ar =1.726x1075D (p, B) nt,. (64.24)
An experimentally determined value (Sect. 81) for the empirical constant
Ap is 1.5 x 10° or, if the current is expressed in amp/cm.?, the number is 15 amp
per cm?- degi. With a value of D of 0.175 (which is not unlikely for the very
low temperature range) the donor density “pn is 2.4x10% per m® The very
accurate data of HuNG are used for this analysis in Sect. 81 and there the re-
flection effect is introduced as indicated in Eq. (62.11) before the plot is made
according to Eq. (64.22). The equation form then becomes:

_ (Wa—(E/2))

Iyo=1.726X1075m}TieAT
The FowLER work-function is given by:

yy (W, — (E[2))
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65. Conduction processes in porous semiconductors. LoosJEs and VINK! were
among the first to call specific attention to the need for a detailed analysis of
conduction processes in porous semiconductors to serve as step toward the better
understanding of thermionic emission phenomena from oxide cathodes. This
section will deal with basic concepts needed for the interpretation of conduc-
tivity data applicable to polycrystalline semiconductors.

Practically all experiments show that at very low field strength the conduction
current is directly proportional to the average electric field within the test spe-
cimen. The basic condition which must be satisfied is that the energy gained on
the average by the electrons between inelastic collisions must be small compared
with their thermal energy expressed as kT. The force acting on an electron in the
presence of a field can be expressed as the product (¢E,) and the matter of the
sign of the field in relation to the sign of the charge carrier can be omitted for
the time being. The average change in momentum is then the force multiplied
by the average time between inelastic collisions. This relation is expressed as
follows:

Ap,=¢E,7. (65.1)
[f the electron concentration is » and the effective mass that of a free electron,

the conductivity may be expressed as follows:

_ Ay, _ eT |

== en. (65.2)

The factor (e7/m) is the electron mobility which will be identified as M, for the
electron mobility within the solid structure and as M, for the electron mobility
in the porous structure. These definitions expressed in equation form are the
following:

For crystalline structure:
eT,

M,=— (65.3,

For pore conduction:
eT—7M, — (65.4)

Studies of the conductivity of oxide-coating material as a function of the
temperature and the previous history (which would include activation processes)
serve as the best means of gaining information concerning the conduction me-
chanism. Loosjes and VINK have identified three ranges in temperature, two
of which are associated with the conductivity of the free electrons in the pores
of the porous structure. The third is dominated by the conduction through
the solid. These two conduction mechanisms may be thought of as parallel
conductors. Eq. (65.2) is suitable for the computation of each and depends on
a. knowledge of the electron concentration # and the average time between in-
elastic collisions 7. These two quantities will differ many orders of magnitude
depending on whether one is dealing with the conduction in the solid or in the
pore. The theoretical background for these two cases will be presented very
briefly in this section. Conductivity in the crystalline structure will be dis-
cussed first.

Since Eq. (64.8) or (64.10) may be relied upon for the calculation of the
electron density in an N-type semiconductor as a function of temperature, it
remains only to discuss 7, to establish the conductivity characteristic. The use

1 R. Loosjes and H. J. Vink: Philips Res. Rep. 4, 449 (1949).
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of either classical or FERMI statistics, as it appliestoafreeelectron concentration
of low density, permits one to write an expression for the average speed of electrons
in an electron distribution characterized by a specific temperature. The expression
for the average speed is the following:

_ RT \}

v=4 27m ) ’

One of the factors that must enter into the calculation of the time between
inelastic collisions is the average speed of the electrons and the time should be
inversely proportional to the speed. A second factor which must enter is the
distance between collision centers and its dependence on temperature. At the
relatively high temperature associated with thermionic emission there can be
little doubt that the thermal vibration of the molecules of the structure sets
up a diserder of the potential function through which the electrons travel in their
random motions. Therefore the average distance of “free flight’’ must decrease
as the temperature increases. Even if quantum mechanics could be applied to
solve this problem of the lattice scattering of the electron waves for a pure barium
oxide crystal, it is doubtful that the solution would apply more than approxima-
tely to the barium-strontium-oxide crystals employed in all thermionic emitters
of this classification. One may assume, therefore, for the purposes of the present
discussion, that the average “free flight” distance in the solid structure is in-
versely proportional to the temperature and that an experimental determination
of the electron mobility will be depended upon to determine the order of magnitude
of the proportionality constant and, in turn, the approximate distance between
scattering points. With these assumptions the following equation may be written:

 hohe,1.(22m) (65.6)
In this equation the proportionality constant is written as (/,,7,) with 7,

the average free flight distance at some low temperature 7, above which it is
assumed that the free flight distance is inversely proportional to the temperature.
Eq. (65.6) may be combined with Eq. (65.3) to obtain the following expression
for the mobility: ne. v

M.= (7%) hoy = 26X40 ko. (65.7)
The equation has been put in the above form in order to make it ready for easy
numerical calculation. Rather than assume a value of [, it is of more direct
interest to take the value for the mobility given by PELL! for electrons in barium-
oxide single-crystals which was 5x 1074 m.2 per v-sec. If it is assumed that this
value is appropriate at a temperature 1, of 0.04 (464° K) and the value of [,
is computed it is 3.8x1071m. Calculations based on the molecular weight and
density figures for barium and strontium oxide lead to the conclusion that this
distance is exactly equal to the average molecular distance in the solid. If one
considers the high temperature at which this mobility measurement was made
and the fact that it could very well have been twice as great since there was
considerable uncertainty in the exact value to be chosen, the fact that the free
flight distance in an ionic crystal is equal to one or two intermolecular distances
seems altogether reasonable and justifies the use of Eq. (65.7). With the intro-
duction of these numbers, one obtains a mobility equation which follows:

M, = AX10 1 2jv-sec.
Ss v}

 E, M. PeLL: Phys. Rev. 87, 457 (1952).
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This expression for the mobility of electrons in a barium-strontium oxide
crystal may be combined as in Eq. (65.2) with the expression for electron density
as a function of the temperature given in Eq. (64.10) to express the conductivity
of typical crystals used in oxide cathodes so that the prediction of the equation
can be compared with experiment and in that manner an appropriate value for
the donor energy level E can be derived. The equation so derived is the following:

(X —
1.82X1072ConpVE?

WHE)
ie | £50 Vm

(65.9)

The constant C, is introduced to correct for the fact that a porous structure will
have a smaller conduction cross section than the same volume of solid crystalline
material.

The usual experimental procedure is to plot the logarithm of the conductivity
co as a function of (1/V;) and use the average slope of this plotted curve as a
measure of the “activation energy”. The value of E is then often taken as twice
the activation energy. The analysis to follow shows that, although this procedure
is approximately correct, it is necessarv to analyze the results more critically
if accuracy is desired.

A quantity K has been defined by Eq. (64.14) and the evaluation of this
number indicated that K is generally small for the range of temperature, electron
concentration, and energy level E of greatest interest in thermionic emission.
With this restriction. Eq. (65.9) mav be written as follows:

1.82X10°# Coup Vi EK
rpg (65.10)

This equation may be modified still further by the introduction of the value of
K as expressed in Eq. (64.14) into the numerator of the above equation and the
conductivity relation becomes the following:

E

_ 7.07X1011Cn}vpberTle (65.11)

The main purpose of measuring the conductivity of an oxide cathode as
a function of the temperature is to evaluate the effective energy difference E
between the bottom of the conduction band and the energy levels occupied by
the donors. It should be clear from the above equation that this can be accom-
plished best by plotting In (¢ V1) as a function of (1/V;). The form of the equation
is the following:

In (0 V3) =In(7.07x 100 Cnt)+=Vil—K.(65.12)
This equation makes use of the fact that the value of K is small. The slope of
the straight line obtained from this plot should give the best obtainable value
for (E/2), since the temperature variation of K is verv small in comparison with
(E/2).

In most examples given in the literature, it is the activation energy that has
been evaluated and this has been defined by the following relation:

d(In o) =E,.
da (vit) (65.13)
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By the direct differentiation of Eq. (65.9) one obtains the complete expression
for the activation energy which is clearly not independent of the temperature,
as the following analysis will show:

3 Vp E BZ, wm Vip romonfolL"Boone, 65.142 1 key iE + (B24 1) (65.14)

Since the principal range of interest is that for which K2is very small in comparison
with unity, this equation may be simplified as follows:

E 3 E 3

In general, the last term of this equation is very small and, therefore, within
the accuracy of most available measurements, an improved value for the true
energy of the donor state would be given in terms of the activation energy E,
by the following equation:

E=2Ea 3 Vz . (65.16)
The range in activation energy reported in the literature and discussed in

Sect. 77 lies between —0.25 and —0.4 ev., with some dependence on the state
of activation of the test specimen. The only activation energies that are appro-
priate for comparison with this theory are those taken over such a low temperature
range that the electron conductivity through the pores contributes a negligible
proportion of the total conductivity of the specimen. An average value of V,
for this low temperature range is 0.05. Eq. (65.16) shows that if the activation
energy E, is —0.31 the effective location of the donor state will be at 0.7 ev
below the bottom of the conduction band.

With a very densely packed crystalline structure, the constant C, of Eq. (65.9)
could presumably approach the value of 1.0. Since the equations as they have
been developed apply to the conductivity of single crystals, they do not take
into account the fact that in a practical oxide cathode less than 50% of the super-
ficial cross section is occupied by crystals. Furthermore, these crystals make
contact at very small surface areas compared with the crystal cross section. It
is practically impossible to generalize, therefore, about the best choice of C,
to fit a specific test specimen which will permit a direct comparison between
theory and experiment. Under the circumstances, the best procedure is to evaluate
the energy E which measures the location of the donor levels by means of the
temperature variation in the conductivity over the low temperature range, as
has been described in this section. The best means of determining the most
suitable concentration of donors has been demonstrated in a previous section
to depend on a measurement of the temperature coefficient of the contact dif-
ference in potential, which in turn, is the negative of the temperature coefficient
of the true work-function. With the donor density and the energy level known,
observations of the conductivity analyzed according to Eq. (65.9) yield a direct
value for C,. Again, the published material for comparison with theory is very
meager, but the indications are that a value of C, of the order of 0.05 to 0.1
is needed to be consistent with experimental values unless the mobility of the
electrons in the single crystals of barium-strontium oxide is smaller than the
PELL! value of 5X 107¢m.2 per v-sec. Since a choice of C, within the range described
here seeems reasonable, confidence should be placed in these equations and in
this analysis until better data become available to justify the development of
an alternative theoretical analysis.

1 E. M. Perr: Phys. Rev. 87, 457 (1952).
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The conductivity of the open structure between the particles of an oxide
cathode will become more and more important as the temperature increases.
The theory to be developed in the following paragraphs shows that the conduction
through the pores will be directly proportional to the electric field within the
porous structure provided that the energy gained from the field in the time of
one free flight of the electron across the pore is small compared with the thermal
energy Vr (or £7). The analysis will show that at very high field strength com-
parable to that associated with pulse emission studies, the conduction will increase
as the square root of the field as Loosjes and VINK! have shown experimentally.
The conductivity in the pore will be given by Eq. (65.2) in which the density
of the electrons within the pore will be relatively uniform over the lower temper-
ature range but will become non-uniform in a manner that can best be evaluated

by the theory presented here in Sect. 21 to 24, inclusive. This development of
space charge within the pore influences both the determination of 7, and the
value of electron density x. These factors control the conductivity-temperature
function in the high-temperature range, and it will be different from the function
followed over the low-temperature range of pore conductivity. These phenomena
account very satisfactorily for the two high-temperature ranges in conductivity
first reported by HaNnNAY, MACNAIR, and WHITE? and identified by LoosjEs
and VINK as ranges IT and III.

In the application of Eq. (65.2) to the conductivity of the pores, the com-
putation of the average time of flight of an electron will depend mainly on the
electron speed and the effective path length for the low-field condition. As the
intensity of the electric field increases, the energy gained by an electron in one
free flight across the pore can eventually exceed its temperature energy under
which condition the time of flight is greatly shortened and is field-dependent.
It is only necessary to formulate the problem for these two extremes, if one
realizes that between these extremes the average time of flight can take on any
intermediate value.

Tf the temperature range is that in which pore conduction predominates and
measurement shows that the current is directly proportional to the field, sufficient
indication is given that the energy gained per free flight is small enough in com-
parison to the thermal energy and that the time of flight computed by the
following equation is the proper choice.

= = (Zn) Ip (65.17)

In this equation, the number II is applied as a subscript on 7, to indicate that
this equation applies over the temperature below approximately 0.09 ev equi-
valent (1044° K). In this equation /, corresponds to the free-flight distance aver-
aged over all of the electron trajectories within the pore. This free-flight distance
is, in general, smaller than the average dimension of the pore but is the same
order of magnitude. For example, if the pore were spherical, then l, would be
approximately 64% of the diameter. The relation given in Eq. (65.17) can be
used to calculate the mobilitv for this low-field condition and the result is given
as follows:

M = (Zeple 5 bppII 8m yi 2.63 X 10 v3 (65.18)

! R. LoosjEs and H. J. Vink: Philips Res. Rep. 4, 449 (1949).
2 N. B. HaaNNAY, D. MacNaIr and A. H. WHITE: J. Appl. Phys. 20, 669 (1949).
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This equation combined with the evaluation of the electron density gives the
conductivity of the pore

— me\t Ip _ ~1a,, lp
Opi = toe (20) p= 420X107, (65.19)

Eq. (24.7) is the most suitable one for the computation of the electron density
in the immediate neighborhood of the surface boundary of the pore. This equa-
.ion, with the universal constants evaluated, and the temperature expressed in
ts electron-volt equivalent, is the following:

?

n, = 6.04X 107 Vie Vr. (65.20)

In this equation, the symbol @ represents the true work-function. The true work-
function depends to some extent on the state of activation, principally through
the alteration of its average temperature coefficient which decreases as the con-
centration of donors increases. A formula which applies as a satisfactory approxi-
mation for a limited range in temperature for a well-activated oxide cathode is
the following:

@ = go + alr.

For these oxide cathodes the range in @, is 0.9 to 1.2 and for « it is 5 to 9.
Over the range of conductivity characteristic below 1000° K the pore concen-

cration of electrons #, is practically equal to the electron concentration at the
surface of the pore. The temperature at which there is an appreciable difference
between these concentrations depends on the pore size and can be determined
quite well by the theory presented in Sect. 24. There the space charge relations
were computed for a pillbox like pore with the small dimension w between parallel
planes. Qualitative considerations indicate that the use of ,, which is defined
as the effective average distance of free flight within the pore, is the equivalent
to the use of w in Eq. (24.4). With this condition considered, the following equa-
tion gives the maximum density of electrons which one can expect in the central
region of a pore of this size: V

Nom = 1.09X10°
A

(65.21)

The actual density #, in the central region of a pore the boundaries of which
are characterized by a definite value of the true work-function is related to this
maximum possible value for the density through the parameter z expressed by:

(65.23)Na — Ng, 22.

Since both #, and #,,, can be computed from a knowledge of the temperature,
the pore size, and the true work-function, the expression given as Eq. (24.6)
permits the direct evaluation of 22 from the ratio of these two concentrations with
the help of Table 4 or of the curve shown as Fig. 9. Since the main purpose of
this calculation is to estimate the upper limit for the temperature range identified
by II, Eq. (24.9) serves as a satisfactory means of computing z, since it is only
for z values less than 0.1 that #, and =, are essentially equal. Eq. (24.5) shows
that the reduction in concentration at the center of the pore under this condition
is 2.5%. Since #, increases very rapidly with the temperature after this particular
temperature has been reached, the transition from conduction region II to III
is quite sharp. With this value of z as the arbitrary criterion for the determination
»f the transition temperature, the following relation may be written:

8x10721— 70-21 — 2 VEe Vr ‘65.24
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If the characteristic pore dimension , is 2.5 x 107% m. (2.5 microns), this equation
is satisfied at the value of V; of 0.0833 (970° K). This calculation is mentioned
at this point to indicate that the above equation is in excellent agreement with
the temperature limit that marks the separation between regions II and III
found by Loosjes and Vink. The variation of the critical temperature with
activation will be discussed in Sect. 77.

The introduction of Eq. (65.20) into Eq. (65.19) completes the calculation of
the expression for the pore conductivity as a function of the pore dimension,
the temperature, and the true work-function for that range of temperature which
lies within range II:

@

Op11 = 2.54 X 1014 Vz e Vr Ly. (65.25)

If the true work-function is known only through its approximate represen-
tation given as Eq. (65.21), then:

rll
Op11 — 2.54 X 1014 e 7% Vz € Vr L, . . (65.26)

A plot of In 04,7 as a function of Vz) yields an activation energy @, which
is related to ¢, by Eq. (50.11) which yields:

Vat Vn
go = 6, — Take

in which % and V,, are the voltage equivalents of the maximum and minimum
temperatures of range II.

Although Eq. (65.25) represents the conductivity of a pore of characteristic
dimension /,, the quantity usually measured is the conduction per unit area,
as exemplified by the researches of Loosjes and VINK. The following equation
serves to describe this function in which g is the conduction of a specimen of
thickness L over which a potential difference of V is applied:

(65.28)

I'wo additional symbols are introduced in this equation, which are A, for the
area, and C,, for a constant introduced in this equation to account for some
of the structural factors similar to those considered, just as the corresponding
constant, C;, was introduced in Eq. (65.9). Before this theoretical equation is
compared with experimental results, an estimate must be made for the value
of C,. The higher the degree of porosity, the greater the value of C,. Even
though the known porosity might be 50%, the choice of a value of 0.5 would be
too large for two reasons. First, the conduction through the pores will follow a
devious route, even though it might be direct from pore to pore. Second, some
conduction will be through solid structure in series with the pores. This resist-
ance will reduce the conduction. It is estimated, therefore, that the value of C,
to be used for comparison with experiment should be 0.1 to 0.4 for the usual
coating structure.

A question may be raised as to why Eq. (65.20) is used for the electron density
instead of Eq. (64.21), since it was the latter that led to the FOWLER equation
for thermionic emission. The latter formula is not appropriate, even though it
was used by Naka, INuisHI and TsuNG-cHEL. Fhe purpose of Sect. 64 was to
show that the temperature variation of the FErmMI level could be incorporated
n the theory of the FOWLER emission equation under the restriction that the

! J. Naxkar, Y. INursar and Y. TSUNG-CHE J. Phys. Soc. Japan 10, 437 (1955).
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range of temperature for which it is applied be sufficiently low. The simplified
equation used as a substitute for the exact equation, namely, Eq. (64.10), is thus
limited in its range of application. It is therefore more appropriate to use
Eq. (65.20), even though it involves the true work-function and this, in turn,
may have to be represented by its approximate form given as Eq. (65.21).

66. Conductivity with high internal field strength. Experiments have been
carried out by Loos]Es and VINK! and by others? in which sufficiently high fields
were applied to an oxide coating to pass beyond the linear part of the conduction
characteristic. The first deviation in the linearity should appear when the energy
gained from the field is comparable with the temperature energy Vy or (RT).
The experiments of LoosJEs and VINK show that, in the lower temperature range
which is still high enough so that pore conductivity may be separated from crystal
conductivity, the conduction current is proportional to the square root of the
total voltage applied across the specimen. The following equation indicates the
conditions under which this result may be anticipated.

(66.1)[fe E, ly Se Vr &amp;min) + faded 71.
An explanation of this equation will be given. The average time of flight ©
enters the quadratic equation in two terms. The first term relates to the energy
acquired by an electron in traveling a distance 4 in the presence of a field of electric
intensity E,. A suitable value for 4 will be close to one half of the characteristic
pore dimension defined in the previous section and represented by /,.

The second term comes from the average thermal speed, as in Eq. (65.17).
Two extremes may be considered, depending on the value of (EZ). In the
low-field range for which the first term of this equation is very small, the free-
flight time may be computed by the second term to obtain the result already
given as Eq. (65.17). As E, increases, the solution to the quadratic equation
above gives an ever decreasing value of the flight time 7, and more and more
importance must be attached to the first term of this equation. Finally, when
it becomes large compared to the second term. the average flight time tr; becomes:

2m A \} 2m Alp \}
ve = (427) = eV ) ’

Here, V}, is the drop in potential over a single ‘effective’ pore distance. Note
that the flight time is inversely proportional to E? (or V3) and proportional to
a characteristic distance (I, A)}. At moderately low temperatures, this distance
should be approximately 0.4 of the average pore dimension. As the temperature
increases and/or the field increases, additional complications enter into the com-
putation of the flight time and the conduction equation.

Assume first that the field is not quite strong enough to wipe out all of the
effects of space charge, but nearly sufficient to do so. Under this condition,
Eq. (65.2) may be combined with Eq. (65.20) to yield an equation for the pore
conduction per unit area with a moderately strong field and not too high a temper-
ature. The result is the following:

. ©

© 5.75X104C, AL) Ve Ve (66.3)
This equation is similar in many respects to that given as Eq. (65.28) and is the
one most suitable for comparison with experiment, as will be shown in Sect. 77.

1 R. Loosyes and H. J. Vink: Philips Res. Rep. 4, 449 (1949).
2 See footnote 1, p. 91.

(66.2)
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The conduction per unit area is g/4 for an applied voltage difference of V over a
specimen of thickness L. Thus, the average field within the specimen is V/L.
The quantity C, must be estimated, since it depends on the actual physical
structure of the specimen investigated. In general, the porosity of practical
cathodes is close to 0.5, although somewhat smaller and larger values than this
have often been studied. As in the previous section, it is indicated that the con-
duction through pores may follow devious routes and in some circumstances
may even have to be considered to be in series with a very small thickness of the
solid structure. The crystalline solid has a higher resistance and therefore inter-
feres slightly with the conduction attributed to the pores alone. These consider-
ations lead to the establishment of a probable range for C, of 0.1 to 0.4. Ap-
plications will be made of this equation in the discussion of experiments with
oxide cathodes given in Sect. 84.

An inspection of Eq. (66.1) shows that the maximum value of the time of
free flight is associated with the lowest value of the internal field. As the field
increases, the first term of the equation becomes more and more important until
it finally dominates, under which condition the time of free flight is inversely
proportional to the square root of the field. At some particular field, the two
terms will contribute equally, that is, the value of each will be exactly 0.5. The
relation between the field and the temperature for this special circumstance is
given in the following equation:

Ex, Ip Vy 8 A ~

In this equation, the product (E, l,) is the potential drop over a characteristic
pore length and is symbolized by V,. Since electrons enter the pore at various
positions along its x direction, the distance A should be approximately one half
of the characteristic distance Ly. Subject to this assumption, a numerical value
of the ratio is approximately 1.3. It follows, therefore, that if the potential V,
is just 1.3 V7, then the conduction will be exactly half of that calculated by
Eq. (65.28). Again, inspection of Eq. (66.1) shows that under this condition of
(V,/Vy) of 1.3, the conduction will be 70% of that calculated by Eq. (66.3). The
fact that this analysis of the variations in conduction with field is in good agree-
ment with the experiments of Loosjes and Vink will be shown in Sect. 77.

[mplicit in the derivation of Eq. (66.3) was the assumption that the concen-
tration of electrons in the immediate neighborhood of the pore surface at which
they enter will be independent of the electric intensity superimposed on the space
within the pore. This condition is satisfied if the emission current into the pore
is limited by the space-charge within it. As the field is increased, space-charge
imitations will gradually be removed and the supply of electrons needed to
maintain the anticipated current density will be too small. If the only influence
of the field were that of shortening the transit time as indicated in Eq. (66.2),
then the conductivity would be inversely proportional to the square root of the
field and the conduction directly proportional to Ei. After the supply of avail-
able electrons decreases, a ‘‘saturation’’ effect will set in gradually and the
conduction will rise even less rapidly than is indicated by Eq. (66.3). Naka,
[NvuisHI and TsUNG-CHE! attributed the lack of complete saturation of the
conduction current to a lowering of the work-function on the interior of the pore
surface by the ScHOTTKY effect (see Sect. 27). The application of this theory
depends on the assumption that the emission increase results only from the
cancellation of mirror-image forces by the external field. The total lack of uni-

1 1. Nakar, Y. InvisHI and Y. Tsung-cHE: J. Phys. Soc. Japan 10, 437 (1955).
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formity of field over the surface of the interior of the pore makes this assumption
mnappropriate. More details concerning these experiments will be given in Sect. 79.

The application of these equations to the interpretation of the experiments
of LoosjEs and VINK yields a value of the characteristic pore length of 2.8 x 107%m.
and C, of 0.18 for the lower temperature range. The presence of space-charge
over the high-temperature range interferes with the direct application of this
theory. As space-charge effects set in, the effective pore length decreases, since
this length depends on the distance of free flight and the presence of space-charge
limits it. As the temperature is increased, and the externally applied electric
Intensity E, is maintained constant, the product (E, [,) which defines the quantity
V, decreases, and therefore the range in applied field for which the conduction
increases linearly with the voltage is extended enough to be clearly measurable,
and is shown by LoosjEs and VINK.

Even though the theory is capable to indicating quantitatively the dependence
»f pore conduction on field and temperature in this high field, high-temperature
range, its application would depend upon the choice of pore structures not realiz-
able in actual experiments. It is therefore sufficient to show by this qualitative
discussion, the relation between theorv and observation for these experimental
conditions.

67. Emitter evaluation in a diode having concentric cylinders. In the previous
sections, space-charge theory as it applies to thermionic emission observations
in diodes of parallel-plane construction has been formulated and the results of
the theory adapted for direct application to experiment either in equation form
or tabular form. The theory has also been developed for the flow of electrons
from a cylindrical emitter across the space to a cylindrical collector for all ratios
of collector to emitter radii. In order to determine the property of an emitter,
it is necessary to combine these two divisions of thermionic emission theory in
‘he manner that is to be outlined here.

A concentric cylinder diode can be constructed with practically any arbi-
trarily chosen ratio of radii. A practical choice for test purposes would be (R,/7)
of 2.5. The collector radius is defined as R, and the emitter radius #,. For the
idealized application of the theory, all parts of the emitter that deliver electrons
to the collector must have a single value of the true work-function at the temper-
ature of test and the emitter must be uniform in its temperature. This con-
dition can be realized in the laboratory by the use of the “guard ring” prin-
ciple of tube construction. In a properly constructed diode having practical
dimensions there will be a sufficient range of applied voltage over which the
potential at the surface of the collector will be so negative with respect to that
at the emitter that the presence of space-charge will not interfere with the flow
of electrons from thé emitter to the collector. An estimate of the maximum
current density which can flow without space-charge interference may be computed
by Eq. (51.1). The use of this equation may be illustrated best by a numerical
example in which the effective diode spacing is taken as 1.0 mm. and the ex-
tremes in temperature are 580 and 1160° K. The corresponding current densities
are respectively: 10.8 and 30.5 microamp/cm.2. With these values serving as
an indication of‘the maximum current flow without space-charge interference,
there will be a range of lower current values extending through many orders of
magnitude for which curves of the type shown in Fig. 19 will be directly applic-

A well-activated oxide cathode operating at 1160° K should be capable of
an electron emission density of 10 amp/cm.2 which is a factor of 3 x10° greater
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than the approximate current density required to develop the zero field condi-
tion at the collector. Reference to Fig. 21 shows that the displacement of the
observed points over the entire range of retarding potentials negative with
respect to the critical value will be close to 0.9.

Fig. 28 has been prepared to illustrate the use of the displacement theory
in combination with “master curve #%= oo” shown in Figs. 16 and 17. In
Fig. 28 the current density values that would be obtained in an experiment
are plotted on semi-logarithmic paper as a function of the applied voltage in
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Fig. 28. The application of space-charge theory and the displacement method to evaluate an emitter in a concentric
rvlindrical diode

dimensionless units defined by (v/V7). The current density value designated 7,
marks the maximum value of the current density expected at the onset of space-
charge limitation. The displacement theory calls for a displacement to the right
of 0.9 for each of the observed points for which the current density is less than I,
These displaced points are shown by open circles. The purpose of this displace-
ment is to establish the proper location of the straight line designated the “ BoLTz-
MANN Line” which is the correct extrapolation of the “master curve” for values
of #2 defined as (I/I) which are less than unity. This is the range of current ratio
for which there is no space-charge minimum between the emitter and the col-
lector. The analysis shows that this displacement process converts experimental
data obtained in a cylindrical diode to a set of points appropriate to represent
the emission properties of the same cathode had they been determined in a
parallel-plane diode. For the data shown in Fig. 28 the BorTzMANN Line crosses
the critical current value at —2.5 on the “s” scale. This corresponds to an
applied potential after correction of —0.25 volts. The actual applied potential
for this current would be —0.34 volts. As the actual applied voltage is made
more positive than this —0.34 volts, a potential minimum develops first very
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close to the collector and then moves with each increase in applied voltage across
the space until it approaches very close to the emitter surface. As this transition
takes place, the tangential components of momentum with which the electrons
left the emitter become less and less effective as contributors to the total kinetic
energy required for an electron to pass the potential minimum and ultimately
register as collector current.

Fig. 22 may be referred to as the quantitative means by which the correct
displacement may be computed as the space-charge minimum moves across the
diode from the collector to the emitter. Notice that at 2.5 for (1/a) the displace-
ment indicated for the higher values of S is 0.9 as mentioned above. In this
example, the effective value of (1/a) is 1.7 when the potential minimum lies
halfway between the emitter and the collector. The corresponding displacement
is 0.5. When the fractional distance from the emitter to the space-charge minimum
has been reduced to 0.1, the effective value of (1/4) is 1.15 and the displacement
is reduced to 0.1. Since Eq. (61.3) relates the maximum of this fractional dist-
ance to the quantity , it follows that for current densities greater than approx-
imately 100 I,, no displacement correction is required and the observed points
should follow the master curve.

This fitting process illustrated by Fig. 28 shows that the master curve com-
bined with the BOLTZMANN line establishes a unique value for the current and
voltage conditions that apply to the equivalent plane parallel diode that has
precisely the properties and characteristics of the cylindrical diode investigated.

This introduction to the method of analysis applicable to data taken with
a cylindrical structure applies specifically to that high temperature range over
which the properties of the emitter are practically those of one which has un-
limited emission capability. As the temperature is lowered and the potential
minimum as it forms at the collector surface becomes equal to or less than V7
(that is the equivalent of 27) the emitter capability begins to be important and
this capability as measured in terms of z% in Eq. (58.7) may be established with
the required accuracy for most purposes. Further discussion of this phase of
the theory will be postponed to Sect. 83 in which its application will be made
to actual laboratory observations made on cylindrical diodes having well-activated
and stabilized thermionic properties.

68. Thermionic emission theory. Concluding remarks. The theories presented
in Sects. 14 to 66 are the necessary background for the interpretation of experi-
mental researches in thermionic emission. Much of the theoretical work presented
here may be found scattered in the literature and therefore it forms a body of
uncoordinated information. It is one of the present objectives of this writing,
not only to coordinate, but to present the subject in a manner that will permit
its use as effective reference material without the demand on the reader that

he master all the phases of the subject at one time. Its greatest usefulness depends
on one’s being able to open the study at the particular section of special interest
and derive from it the information desired.

The phases of the theory that have been purposely omitted and yet may be
relevant to the detailed understanding of thermionic emission phenomena in-
clude the analysis of electronic band structure in solids; the corresponding cal-
culations at the surface boundaries and the present-day theories of the trans-
mission of electrons over and through barriers as these relate to the waves asso-
ciated with the interaction of electrons with atoms that form solid structures.
The more important experiments on thermionic emission reported in the present-
dav literature and during the past twenty-five years require for their explanation
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only those phases of the theory that are presented here. Additional experiments
that relate specifically to the emission of electrons from single crystals and their
absorption by single crystals are likely to demand additional theoretical develop
ment. With these exceptions, it is hoped that the theories presented here will
be sufficiently comprehensive to satisfy all of the important needs of those who
come to this source for information related specifically to the theoretical problems
of thermionic emission.

D. Applications of theory to experiments on thermionic emission.

I. General discussion.

69. Emitter classification. Most thermionic emitters may be grouped under
either of two general classifications. The first of these groups to be discussed in
detail is that of the metallic electron emitter which includes specifically therm-
ionic emission from pure metals or metals coated with polarizable atoms adsorbed
to the surface of the pure metal to an extent equal to or less than one monatomic

layer. The emission properties of the second classification depend upon the
adherence of a complex non-metallic structure, generally thousands of atom
layers thick, and best represented in its most useful form by the oxide-coated
cathode. Underspecial circumstances an oxide cathode or its equivalent may
be built upon a pure metal base by the condensation of molecules from an external
source or, by migration over the surfaces of a sintered, porous structure of metallic
crystallites from an interior source. Specifically, the dispenser cathode is an
example of this emitter type. The properties of such emitters fall between the
extremes of the metallic emitter and the oxide-coated cathode.

The feature that distinguishes these emitter classifications is the concentration
of free electrons in the interior of the conductor at the emitting surface. The
fact that metallic conductors improve in their electrical conductivity as the
temperature is decreased even to extremely low values indicates that the FERMI
level is positive with respect to the bottom of the conduction band and that
in most cases the concentration of free electrons in this conduction band is
practically equal to the concentration of atoms. In tungsten, for example, there
are approximately 6.3 X 10*® atoms per cubic meter, and with the number of
free electrons in the conduction band being approximately equal to this value,
the FERMI level is located positive with respect to the bottom of the conduction
band 5.7 ev. Since the true work-function of tungsten, as will be shown in Sect. 72,
is between 4.4and 5.3 ev depending on the crystallographic configuration of
the exposed surface, the electron affinity (W,) is close to 10.5 ev again depending
on the exposed crystallographic surface. Over the entire operating range of tem-
perature, the concentration of free electrons in the interior of tungsten crystals
will remain high and not change significantly. The equation most suitable for
the calculation of the FERMI level as a function of the temperature is given in
Appendix 3.

Eq. (18.5) shows that the emission properties of a specific surface do not
depend on the absolute values of the electron affinity (W,) and the FERMI level
(us) but depend on the difference between these quantities which is, by definition,
the true work-function. It is expected that for all metallic surfaces free from
adsorbed layers, that the electron affinity will decrease slightly as the temper-
ature increases. Furthermore, the value of the FERMI level also decreases and
therefore depending only on the relative rates of decrease, the true work-function
may increase or decrease with the temperature. In all known cases of metallic

Handbuch der Physik, Bd. XXI.
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emitters free from adsorbed layers these changes in the true work-function with
temperature are relatively small.

The demand for increased electron emission densities for the same input of
power, that is, the same temperature, stimulates the search for a practical means
of lowering the true work-function. The adsorption onto the surface of a tungsten
crystal of a fraction of a monolayer (approximately 0.7) of electropositive polariz-
able atoms such as thorium or cesium results in an effective lowering of the
slectron affinity in direct proportion to the average dipole moment per unit area.
This method of increasing electron emission efficiency is made use of in all prac-
tical devices that depend on thoriated tungsten ribbons or filaments as their
electron emission sources. For metals there is no evidence to indicate that practi-
cal electron emitters can be improved in their efficiency by the introduction
into the interior of alloying impurities which are capable of increasing the con-
zentration of free electrons and in that manner appreciably alter the value of u.

Electron emission from poor conductors of which the oxide-coated cathode
is the most important example is predominantly characterized by factors that
in most respects are exactly opposite to those important for metallic emitters.
First, the electron affinity (IW) is low, that is, generally less than 1 ev. Secondly,
the free electron concentration in the interior of the crystal near its surface is
generally lower by a factor of 108 and at very low temperatures the concentration
of free electrons approaches zero. Under these low temperature conditions, the
FErMI level will lie almost exactly halfway between the bottom of the conduction
band and the highest occupied electronic level within the crystal. Such levels
are shown schematically in Figs. 25, 26 and 27. As the temperature is increased,
the magnitude of yu increases very appreciably and this change in the value of u
therefore increases the value of the true work-function and decreases the emission
compared with the emission that would have been realized had there been no
change in the FERMI level.

With these poor conductors, the number of free electrons in the conduction
band is therefore dependent not only on the concentration of donor centers
‘which are probably oxygen vacancies in the oxide cathode), but also it is very
dependent on the temperature. The equation which relates the value of the
FERMI level to the concentration of donors and to the temperature is Eq. (64.11).
An oxide cathode in a thoroughly deactivated state would have no excess of
barium over oxygen and the FERMI level would fall at an energy value approxi-
mately 2 ev below the bottom of the conduction band. The introduction of a
barium excess of as little as 1 part in 107 would result in a shifting in the FERMI
level to a value halfway between the energy Ej as in Fig. 25 and the bottom
of the conduction band if the temperature is sufficiently low. The introduction
of such a very small impurity content into an otherwise perfect ionic crystal
does not change the electron affinity but does make a very significant reduction
in the true work-function because of the important reduction in the magnitude
of the FERMI level value u.

An increase in the concentration of donors by a factor of 100 or more will
not change the electron energy level E;, associated with a particular donor type
such as, for example, an oxygen vacancy. The really significant factor that is
influenced by the increase in the concentration of the donors is the temperature
coefficient of the FERMI level. The exact value of this coefficient may be compu-
ted by Eq. (64.13) as was done in the preparation of the data given in Table 11
for selected. values of donor concentration and donor energy level.

This discussion may be summarized by the statement that the high emission
efficiency of oxide cathodes is achieved by the use of a non-metallic emitting
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surface having a very low electron affinity and the introduction into the crystal-
line structure of this emitter of a sufficiently high concentration of donor centers
to reduce the temperature coefficient of the FERMI level. With this combination
the work-function has an acceptably small value at the normal operating tem-
perature. Any changes in the crystalline structure such as those associated
with the addition of a high concentration of strontium to form a solid solution
of barium-strontium oxide crystals can presumably make some change in the
donor level relative to the bottom of the conduction band or it may make a
change in the maximum donor concentration that can be incorporated into the
solid structure of the crystal.

The experimental evidence which forms the basis of these introductory
remarks will be presented in the later sections of this treatise. These researches
will be discussed in the order of increasing complexity which is first, emission
from pure tungsten; second, the emission from tungsten in the presence of cesium
vapor; third, the emission from thoriated tungsten; and fourth, the emission
and conduction properties of oxide cathodes.

70. General studies of thermionic emission from tungsten. Of all of the pure
metals which have been studied to determine their thermionic emission pro-
perties, tungsten has received the most attention. Because of the economic
importance of tungsten in the lamp industry, the major metalurgical problems
associated with the production of high-quality filaments were solved many years
ago. It will be shown in Sect. 71 that there is no unique value of the true work-
function that can be associated with any crystalline material without the spe-
cification of the particular crystallographic surface across which the electrons
are escaping into the evacuated space. Reproducibility of average emission
properties from tungsten is attained only after sufficient heat treatment in a
completely inert atmosphere (high vacuum or inert gas) to recrystallize the
microcrystals into much larger ones and at the same time drive out and evaporate
off occluded impurities which had been purposelv introduced in order to facilitate
the production of the wire.

The evaluation of the thermionic emission properties of polycrystalline wire
is basically an engineering problem rather than a problem in physics. The con-
ventional method of expressing the results in a useful form is to quote the experi-
mentally determined empirical constants suitable for use in the RICHARDSON
type of equation [Appendix I and Eq. (50.2)]. A practical choice of these con-
stants is gr =4.5 ev and 4, =060 amp per cm.2 degree?. NicHOLS! has measured
the average RICHARDSON constants for various samples of wire and compared
his results with those previously obtained on similar samples less well defined
in terms of their impurity content. The expected average values of these con-
stants have been obtained by computations based on the known variation of
true work-function with crystallographic direction and assumptions with regard
to the probable distribution of the particular elemental areas associated with
specific crystallographic orientations over the entire surface of the specimen,

The empirically determined work-functions expressed as gp are suitable only
for the calculation of the average electron emission density as a function of the
temperature at an applied potential which is nominally zero. If the average
electric intensity at the surface of the emitter can be computed from geometrical
considerations then the SCHOTTKY relation given as Eq. (27.13) may be used
for the calculation of the average current density obtainable in the presence of
a. moderately strong accelerating field.

1 M. H. NicuoLrs: Phys. Rev. 78, 158 (1950).
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Theoretical relations applicable in the field of surface chemistry often de-
mand a knowledge of the work-function of the surface at which the reaction
takes place. The use of the empirical quantity ¢y for this work-function should
be avoided if accuracy is of importance. In all probability no part of the real
surface will have a true work-function of this value since some areas conceivably
of the order of 50% of the superficial surface may have a slightly lower work-
function while the remaining area can very well have a work-function higher
than the thermionic average by as much as 1 electron volt. Since work-functions
are generally measured at high temperatures, the surface will often be “self
cleaning’ and give a result which is characteristic of a clean surface even though
it may not be an homogeneous one. As the temperature is lowered, polarizable
atoms or molecules condense on the surface very quickly unless the partial
pressure of condensable gases is maintained at extremely low values (of the
order 10713 mm. or less). These adsorbed gases may form a monolayer which
will be quite stable under well-defined conditions and give reproducible results.
It must be emphasized that reproducibility is not a reliable indication of the
absence of surface contamination.

A detailed analysis of thermionic emission data by SEIFERT and PHipps!
aimed at a more accurate determination of the RicHARDSON work-function of

tungsten led them to the discovery of the periodic deviation effect. If the best of
experimental conditions are maintained, measurements show that the rise in
average emission current from a polycrystalline test specimen does not follow
precisely along the straight line predicted by the SCHOTTKY theory [Eq. (27.13)]
but shows small periodic deviations from this line. This effect has been studied
most extensively by CooMEs and his collaborators? and the theory has been
developed by Guta and MULLIN? and by HERRING and NicHors®. Even though
this periodic deviation effect is so small that it is insignificant as it relates to
practical problems of thermionic emission, it is an effect so well established by
experiment that any detailed theory for the transmission of electrons from the
interior of the metal across an uncontaminated barrier into a vacuum must

include a satisfactory explanation of this phenomenon and at the same time not
introduce assumptions that conflict with other known properties of the emitter.

In order to illustrate the major points of this section by carefully taken ex-
perimental data, Fig. 29 has been prepared. Two sets of data are shown on the
figure. The solid circles apply to data taken at 1373° K while the open circles
show results at 1790° K. The logarithm of the observed current is plotted as
a function of the square root of the electric field at the surface of the emitter.
At a field of approximately 6.4 kv per cm., the currents differ by a factor of
exactly 10%. With the corresponding displacement vertically, the two curves
cross each other at this field and they can, therefore, be displayed on the same
figure. This method of display permits the graphic illustration of a number of
points important for the understanding of thermionic emission from clean,
polycrystalline tungsten in the presence of a strong applied field. After a brief
description of the method of measurement, the points illustrated bv these data
will be explained.

A long filament of GE 218 wire was polished to remove all die marks and
scratches and its diameter was measured by an interferometer method to be

1 R. L. E. SerrerT and T. E. Purpps: Phys. Rev. 56, 652 (1939).
. 2 R. J. Munick, W.B. LABERGE and E. A. Coomes: Phys. Rev. 80, 887 (1950). -

D. W. JUENKER, G. S. CorLapay jr., and E. A. CoomEs: Phys. Rev. 90, 772 (1953).
3 E. Gute and C. J. MuLLiN: Phys. Rev. 61, 339 (1942) and earlier papers.
t C. HerriNG and M. H. Nicrors: Rev. Mod. Phys. 21, 185 (1949).
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4.24 Xx 1073 cm. The filament was mounted accurately on the axis of a set of
five cylinders, each having an inside diameter of 2 cm. The center collector was
3 cm. in length and the currents measured correspond to the arrival of electrons
at this collector. The tube wasso constructed that applied voltages up to 10000 volts
~ould be used without appreciable leakage or spurious current. At this voltage,
the surface field was 0.76Xx10%volts per cm. which was sufficient to give a very
measurable field emission with the filament at room temperature. This contri-
bution due to field emission is clearly evident in curve a of Fig. 20 at a field
strength of 0.2 x 10% volts per cm. The deviation of the three highest points
from the extrapolated straight line, shown on this figure, corresponded quite
precisely with the field emission observed at room temperature. For the high
temperature data, shown as curve b, the field emission over the range shown was
not important since the measured thermionic currents at the higher temperature
were 10000 times greater than those observed for curve a.

Eqs. (27.5) and (27.13) were used to calculate the field at the surface of the
emitter and determine the slope of the two straight lines, shownin. Fig. 29,
associated with curves a and db. These lines are both drawn to fit the observed

data points in the very high field range. This choice is quite arbitrary and de-
pends on the assumption that even with these strong fields, the penetration of
slectrons through the modified mirror-image barrier is of minor significance.
An inspection of the location of the data points in comparison with these lines
shows that over the range of field of 4 x 10% volts per cm. and higher, the deviation
of the plotted points with respect to the straight line is practically independent
of the temperature of the emitter. At lowerfields the curves show quite graph-
cally that the deviation of the observed points is very measurably greater the
lower the temperature. This fact alone indicates that space charge is playing no
important part in the control of the electron flow from the emitter to the collector.

If the periodic deviations are neglected and an approximate average slope
is determined, the departure from the theoretical SCHOTTKY lines is close to 8%
[t is evident from these data that average slopes that might be used to represent
experimental data according to the so-called ‘“ SCHOTTKY plot’ will deviate more
and more from the theoretical slope the lower the field and the lower the tem-
perature.

These deviations are consistent with the explanation that long range surface
fields are produced because of the non-uniformity of the work-function exhibited
by the specimen of tungsten used for this study. Undoubtedly, the crystals
were large and exhibited a variation in work-function depending on the crystal-
lographic direction. The minimum value was approximately 4.3 and the maximum
was about 5.3 volts. Although patch theories have been worked out?! for special
geometrical arrangements of patches, it is hardly worthwhile to do more than
indicate that a choice of patches may be made which is capable of accounting
for characteristics similar to those shown in Fig. 29. Although the patch effect
is important, such an explanation leaves much to be desired and serves relatively
little purpose since the details concerning the specimen used for observations
are generally lacking.

These data may be taken as typical and represent thermionic emission from
polycrystalline tungsten wire at two temperatures. It is conventional, as has
already been explained, to use the intercepts of straight lines of the type shown
in Fig. 29 as appropriate data for the RICHARDSON equation. The limitations
as well as the usefulness of the empirical constants 4; and ¢, have been discussed.

1 J. A. BECKER: Rev. Mod. Phys. 7, 95 (1935). — W. B. NortiNngHAM: Phys. Rev. 49,
78 (1936). — C. HERRING and M. H. NicuoLs: Rev. Mod. Phys. 21, 185 (1949).
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Computation shows that the empirical constants as given in Appendix I may
be used to compute the intercepts expected for these two temperatures. These
observed data show a deviation in current density observed of only 20% from
that expected for curve a and 40% for curve b. Lack of agreement with the
average predicted current density for tungsten of this magnitude is typical.

A careful examination of the data shown in Fig. 29 serves to establish the
fact that the data points deviate systematically from a straight line. Clearly,
these deviations are small and stand out strongly only when accurately taken
data permit the direct plotting of the deviation from the theoretical straight

line as a function of the
field. The data shown in
this figure, in addition to
other data taken at the
same timeat other temper-
atures provide the infor-
mation on which maxima
and minima in the devia-
tion can be indicated.
In this figure the minima
are indicated by arrows
pointing downward and
the maxima by arrows
pointing upwards. One
striking fact that came
from these observations
is that the fractional mag-
nitude of these deviations
is practically independent
of the temperature and

the location of the maxima and minima also seems to be practically independent
of the temperature. These results were reported very briefly by NoTTINGHAM 1.

The work of DuseMAN and others? led to the erroneous conclusion that the
experimentally determined value of the thermionic constant 4, should be
60.2 amps per cm.?-degree? and therefore agreed exactly with the value of the
theoretical constant which he computed. This value is now recognized to have
been in error by a factor of 2. The factors that enter into the correct calcula-
tion of the thermionic constant A are given in Eq. (18.6). Contributing to
this difference between the observational value of 60 and the computed value
of 120 are three factors not previously taken into account. These are:

1. For tungsten, practically all the emission comes from approximately 50%
of the superficial area of the emitting filament;

2. The effective temperature coefficient of the true work-function of the
important emitting areas is not only uncertain as regards its actual value but
aven the sign, remains in doubt;

3. The observed deficiency in the number of slow electrons emitted from the
surface must also be given consideration.

The combination of these last two factors would seem to indicate that the

average temperature coefficient of the true work-function of the strongly emitting
areas is small and negative so that the combination of all factors gives an empirical
value of the constant 4, of 60 amps per cm.2-degree?.

1 W. B. NorringHAM: Phys. Rev. 57, 935 (1940).
2 S. Dusuman: Rev. Mod. Phys. 2, 381 (1930).
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II. Emission from single crystals.
71. Thermionic emission properties of single crystals of tungsten. The pioneer-

ing work of MULLER! showed by the use of his electron projection microscope
that the field emission properties of a tungsten single crystal were very dependent
on crystallographic direction. Shortly before MULLER’s work, thermionic elec-
trons were projected in a similar manner from a filamentary source to a sur-
rounding cylindrical fluorescent screen and thus indicated at least qualitatively
the variation in the emission properties of a
single crystal of tungsten as a function of
crystallographic direction. Following a seties
of researches by JOHNSON and SHOCKLEY 2,
NELson3, and MARTIN%, NicHOLs® made
the first quantitative measurements of the
thermionic emission from a single crystal
of tungsten as a function of its crystallo-
graphic direction.

In the NicHOLS experiment, a polished
tungsten filament in which a single crystal
9 cm. long had been grown was mounted on
the axis of a cylindrical electron collector
system. The filament was supported on a
frame with bearings accurately aligned so
that the filament could be rotated about its
own axis through more than 180°. Aslot inthe
collector system defined an opening through
which a beam of electrons could be delivered to a shielded collector for measure-

ment. Cold working of polycrystalline tungsten wire previous to its first heating
tends to line up the 110 direction of the crystallites along the axis of the wire.
Such wires invariably grow crystals with this orientation. The polar diagram
shown as Fig. 30 is a reproduction of the
one presented by NicHors. The diagram
shows weak emission areas in the 110 and
the 112 direction. Maxima occur in the 111
and 116 directions. The minimum in the
100 direction is sometimes not as pronounc-
ed as that found by NicHoLS.

The NicHoLs tube was reconstructed by
SMmiTH® and very extensive additional meas-
urements were made on a new crystal. These

measurements included a study of the emis-
sion as a function of surface field. Although the SMITH measurements were in sub-
stantial agreement with NICHOLS, analysis showed that theelectron current observ-
ed with the crystal oriented with the 110 face in direct line with the measure-
ment slot was almost entirely spurious. Work-function difference evaluations by

E. W. MULLER: Z. Physik 106, 541 (1937); 108, 668 (1938).
R. P. JounsoN and W. SHockLEY: Phys. Rev. 49, 439 (1936).

3 R. B. NELson: M. I. T. PhD Thesis 1938.
tS. T. MarTIN: Phys. 56, 947 (1939).
5 M. N. NicuoLrs: Phys. Rev. 57, 297 (1940).
VG. F. Smita: Phys. Rev. 94, 295 (1954).
/ Emission in this direction is spurious and the corresponding 4 p and gx do not represent

‘he RICHARDSON constants truly characteristic of this surface direction.
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Hutson (Sect. 72) show that the true work-function associated with this direc-
tion is so high that the currents measured by Nicuors and by SMITH were
correctly identified by SMITH to be the result of secondary effects and not a valid
measurement of the primary emission in that direction. The results of both of
these studies are best summarized by the Table 71.1.

72. Velocity analysis of thermionic emission from single crystals of tungsten.
A study! that required a homo-energetic beam of electrons indicated that an
investigation of the electron energy distribution from a hot filament by means
of a semicircular velocity analyzer could yield an accurate determination of the
contact difference in potential between the emitter surface and the interior
surface of the analyzer. Provided that the local work-function differences over
the surface of the interior of the analyzer were sufficiently small and the dimen-
sions of such patch areas small compared to the distance from the surface to
the electron beam, the average work-function of the analyzer interior serves as
a suitable reference. HuTson? designed a tube similar to the NicHOLS tube in
that the single crystal tungsten filament could be rotated about its own axis
so that the electron emission derived from well-defined crystallographic surfaces
could be made to enter the aperture of the analyzer. The filament was heated
by means of a pulse current source so that there would be no drop in potential
over the filament during the measuring half cycle. Electron accelerating voltages
in the range 100 to 2000 volts were applied between the filament and the co-axial
cylinder. The slot in the cylinder subtended a very small angle at the filament
and therefore permitted electrons to enter it from a well-defined area. A carefully
designed electron-optical system provided a means for slowing down the electrons
so that they entered the 180° velocity analyzer with an energy of about 3 ev.
Depending on the strength of the uniform magnetic field, a precisely known
energy group passed around the analyzer and out the exit slit to the shielded
electron collector. The data shown in Fig. 31 are typical of the results obtained.
In this figure the current observed is plotted on a logarithmic scale as a function
of the kinetic energy, expressed as V,, of the electrons at the emission surface.
The current and energy values are not shown in this diagram since they were
normalized by vertical and horizontal displacements in order to match the three
sets of observed data which were taken with the extremes in applied voltage of
150 to 2000 volts.

It was possible to establish that no change had occurred in the average work-
function of the interior of the analyzer during the time required for a set of meas-
arements, and therefore the horizontal displacements required to bring the
various curves similar to those shown in Fig. 31 into alignment are a direct
measure of the changes in the true work-function with electric field. The observed
changes for three of the important crystallographic directions are plotted in
Fig. 32. The ScHOTTKY theory of the change in true work-function with field
was presented in detail in Sect. 27 and Eq. (27.11) shows that the change in
work-function should be proportional to the square root of the electric intensity
at the surface of the emitter.

In Fig. 32 the work-function change is plotted as a function of the square
root of the surface field and the straight lines are drawn with the theoretical
slope required by the SCHOTTKY theory. This study therefore stands as the first
direct observation of the SCHOTTKY effect reduction in work-function by the
influence of an external field. All previous verifications of the SCHOTTKY theory

1 'W. B. NoTrTINGHAM: Phys. Rev. 55, 203 (1939).
2 A. R. Hutson: Phys. Rev. 98, 889 (1955).
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have depended on the assumption not previously established that the energy
distribution of the electrons transmitted across the maximum of the potential
barrier remained independent of the applied field. HuTsoN’s experiments demon-
strate this independence separately from the direct observation of the shift in
the work-function which is established by these data to be exactly that pre-
dicted by the ScHOTTKY theory within the experimental error. Fig. 33 illustrates
the fact that the energy distribution at a constant temperature of 2000° K and
a constant accelerating anode voltage is independent of the crystallographic
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Fig. 31. Superposition of energy distributions obtained
by Hutson at 2000° K for three different anode poten-
tials and electron ‘emission in the 111 direction. Initial
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Fig. 32. Change of work-function with applied field as observ-
3d by Hutson from the relative voltage displacements re-
quired to superpose distributions illustrated by Fig. 31.
Solid lines are drawn with a theoretical slope required by

SCHOTTKY’'S mirror-image theorv.

direction and furthermore that there is a very marked deficiency of slow elec-
trons. This result is indicated by the lack of agreement between the observed
points illustrated there and the solid line which represents the results that would
have been obtained had the electrons been emitted from the hot filament with a
perfect MAXwWELLian distribution.

Electron energy distributions determined by the retarding potential method
by NorriNgHAM! indicated a similar departure from a MAxXwELLian distribution
for electrons emitted from tungsten filaments and from thoriated tungsten fila-
ments. Patch effects on the tungsten filaments interferred with the accurate
reproducibility of the retarding potential curve but did not interfere with the
results obtained with thoriated filaments. An empirical relation discussed in
Sect. 26 and given by Eq. (26.4) served as an accurate representation of the
retarding potential data. This relation would predict the distribution function

UW, B. NotTINGHAM: Phys. Rev. 49, 78 (1936).
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represented by the dotted line of Fig. 33. Since the method by which the electron
energy distribution was determined by NOTTINGHAM was inherently less accurate

than that of Hutson. There is no signif-
icant disagreement between these studies.

The retarding potential measurements
made by GERMER! are often cited as proof
that electrons are emitted from tungsten
with a MAxweLLian distribution. Since
GERMER’S experimental error was large,
he was not justified in drawing any other
conclusion, and yet NOTTINGHAM showed
that his data and the GERMER data are in
excellent agreement. There exist in the
literature, therefore, reports of only three
experiments on electron energy distribu-
tion that have been taken with suitable
geometrical conditions and freedom from
surface contamination required for these
studies. The results of these threeresearch-
es are in agreement.

Far more difficult is the direct measure-

ment of the temperature coefficient of the
contact difference in potential. HUTSON’s
experiments yielded some information on
this subject and indicated both positive
and negative temperature coefficients de-
pending on the crystallographic direction
investigated. These results combined with
the direct determination of the contact
difference in potential between the various
crystal faces permitted HUTSON to prepare
the data contained in Table 72.1.

a mat rable 724. ; inost Since HUTSoN was not
F ’ ) true work-functions for a tungsten i

 rystal im. py of nt ol 1700 to Bo Kr prepared to make a directetermination of the abso-
lute value of any of the
RICHARDSON work - func-

tions with an accuracy
comparable with that of
NicHorLs and of SMITH,
those given in Table 72.1
depend on the acceptance
of the NicHOLS and SMITH
work-function determined
for the 111direction.

Because of the fact that
no theory has been devised
to account for the observed

deficiency of slow electrons emitted thermionically from hot surfaces, experi-
mentally unsupported criticism has followed the publication of the experimental

I I. H. GErMER: Phys. Rev. 25, 795 (1925).
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results that show the deficiency. The latest is that offered by SMITH! in criticism
of the work of Hutson. Smita makes the hypothesis that, for reasons unknown,
the resolution of HuTsoN’s velocity analyzing equipment was a factor of 10
poorer than the value claimed by Hutson. All attempts to identify a cause for
this lack of resolution assumed by SMITH have failed and independent evidence
by LANGE? indicates that his analyzer, which was similar in constructionto
that of HuTsoN, has practically the resolution expected from it according to
calculations similar to those applied by HuTsoN. LANGE’s experiment was not
designed specifically to evaluate the energy distribution of the electrons emitted
from a hot filament, but when used for that purpose indicated a distribution very
similar to that reported by HuTson.

LANGE's experiment was designed to measure the reflection of slow electrons
as they enter, from the outside, into a clean, single crystal of tantalum. It is
premature to report LANGE’S results in any detail, but the present indications
seem to be that very slow electrons are not reflected as they approach a single
crystal which is at room temperature. This result suggests that possibly the
important difference between the reception and the emission of electrons is that
LANGE’Ss receiver operated at a low temperature while all emitters studied have
operated at high temperatures. The experiment is to be modified to permit
the evaluation of the electron absorption properties of the target when it is at
a high temperature sufficient to excite the vibrational states of the crystal in
a manner comparable with those in the high temperature electron emitters studied.

IIT. Modification of electron affinity by polar layers.
73. Influence of polarizable adsorbed layers on thermionic emission. Since a

tungsten filament can be raised to a very high temperature (3000° K) for a short
period of time without excessive evaporation, the surface can be freed of adsorb-
ed impurities. Under moderately good vacuum conditions the thermionic emis.
sion can be measured accurately at a test temperature of the order of 1400° K.
If the partial pressure of gases capable of adsorbing on the filament at this
temperature is of the order of 107° mm. or higher, the thermionic emission
from the test filament tisually decreases with the time. This phenomenon often
described as “emitter poisoning” is characteristic of the adsorption onto the
filament of electro-negative gases such as oxygen. Since the electro-negative
adsorbed layers are difficult to control and reproduce, they have not been investi-
gated in terms of their influence on thermionic emission to the extent that adsorb-
ed layers of electro-positive material have been studied.

The adsorption of films on the surface of a single crystal of tungsten and its
influence on the thermionic emission is exhibited dramatically by the researches
of MARTIN3. A large single crystal of tungsten was cut and polished to form a
hemispherical cap which could be heated by radiation and electron bombardment
from a filament mounted in a cavity in this cap. This structure was located at
the center of a spherical bulb coated with a phosphor so that the pattern of light
observed at the surface of the phosphor served as a qualitative measure of the
distribution of electron emission over the surface of the tungsten emitter. It
was not possible to control nor measure the quantity of adsorbed material on
the tungsten, but it was possible to establish that the adsorption and emission

LG. F. Smita: Phys. Rev. 100, 1115 (1955).
2 W. J. Lange: Unpublished researches at M. I. T.
3 S. T. MARTIN: Phys. Rev. 56, 947 (1939).
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properties of the surface varied in an extremely complex manner and yet main-
tained symmetries that were determined by the known crystallographic directions
»f the single crystal specimen. These studies of MARTIN'S demonstrated the futility
»f attempting to interpret, in much more than a qualitative manner, the influence
»f adsorbed films on thermionic emission. For this reason, Sect. 74 will give a
very brief review of the researches of TAvLor and LANGMUIR! which was the
latest and most comprehensive study of the properties of cesium films on tungsten.
Sect. 75 will deal with some of the properties of tungsten when activated by a
partial layer of thorium as produced on a thoriated tungsten filament.

The forces that act on an electron as it leaves the interior of a metallic con-

juctor and escapes across the conducting boundary into free space are complex
and understood in some detail only after
the very short-range forces become reduces
in importance in comparison with the
long-range mirror-image force. The integral
&gt;f all of the forces that act on an electron

as it escapes is measured by the quantityW,
known as the “electron affinity”. The true
wvork-function of a surface as discussed in

Sect. 19 is not the electron affinity itself,
put the difference between two quantities
both measured from the same reference and

given by Eq. (19.1). Additional discussion
will be found in Sect. 27.

The adsorption of polarizable atoms in
the form of a film less than one mono-mole-

cular layer in thickness can have no influence
on the location of the FERMI level yu, but can
act directly to reduce (or even increase) the

average value of the electron affinity W,. The effect of a dipole layer can be
avaluated quantitatively by first considering that the problem is closely related
to that of computing the difference in potential between the sheets of charge
that reside on the surfaces of a parallel plane capacitor with a separation
hetween the surface charges of w and a charge per unit area of o. The follow-
ing equation expresses that difference in potential:

- A

NV=
10) (TF (7%.1)

2

If the system of charges is considered to be the equivalent of the grouping
shown in Fig. 34, then an electron at point a in the plane AA will experience
practically no net force acting on it due to the presence of the dipoles if the
distance a —m is large compared with the average distance between the dipoles
shown in the figure as §. The net force on the electron at point b also vanishes
nder these same conditions. However, as the electron approaches close to the
sheet of dipoles, it is acted upon by forces which, because of the negative charge
accelerate the electron across the space. In other words, it would have fallen
through a difference in potential expressible by an equation similar to Eq. (73.1)
as follows:

mn,
AV = —=. 73.2)

[. B. TavLOR and I. LANGMUIR: Phys. Rev. 44, 423 (1933).
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In this equation # is the average dipole moment per atom and is defined as the
average displaced charge within the polarized atomic or molecular unit multiplied
by the average distance of displacement. The quantity #, is the number of
adsorbed molecules per unit area. On the basis of this reasoning, it is an accurate
statement to say that the reduction in the true work-function that results from
the adsorption of an electro-positive substance to the extent of one monolayer
or less is directly proportional to the average dipole moment per unit area that
results from the adsorption of this layer.

The arrangement of charges shown in Fig. 34 suggests at once that the ad-
sorbed dipoles should generally repel each other and therefore act in their motion
over the surface of a crystal as a two-dimensional gas. When the average distance
between dipoles is large compared with atomic spacings, then the dipole moment
per atom or molecule should be independent of their concentration. As the number
on the surface increases, however, the dipoles react upon each other and reduce
the dipole moment per atom. As it will be shown in Sects. 74 and 75, this fact
accounts for the linear reduction in work-function with increased concentration
when a small fraction of the surface is covered.

With larger concentrations, the dipole moment per atom decreases to such
an extent that a maximum dipole moment per unit area occurs with approxima-
telv 70% of the surface covered and not when a complete monolayer is formed.

For a given concentration of adsorbed atoms, it is to be anticipated that the
dipole moment per atom will decrease as the temperature increases. Because
direct measurements of the temperature coefficient of the contact potential are
difficult, although not impossible, there exist no quantitative data on the net
increase in work-function with temperature. Indirect measurements by NoT-
TINGHAM! would indicate a maximum of 28.5 X 1073 volts per degree for thorium
on tungsten. This factor, when converted to the units used in Eq. (38.10),
gives the value of (dP/dV;) of 3.3. The thermionic constant 4, for surfaces
activated by electropositive fractional monolayers is low, and this fact is a direct
indication that this positive temperature coefficient of the work-function is
influencing the emission-versus-temperature relation.

The opposite effect is observed when the surface is contaminated by electro-
negative atoms or molecules. Again, the first direct indication comes from the
fact that the empirical A values for those contaminated surfaces are very high
compared with the theoretical A given by Eq. (18.6).

74. The properties of cesium films on tungsten. The properties of fractional
monolayers of cesium adsorbed to tungsten have been studied experimentally
and analytically in the greatest detail by TAvyLOR and LANGMUIR? The principal
tube used for their study had two “well-aged’’ tungsten filaments, each of 30 cm.
total length mounted close to the axis of a three-electrode collector system. The
central 10 cm. sections of these filaments were straight and 10 cm. of filament
at each end were wound in a tight spiral so that the center section would heat
very uniformly. The collectors were formed by evaporation onto the glass wall
of the tube so that the entire structure except for the filaments themselves could
be maintained accurately at a pre-assigned temperature in the range from about
270 to 300° K. The concentration of cesium in the vapor phase was controlled
by the regulation of this temperature.

1 W. B. NorTingHAM: Phys. Rev. 49, 78 (1936).
2 J.B. Tavior and I. LaneMUIR: Phys. Rev. 44, 423 (1933). — I. LANGMUIR: J. Amer.

Chem. Soc. 54, 2708 (1932).
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LANGMUIR and KINGDON! showed that all cesium atoms which strike a high-
temperature tungsten filament leave as positive ions and the measurement of
this ion current is a direct indication of the arrival rate of cesium atoms at the
filament. As the temperature of the test filament is reduced, atoms tend to
adsorb on the filament until a sufficient layer is built up so that the rate of
evaporation from the surface is exactly equal to the rate of arrival of atoms at
the surface. For a wide range of surface concentrations that approached closely
to a monolayer, TAYLOR and LANGMUIR determined rates of evaporation of
atoms, positive ions and electrons as a function of the temperature. LANGMUIR
based his theoretical analysis on the assumption that 99.5% of the entire sur-
face of his “aged” filaments was 110 surface. This hypothesis was well supported

by the self-consistency of the data, but
was never verified by actual observation
of the emission pattern by the electron
projection tube method later used so
successfully by JoHNsON and SHOCKLEY
and by MARTIN 2 to show that the filament
actually had developed an etched struc-
ture such that only 110 surfaces were
exposed. ROBINSON3 made a vigorous
attempt to follow the techniques of
TAYLOR and LANGMUIR to produce a test
specimen of uniform surface structure, but
found it impossible.

In spite of the uncertainty in the
rue nature of the underlying crystallo-
graphic structure of the tungsten speci-
men studied by TAYLOR and LANGMUIR,
there can be no doubt concerning the
oroader aspects of their results. These
will be summarized very briefly by the
following statements.

1. The adsorption of cesium on a tungsten surface reduces the work-function
in direct proportion to the number of cesium atoms adsorbed for coverages less
than approximately 15% of the number of cesium sites available to a monolayer
of adsorbed atoms. LANGMUIR’S determination gives 4.8 X 10 atoms per cm.2
for complete coverage.

2. A maximum reduction in average work-function of approximately 3 volts
takes place if the surface covered is 0.67 of a monolayer. This maximum occurs
secause the dipole moment per atom decreases at a greater and greater rate
so that in spite of an increase in cesium concentration above this critical value,
the average dipole moment per unit area actually decreases.

3. The relative rates of atom evaporation, electron evaporation and positive
ion evaporation at 1000° K are best illustrated by Fig. 35. In this figure, the
fraction of the surface covered is represented by the symbol # and the evaporation
rates are expressed in terms of units per cm.? per sec. This figure shows that,
for very small concentrations the ion evaporation is very large compared with

a
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1 I. Langmuir and K. H. KIiNGDON: Science, Lancaster, Pa. 57, 52 (1923). — Proc. Roy
Soc. Lond., Ser. A 107, 61 (1925).

2 R. P. JounsoN and W. SHOCKLEY: Phys. Rev. 49, 436 (1936). — S. T. MARTIN: Phys.
Rev. 56, 947 (1939).

8 C. S. RoBinsoN: Unpublished research. Dept. of Physics, M. I. T.
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either atom evaporation or electron evaporation. As the surface coverage increases,
ion evaporation drops to practically negligible proportions, whereas the atom
evaporation continues to increase and as a monolayer is approached, the atom
evaporation increases so rapidly that at this high filament temperature it is
practically impossible to form even a small part of a second layer of cesium on
the surface. Electron evaporation is shown to have a maximum at a 9 value
of 0.67.

These studies of TAYLOR and LANGMUIR have contributed more than any
other single investigation to an understanding of the properties of "adsorbed
films on an underlying metallic structure. The results are best accounted for
by the statement that the adsorption of an electropositive layer modifies the
electron affinity in direct proportion to the dipole moment per unit area. The
adsorbed layer reduces the work-function and permits the thermionic emission
of enormously more electrons than would otherwise obtain. This is one of the
clearest examples of catalyticaction since the cesium itself assists in the “reaction ”’
without in any way being used up in the process.

75. Some properties of thoriated tungsten emitters. In the early days of lamp
manufacture, improved ductility of tungsten was obtained by the introduction
of thorium oxide to the extent of about one percent along with the tungsten pow-
der before sintering and wire production. Before heating to a high temperature,
wires containing thorium oxide are practically indistinguishable by inspection
from pure tungsten wires. Upon the first high-temperature heating, however,
there is a very great difference in the average crystal size of the heated wire.
Pure tungsten invariably develops large crystals that generally extend as single
crystals across the entire diameter of the wire, while thoriated tungsten develops
many small crystals per wire diameter that seem never to grow to develop large
crystals in later heating. Hundreds of pockets of thorium oxide are formed in
the interstices between the tungsten crystals in a centimeter of wire length.
LANGMUIR and RoGERs! discovered that, after a suitable sequence of heating,
thoriated tungsten wires yielded tens of thousands greater electron emission
density at a favorable operating temperature in comparison with pure tungsten
at that same temperature. The main features of the phenomena of thorium
oxide reduction and diffusion to the surface were studied by LANGMUIR? and
BRATTAIN and BECKERS,

From these and other studies it has become clear that thorium oxide is reduced
to some extent by the evoluation of oxygen in excess of the thorium when the
filament is flashed to a high temperature, preferably between 2800 and 3000° K.
After a flash of the order of one minute at this high temperature, the concentration
of thorium averaged over the entire surface of the tungsten is practically negligible
and the emission properties of the specimen are very close to those of pure tung-
sten. In order to activate this filament, it must be maintained in an evacuated
tube from which all active gases have been removed, either by pumping or by
the “getter action” of some material such as barium. For quantitative researches,
it is necessary to reduce the partial pressure of these active gases to less than
10714 mm.

If the filament is maintained, preferably with no applied electron accelerat-
ing field, at a temperature of 2100° K, thermionic emission tests made at some
fixed test temperature such als 1400° K or less show that the emission capability

1 I. LANGMUIR and W. ROGERS: Phys. Rev. 4, 544 (1914).
2 I. LangMUIR: Phys. Rev. 22, 357 (1923).
8 W. H. BraTTAIN and J. A. Becker: Phys. Rev. 43, 428 (1933).
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of the filament will increase through many orders of magnitude and finally stabilize
after approximately 30 min. of activation at a value which is independent of
further activation heating

For a quantitative investigation of the activation procedure, it is more in-
structive to choose a lower activation temperature such as 1900° K and a test
temperature of 1200° K or less. After the filament has been aged by repeating
the activation procedure a few times, it may be flashed to a high temperature
for 30 sec. and a detailed study of the rise in emission with time of activation
may be made. Since a decrease in true work-function as a result of activation
is a direct measure of the average dipole moment per unit area that results from
the presence of the thorium on the tungsten surface, the following equation
gives the relation between the observed emission current and the time:

t=
e nn dng,

nl =1InI,+ rr | Po [1 — f(n,n)] (Se) at. (75.1)
t=0

This equation is written in this form in order to bring out certain features
of the phenomena involved. Consider first the time rate of increase in the density
of adsorbed atoms represented by (d#n,/d{)y,. For a temperature of activation 7,
as low as 1900° K, the evaporation of thorium atoms is practically negligible
until the surface concentration builds up to 0.8 of a monolayer. Under that
condition this factor is controlled by the diffusion of thorium from a large number
of relatively active spots between crystals out of which the thorium atoms stream
and spread (because of their mutual repulsive forces) over the entire surface of
the thoriated tungsten filament. For the most accurate results, the thorium
atoms should be given an opportunity to disperse uniformly over the entire
emitter by holding it at a temperature of approximately 1400° K for a consider-
able period of time after each activation period before the emission observations
are made at 1200° K. Other factors in the equation include #, which is defined
as the average dipole moment per thorium atom when the concentration is less
than 5% of a monolayer and the second factor of the equation is written in
this form to indicate that the average dipole moment per atom is known to
decrease as the concentration increases. In other words, the function f(n,/n,)
would start out for small concentrations to be practically zero, but as the con-
centration increases, this function will gradually increase until it approaches
the concentration of a monolayer specified as #,. It follows from this discussion
that if the arrival rate of thorium atoms is initially constant, and if the function
f(n,/n,) is small compared with 1, then In I should be a linear function of the
time. Initially it can be assumed that the evaporation rate can be neglected in
comparison with the rate of arrival of thorium atoms from the interior, and
that this rate of arrival is governed by an exponential temperature relation.
Studies of the initial rise in emission current for small surface concentrations
should permit a determination of the dipole moment #,. The exact rate of arrival
at a given activation temperature 7, could differ from sample to sample, but it
would be expected that the dipole moment per atom would be reproducible.
Tests of this kind have not been made with all factors of the problem under control.

Having once determined a suitable value for #4, and the rate of arrival for
a given low temperature of activation T,, then it should be possible to determine
more specifically the interaction function f(n,/#,).

As regards this process of activation, it is sufficient to say that a surface
concentration of approximately 0.7 of a monolayer yields the highest emission
current at a given test temperature and that the addition of extra thorium
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atoms actually results in a lower emission as measured at zero field since, because
of the interaction of one dipole on its neighbor, the average dipole moment per
unit area decreases with an increase in thorium concentration above the 0.7 value.

Fundamental to the understanding of the physics of thermionic emission is
knowledge concerning the energy distribution of the electrons emitted. Not-
TINGHAM! developeda:circuitforthepulseheatingofathoriatedfilament in
order to study its emission properties as a function of applied voltage without
the results being distorted by the presence of a drop in potential over the length
of the filament that delivered current to _11600
the collector. Extensive and detailed oT

research yielded information that indi-
cated an unmistakable departure from
the anticipated MAxwELLian distribution.
By means of analytic methods described
in detail in Sect. 26, it was possible to
show that, over a very wide range in
activation and in temperature, the em-
pirical equation given as Eq. (26.8) and
discussed in Sect. 26, was an excellent
representation of the data. This result
is illustrated by Fig. 36, which is a com-
posite of electron energy distributions for
0 states of activation which covered a
very wide range of emission capabilities.
The test temperature was 1160° K.

The extent of this deficiency in slow
electrons is best illustrated by the curves
of Fig. 4, which apply to three selected
temperatures. The statement has been
made by HERRING and NicHoLs? that the
observed deficiency in slow electrons can
be accounted for on the basis of a hypo-
thetical distribution of nonuniformities.
In reply to this suggestion, it may be
stated that it seems highly improbable
that a single sample of thoriated filament
wire in so many different states of activation would have effectively the same
distribution of nonuniformity and furthermore, that all samples investigated
with the same degree of care as the one under present discussion show the same
energy distribution. All that can be said is that all of the known data at
present capable of giving an answer to this question of the electron energy distri-
bution yield the same answer and further more, this answer is in excellent agree-
ment with HutsoN’s data, discussed in Sect. 72.

The influence of patches and the details of their development can be studied
by observing the thermionic emission with an accelerating field. Typical data
covering this phase of the subject are given in NOTTINGHAM’S paper. The most
significant conclusion that can be drawn from these studies is that although
the long-range forces between the parallel dipoles formed by the adsorption of
thorium atoms are repulsive forces, the experimental evidence indicates that
there are strong, short-range attractive forces which permit patch areas of large

1 W. B. NortingHAM: Phys. Rev. 49, 78 (1936).
2 C. HErrInG and M. H. NicuoLs: Rev. Mod. Phys. 21, 185 (1949).
Jandbuch der Physik, Bd, XXI.
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groups of thorium atoms to accumulate together and form local regions of high
thorium density separated by regions of very low density. In other words, the
“surface phase postulate’ of LANGMUIR that “all the properties of an adsorbed
film on an underlying surface of given composition are uniquely determined
by © and T” is not fulfilled with thorium and, in all probability, is not as per-
fectly satisfied for cesium on tungsten as TAYLOR and LANGMUIR! thought.

IV. The oxide-coated cathode.

76. General considerations. The oxide-coated cathode is by far the most im-
portant thermionic emitter of electrons. The fact that the application of an
alkaline earth oxide to a supporting metallic conductor converted it into an
amazingly efficient electron source was discovered in 1903 by WEHNELT2. In
spite of the fact that over fifty years of research have been applied to the investi-
gation of phenomena associated with the oxide cathode, a comprehensive and
generally accepted theory of its operation has not been developed.

Within the past ten years, the results of many researches carried on under
superior conditions have yielded so much new material that a fairly clear picture
seems to be emerging, and it will be the purpose of the following sections to
integrate as many of these results as possible into a unified theory. See Sect. 69
for a discussion of the basic difference between the oxide emitter and metallic
emitters.

A very complete analysis of the chemistry of the oxide cathode has been
prepared by RITTNER®. His study has been made with the background assump-
rion that the presence of an excess of barium within the crystal of the oxide
cathode is necessary for its activation. In spite of the fact that the results of
WooTEN, RUEHLE and MOORE* show no correlation between their measurements
of “Thermionic Performance” and the free barium found either in the coating
itself or in the tube under test, the theory to be presented here also depends on
the excess barium hypothesis. The application of the equations developed in
Sect. 65 shows that the concentration of excess barium need not be more than
a few parts per million and that a variation in this concentration has a more
lirect bearing on the temperature coefficient of the true work-function than it
Joes on the work-function derived as an empirical constant from the RICHARDSON

formula (see Sect. 81).
RITTNER’S analysis of the chemistry of the oxide cathode shows that pure

nickel reacts with barium and strontium oxide to such an extremely small extent
that it is the impurities intentionally introduced into the nickel base that are
are the most efficient reducing agents in practical cathode nickel to: develop
and maintain the needed excess barium. It would carry this discussion too far
afield to go into all the details of the thermo-chemistry involved. It must be
summarized simply by stating that reducing agents such as aluminum, silicon,
magnesium and titanium are favored in practical applications. Good production
procedure demands a combination of elements so that the initial activation can
proceed rapidly and possibly exhaust a strongly acting reducing agent such as

! J. B. TavLor and I. LANGMUIR: Phys. Rev. 44, 423 (1933). — I. LANGMUIR: J. Amer.
Chem. Soc. 54, 2798 (1932).

? A. WEHNELT: Verh. dtsch. phys. Ges. 5, 255, 423 (1903). — Ann. Phys. 14, 425 (1904).
3 E. S. RITTNER: Philips Res. Rep. 8, 184 (1953).
* L. A. WooTEN, A, E. RUEHLE and G. E. Moore: J. Appl. Phys. 26, 44 (1955). —

L.. A. WooTEN, G. E. Moore and W. G. GULDNER: J. Appl. Phys. 26, 937 (1955). —
G. E. MoorEg, L. A. WooTEN and J. Morrison: J. Appl. Phys. 26, 943 (1955).
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magnesium within the first few hours of cathode operation. The excess barium
thus produced would soon leave the crystals in the course of life unless some
slower process of BaO reduction continued the maintenance of the required
excess barium concentration. Silicon and titanium alloyed into the base nickel
seem to serve this function. An excessive use of silicon results in the development
of an interface layer identified by x-ray analysis! as barium ortho-silicate. Al-
though the formation of the compound results in the liberation of barium, the
interface thus developed may have an extremely high resistance which is in
general very objectionable in the practical use of such cathodes.

Practical experience teaches that a solid solution of barium-strontium car-
bonate in proportions close to 50—50 by weight forms one of the best sources
for oxide cathode material. These crystals are prepared in a finely divided form
mixed with a binder and sprayed on to the base metal. Under moderately good
vacuum conditions the carbonate breaks down at a temperature of approximately
1200 to 1300° K with the evoluation of carbon dioxide and carbon monoxide.
The most detailed descriptions
concerning manufacturing pro-
cedure available in the litera-
ture are given by HERRMANN
and WAGENERZ. Even though
the discussion and details given
in that book are very helpful,
it must be recognized that
manufacturers of oxide cath-
odes have developed the art as
it applies particularly to their
own environment and gene-
rally maintain their proce-
dures as “company confiden-
tial”

Sy

Fig. 37. Conductivity of a typical barium-strontium coating as computed
doy theories of Sect. 65. Range I, semiconductor conductivity within
crystals. Range II, pore conductivity becomes more important than
crystal conductivity, Range III pore conductivity inhibited by space
“harge. Curve aa, semiconductor conduction alone, Curve bb, pore

conduction alone without space charge.

77. General discussion of
the electrical properties of the
coating. LoosjeEs and VINK3
were probably the first to present the most acceptable generalized description
of the electrical properties of .an oxide coating. Their description and data
apply more specifically to the uniform and regular features of the coating
than they do to the distorted and complex situations associated with cathodes
in which a non-uniform distribution of the donor centers exists. The maintenance
of high electron emission currents always develops some nonuniformity in the
coating because of the high internal electric field. With well-activated coatings
the internal field within the semiconductor coating is often so small as the electron
current is drawn that the ionic flow of the impurity center in the presence of
this field can be neglected. Although it will be necessary to discuss the evidence
which is directly related to the properties of cathodes with a nonuniform distri-
bution of donors, it will be best to postpone that complication until after the
basic properties have been described.

The conductivity characteristic of an oxide cathode may be divided into
three ranges, which are identified in Fig. 37 by the numbers I, IT and III. The

1 A. S. EISENSTEIN: Adv. Electronics 1, 24 (1948).
? G. HERRMANN and S. WAGENER: The Oxide-Coated Cathode, vol. 1. London: Chipman

&amp;% Hall 1951.
3 R. LoosJes and H. J. Vink: Philips Res. Rep. 4, 449 (1949).
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very low temperature range (I) is dominated by the mechanism of electronic
conductivity through the solid structure of the crystalline semiconductor of
which the coating is made. In parallel with these conducting paths through
the crystals and their contacts with each other is a second means of conduction.
This additional mechanism is the conduction by electrons which can escape
from the crystalline surfaces into the pores between crystals and thus carry
current by the unimpeded flow of the electrons across the pores. Approximate
expressions for the electron mobility associated with these two mechanisms were
presented as Eqs. (65.8) and (65.18). These formulae show that, if the average
free-flight distance of an electron in a pore is three microns, then at 1000° K
the mobility of an electron in the pore is well over 16000 times greater than
the mobility for electronsinthecrystallinesolid. It will be shown that, at about
1000° K the expected ratio of electron density in the pore compared to that of
the free electrons within the crystal is also about 16000 to one but in the reverse
manner such that the product of the mobility and the electron density for these
two mechanisms results in an equality. When all of the properties of a porous
conductor are considered, these two means of electrical conductivity are equally
important at about 900° K. As the temperature is lowered, the density of elec-
trons within the pores falls so rapidly in comparison with the decrease in density
of the free electrons within the crystals that the semiconducting mechanism of
the crystals predominates.

This recognition of the fact that the conduction over the ranges I and II
arises from these two parallel mechanisms allows the observed curve to be resol-
ved into its two components identified in Fig. 37 as aa and bb. The empirical
results expressed by the approximate linearity of these two components as one
plots the logarithm of the conduction as a function of (1/7). can be represented
by the equation forms given as follows:

_ ey BN Dy

oy = A416 ET = g,.
_t%B -

Op =aze RT —apne Vr (77.2)
These equations are of exactly the same form as a simplified thermionic equation
first presented as Eq. (9.1). They also serve the same purpose which was to yield
two numbers by which a set of observation data points can be correlated. When
the basic electronic mechanism responsible for the conduction behavior can be
identified, the generalized conversion equations of Sect. 50 are most useful.

The empirical constants @, and @; are expressed in energy units of “electron
volts’. By analogy with certain chemical reactions, these quantities have often
been referred to as “activation energies’. In view of the detailed theory already
presented in Sect. 65, it is to be expected that the activation energy @j; could
very well be identified as the work-factor associated with the surfaces of the
pores. More details on this point are given in Sect. 86. In order to relate the
activation energy @, to such details of a specific electronic conductor as the
donor concentration and energy level, it is necessary to identify the conducting
mechanism. If it is that of conduction through the N-type semiconductor, the
equation form given as Eq. (65.11) is the best one to use. In the low temperature
range, experiment can give a good value of @, for conduction through the cry-
stalline structure, and since Eq. (65.11) involves the temperature in a manner
such that y= —3%, then Eq. (50.11) may be applied to evaluate the location
of the donor level. The result is given as follows:

E——2[®, +231. +V)]. (77.3
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In this equation the highest temperature of the range over which @, has been
evaluated is I), in its electron volt equivalent and the lowest temperature of the
range is V,, in the same units.

Conduction curves which have all of the characteristics of the calculated curve
shown in Fig. 37 by the solid line have been observed! with oxide cathodes.
Fig. 38 presents the experimental data of two of these observers and the theoretical
curve of Fig. 37 is superimposed. A reader familiar with the difficulty associated
with the experimental determination of the conductivity of the oxide coating
as a function of temperature will not be surprised at the relatively large dif-
ferences in the experimentally determined characteristics, and he will recognize
that the theoretical curve shown is in satisfactory agreement with the experi-
mental determinations. It is therefore in order to explain in considerable detail
the model on which the theor-
etical curve depended so that
the necessary precautions may
be taken to avoid the drawing
of unwarranted conclusions
from experimental data.

The theoretical calculations
for the curves in Fig. 37 assume
properties of the oxide coating
structure tabulated as follows:

. The oxide coating is a

porous structure of small crys-
tallites in contact with each
other to give an average den-
sity of approximately 50% of
that which would be obtained
for the solid crystalline struc-
ture of the composition used. Thus the total volume of the pores is approxi-
mately one-half of that of the coating as a whole.

2. The conductivity and the emission properties are to be computed on the
oasis that the electrons are in thermal equilibrium with a concentration of donors
of 5x 10% per m.® located at an energy level 0.7 ev negative with respect to
the bottom of the conduction band.

3. At very low temperatures, the conductivity of the coating is attributed
to the electronic conductivity of the crystals only, since the concentration of
electrons in the pores between the crystals is completely negligible in that tem-
perature range. This conductivity for the actual coating will be taken to be a
factor of 10 lower than that computed by the theory for this system of donors
in order to correct for the fact that the true average cross-sectional area of the
conduction paths will be reduced because of the presence of the voids and be-
cause of the fact that the crystals will make contact with each other over surface
areas small compared with the crystal cross-sections. In addition, the conduction
paths will be longer because the electrons will have to follow devious routes.
It is not possible to evaluate these corrections separately and therefore they
are all lumped together and approximated by this factor of 10. This factor was
introduced into the theoretical equations as C; of Eq. (65.9).

1 R. LoosjEs and H. J. Vink: Philips Res. Rep. 4, 449 (1949). — N. B. HanNAY, D. Mac
Narr and A. H. WHITE: J. Appl. Phys. 20, 669 (1949). — R. FORMAN: Phys. Rev. 96, 1479
(1954). — J. R. Youna: J. Appl. Phys. 23, 1129 (1952). — J. Nakai, Y. INuisHI and Y.
TSUNG-CHE: J. Phys. Soc. Japan 10, 437 (1955).
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4. A measurement of the temperature coefficient of the contact difference
in potential, to be described in more detail in Sects. 81 and 83, served to establish
the magnitude of the donor density to be associated with a well-activated oxide
cathode. It must be assumed that a slightly higher density is to be found close
to the interior surfaces of the pores. Since the exact density actually located
there in an experimentally observable structure of the oxide cathode is unknown,
it is assumed that the temperature coefficient of the true work-function at the
surfaces of the pores and averaged over the important temperature range is (6.3).
This coefficient (x) is defined in the units described by Eq. (65.21). The value
of @,, associated with that same equation is taken as 1.05 ev and may very
legitimately be compared with tabulated values of the RicHARDSON work-function
as observed and reported in the literature for well-activated oxide cathodes.

3. The above choices of donor density, of donor energy level and true work-
function make it necessary to ascribe the constant value of 0.875 ev to the elec-
tron affinity. This quantity, designated as W,, is defined as the energy difference
between an electron found in a level at the bottom of the conduction band and
the energy of an electron at rest just outside of the emitting surface.

6. The effective pore length I, of Eq. (65.17) is taken as 2.5 x 107® m. It is
to be expected that the average linear dimension of the pore will be slightly greater
han this figure and will probably be of the order of 3 to 3.3 microns.

In the above tabulation, all of the necessary quantities have been specified
in order to use Eq. (65.9) for a direct computation of the contribution to the
coating conductivity ascribed to electronic conduction through the crystals. The
results of this calculation are shown in Fig. 37 by curve aa. A comparison
between this calculated curve and the composite curve shows that over the
range of temperature below 725° K conductivity is entirely dominated by this
component. Note that curve aa is not a straight line and when it is combined
with the conductivity component attributed to the pores, the apparent straight
line range extends to higher temperatures. Note also that the “activation energy”
@, for the temperature range identified as the LoosJEs-VINK range I is 0.315 ev.
The conversion formula given either as Eq. (77.3) or Eq. (65.16) permits the
avaluation of the energy level of the donors to be 0.7 ev.

As the temperature increases, range II is clearly evident. Loosjes and VINK
in their analysis extrapolate linearly from range I and deduce what they consider
a suitable representation of pore conductivity by analysis of the difference be-
tween the actually observed curve and the extrapolated straight line. It is evident
from Fig. 37 that theory indicates a curve for the range aa instead of a straight
'ine and therefore over region II the conductivity of the electrons through the
pores plays a still more important part than was attributed to it by LoosJEs
and VINK. Eq. (65.26), derived from theoretical considerations and with the
constants called for in the tabulation above, serves as the means for the cal-
culation of the pore conductivity as shown in Fig. 37 by the line bb. Note that
a line drawn tangent to the composite curve in the range II would have yielded
an apparent activation energy of 0.84. This value, it will be noted, has no obvious
significance at all. If the correct procedure is followed, however, of establishing
the location of line bb by subtracting the contribution really due to conduction
through the crystalline structure, then the ‘‘activation energy’ associated with
this line is 1.14 ev. Eq. (65.27) furnishes the means by which this activation
energy can be converted to obtain the correct value of @%%.

It is more difficult to obtain precision in a theoretical calculation that applies
to range III. It is easy to make use of Eqs. (65.20), (65.22) and (65.23) to establish
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certain limits for the conductivity expected in the pores after space charge within
them becomes an important limiting factor. The curve shown in Fig. 37 has
been drawn to fall more or less midway between those computable limits. Again,
it is possible to calculate a so-called “activation energy” for this range and
the value obtained is 0.43 ev. This result is in good agreement with the values
reported by HANNAY, MACNAIR and WHITE. This reduced rate of increase in
conductivity with temperature is the result of the building up of space charge
within the pores and the shortening of the time of free flight. The term “acti-
vation energy’ has no physical significance under these conditions except to
express that rate as an empirical constant.

An analysis has been made of the electronic structure of barium oxide by
HensLEY!. His energy level diagram is shown as Fig. 39. It is to be noted
that he does not include a donor state 00 pr

nearer to the conduction band than ee
1.4 ev. Practically all experiments on  72ent”
the conductivity of well-activated rein
oxide cathodes show “activation ener- T

gies” for the low-temperature range
between 0.25 and 0.4 ev. The ana-

lysis presented here in Sect. 65 indi-
cates that there must therefore be a
donor state close to 0.7 ev below the
conduction band.. The presence of
this state may be difficult to establish
by methods that are completely inde-
pendent of thermionic studies since
the important concentration range
for this donor state lies below
a few parts per million. It is
probable that the presence of other
states such as those shown by HENSLEY is indicated by the higher values
of activation energy associated with poorly activated cathodes.

It has not been possible to establish unambiguously the nature of the important
donor center. The choice seems to be either it is an oxygen vacancy or an inter-
stitial barium atom. Experiments on electron emission which are interpreted
in terms of the local depletion of the donor concentration have been interpreted
by Frost? to indicate that the activation energy for the diffusion process of
the donor is about 0.4 ev. Since this energy is so low and the concentration
of donors needed for activation so small, it seems quite likely that an electron
in an oxygen vacancy may be the important donor level. The resolution of
this problem of donor identification will probably have to depend on a theoretical
analysis of the properties of excess barium as it is incorporated into the crystal
in this way.

Although most of the conduction properties of oxide cathodes are accounted
for quantitatively by the application of the Loosjes and VINK model of the
porous conductor, the experimental observation of electron mobility as a function

LE. B. HEnsLEY: Report on the M. I. T. 15th Annual Conference on Physical Electronics,
Cambridge, Mass., p. 18, 1955.

2 H. B. Frost: Transient Changes in Oxide Cathodes. ScD Thesis, M. I. T. 1954; also
H. B. ForsT: Report on the M. I. T. Annual Physical Electronics Conference, Cambridge,
Mass., p. 1, 1955.
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of temperature as reported by FormaN?! contributes additional facts in favor
of this model. The direct observation of mobilities through the interpretation
of conductivity combined with the measurement of the Havrr-effect emf is
subject to many difficulties. The observed value of mobility over the high-
temperature range was about 30 m.2 per v-sec. With FORMAN’S estimated mean-
free path within the pores of his test sample as 10 microns, Eq. (65.18) gives a
mobility anticipated for the pore conduction model of about 10 m.2 per v-sec.
at 1000° K. This direct observation of electron mobility in the high-temperature
range and its corresponding fall to much lower values as the temperature is
lowered serves as strong evidence in favor of the Loosjes and VINK pore-conduc-
tion hypothesis. A very high magneto-resistive effect has also been observed
by ForMAN in oxide cathode test samples.

78. Experiments on coating conductivity. The importance of measurements
of coating conductivity as a basis for the development of a theory of the oxide
cathode was recognized by ReEmMANN and Murcocl and also by BECKER and
SeARs2. Their method depended upon the imbedding into the coating of probes
by which the conductivity could be deduced from potential and current measure-
ments. This method has been used by many other investigators and has been
found to be extremely difficult in that the processed coating very seldom activates
in a normal manner to result in a really active cathode. The method used by
Loosjes and Vink? depended on the direct measurement of conductivity across
two similar coatings that were processed in a normal manner and pressed together
for conduction measurements. It was on the basis of these results that they
formulated their conduction theory. They made observations on coatings in
different stages of activation and results are summarized in Fig. 38 by the three
curves shown there by dotted lines. The theoretical curve, shown there as a
solid line, represents these data quantitatively better than it does the data of
HANNEY, MACNAIR and WHITE 4.

These experimenters developed a tube of unusual design in which the oxide
coating was deposited upon a magnesium oxide base which, in turn, was heated
by an internally located tungsten heater. Four electrical connections were made
to the coating by means of platinum wires mounted in grooves cut in the ceramic.
These wires served as connections and potential leads so that the conductivity
could be measured by the observation of the drop in potential over a well-defined
ength of the coating of about one centimeter. Since the coating could not be
activated in the usual manner, a heat treatment in an atmosphere of methane
served as a reducing agent to bring about activation. Many observations were
made at a standard temperature of approximately 970° K and the conductivity
was found to vary over three orders of magnitude as it depended on the activation
and aging process. These points are represented by the vertical dot-dash line
of Fig. 38. The most favorable state of activation reported gave a conductivity
of 6 X10" 20ohm™m.l. This state of activation is represented by the circle
shown in the figure. In view of the difficulty of accomplishing full activation
by this process, it is not surprising that the observed maximum conductivity
is approximately a factor of four below that obtained bv LoosteEs and VINK
at the same temperature.

1 R. ForMmaN: Report on the M. I. T., Annual Physical Electronics Conference, Cambridge,
Mass., p. 10, 1955; and Phys. Rev. 96, 1479 (1954).

2 A.L. REIMANN and R. Murcocrt: Phil. Mag. 9, 440 (1930). — J. A. BEckER and R. W.
SEARS: Phys. Rev. 38, 2193 (1931).

3 See ref. 1, p. 117.
t See ref. 1, p. 117.
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In addition to the extensive measurements made at 970° K, others were
made over the high temperature range extending up to about 1400° K. These
results are summarized by the dashed lines of Fig. 38. The indications are that
the coating material was not fully activated at the 0.7 ev donor level and there-
fore because of the high temperature coefficient of the work-function, the con-
ductivity in the pores of the structure was low, andthe electronic conductivity
in the crystals also sufficiently low so that it did not show its contribution over
the range of temperature studied . In spite of this lower state of activation,
clear evidence exists in these studies for the space-charge limitation on conduc-
tivity as the temperature observatans af.970°%
increases above 1160° K.

In addition, HANNAY,
MAcCNAIR and WHITE ! meas-

ured electron emission at the
same temperature of 970° K
at which conductivity meas-
urements were made as men-

tioned above. Under all con-

ditions that corresponded to
a uniform distribution of

activating centers throughout
the specimen, exact propor-
tionality existed between
conduction and emission and
the results are reproduced
here as Fig. 40. Although
Hannay, MacNAIR and
WHITE interpreted their re-
sults to prove that in their
experiments the conductivity
through the crystalline struc-
ture was moreimportant than
the conductivity through the
pores, it will be shown in Sect. 86 that their constant proportionality factor
between emission current and conductivity is in satisfactory agreement with the
one computed from the theories presented here. It will then be shown that these
experiments do not conflict with the pore conduction model of the oxide cathode.

79. An analysis of emission current measurement methods. Not only is the
theory of the oxide cathode a very controversial subject, but an equally unresolved
problem is that of the evaluation of cathode-electron emission. It will be the
purpose of this section to review some of the more important methods of cathode
emission evaluation and discuss the basic principles which must be considered
in the interpretation of data obtained by the various laboratory procedures
used. Although references will be made to specific examples of the uses to which
these various methods have been put, the references to these examples will, of
necessity, be very limited.

Five methods of emission evaluation will be described. These methods are
tabulated as follows and will be discussed in that order

1. SCHOTTKY plot (dc or pulse method) and RicHARDSON plot evaluation;
2. Deviation form the § power space charge line;
1 See ref. 1, p. 117.
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3. Analysis of retarding potential data and the use of FOWLER'S equation;
4. Indirect methods including harmonic analysis and changes in transconduc-

tance;
5. Voltage current characteristics with a detailed evaluation by space-charge

‘heory.
The theory applicable ot the SCHOTTKY concept that the work-function of

an electron emitter is reduced through the application of an external field was
discussed in detail in Sect. 27. This theory depended on the fact that for good
conductors such as tungsten a most important long range force that acts on an
electron as it leaves is the “mirror-image” force. The fact that the electron
affinity of an oxide seems to be only 0.9 ev indicates that the simple mirror-
image concept probably does not apply. The direct application of the mirror-
image theory led to the development of Eq. (27.13) which depended on the as-
sumption that space charge could be neglected. This equation reformulated to
express the temperature in its electron volt equivalent (V;) is written as follows:

LogoI= Logye To + 1.65 X 1075 5 (Vi. (79.1)

In spite of the fact that the form of this equation depends on the mirror-image
concept it is often applied to the interpretation of experimental data observed
with oxide cathodes for which I is the current density, I, is an empirical constant
obtained from the fitting of the equation to experimental data. The numerical
constant comes directly from the theory by way of Eq. (27.13). In that equation,
the constant G represented the geometrical factor by which the potential dif-
ference between the emitter surface and the collector surface (V)) needed to be
multiplied by in order to obtain the electric field intensity near the surface of
the emitter. Eq. (27.4) and (27.5) served as examples for the calculation of G.
[n Eq. (79.1) the constant G’ must be looked upon as an empirical constant
rather than one derivable directly from the geometry.

Numerous examples?! of the application of this equation to emission currents
from oxide cathodes lead to the result that G’ is always larger than the true
zeometrical constant G by a factor of 3 to 10. At least four factors contribute
to this lack of agreement between G’ and G. First, the surfaces of most examples
to which this equation has been applied have many sharp points and edges that
correspond to the sintered crystallite structure of which the cathode surface is
made. Secondly, the very low work-function areas which at a given temperature
contribute a large fraction of the observed emission current do not experience
a uniform field over the whole emission area and therefore no one simple geo-
metrical factor can be applied. Furthermore if these surfaces are within pores
their emission may be space-charge limited within such localized areas. Thirdly,
n the neighborhood of low work-function areas the surrounding high work-
function areas inhibit the emission because of the local contact difference in
potential field and this effect is reduced as the field is increased. Fourth. the
mirror-image concept may not apply.

[n view of the above restrictions, the method by which Eq. (79.1) is usually
applied involves the plotting of Log, I as a function of VZ or better yet, as a
junction of (V¢/V;). The advantage in the second choice is that if the value of
 " remains constant as the temperature is varied then the slopes of the plotted

1 C. S. Hung: J. Appl. Phys. 21, 37 (1950). — T. Arizumi and S. Narita: J. Phys.
Soc. Japan, 6, 118 (1951). — J. Nakar, Y. INuisHr and Y. Tsung-CHE: J. Phys. Soc. Japan,
10, 437 (1955). — L. S. NErRGAaAaRD: RCA-Rev. 13, 464 (1952).
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curves will all have the same value or vary in a systematic way as for example,
in the experiments of Hung! With either method of plotting, the observed
currents invariably fall below
the line represented by
Eq. (79.1) as the applied
voltage 1s lowered. Typical
data are illustrated in Fig. 41.
In some examples departure
from the straight line results
from the influence of space
charge, whereas in other ex-
amples where the observations
are made at such a low tem-

perature that space charge
cannot possibly influence the
result, the departure from the
straight line is attributed to
“patch effect’, that is; a
lack of homogeneity of the
emitting surface.

The straight line extra-
polation from the high vol-
tage range in spite of the
obvious departure serves to
establish the empirical value
of I, which in turn is often
taken tobe the “zero-field” current density
appropriate for further analysis according
to the RICHARDSON or the FOWLER equa-
tion. An example of such a plot is shown
in Fig. 42. This plot serves to determine
the two other empirical constants 4, and
Or Or Ap and gp.

Basically this method of analysis yields
four empirical constants by which the
emission properties of the particular cath-
ode under investigation can be described
in the high field region by the RICHARDSON
type of equation given as Eq. (50.2) or
the FowLER Equation (64.22) amd the
ScHOTTKY form given as Eq. (79.1).

Although this method of data analysis
has been used more extensively than others
it has not been successful as a means for

distinguishing between cathodes as they
are used and therefore does not serve as
a reliable method of emission evaluation.
The objections to this method of cathode
study deserve some elaboration. Most
applications of oxide cathodes involve their use under the condition that
the emission is limited by space charge. The theory presented in Sect. 58
 90er.1,9. 422.

Da
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shows that if the electron emission under all conditions of normal tube
operation is adequate to maintain a potential difference across the ‘emitter
space’ between the emitter surface and the potential minimum created by space
charge equal to or greater than I or (AT) then in terms of tube performance
emitters of widely different saturation emission capability are indistinguishable
from each other. It follows, therefore, that cathode evaluation by the “ SCHOTTKY
plot —RICHARDSON plot’ method yields information which is neither well adapted
to the quantitative understanding of the emission process of the cathode as a
whole nor does it lead to the identification of processes most likely to give the
desirable characteristics required of these emitters in practical applications.

An experimental difficulty arises in the use of these methods because the
principal voltage range over which investigations must be carried out extends
from approximately 20 to 1000 volts or more depending on the tube geo-
metry and the maximum temperature at which the test is to be made. Since
well-activated cathodes at normal operating temperatures can yield as much
as 10 amps per cm.? an electron collector at 1000 volts may be required to
dissipate kilowatts of energy. Since very few structures are capable of this
accomplishment under continuous operation, a pulse method of test is used so
that advantage can be taken of the heat capacity of the collector in order to
handle this very high power. Microsecond pulses repeated thirty times per second
increase the collector’s capacity for handling instantaneous power by over thirty
thousand fold. This method of cathode evaluation if it is to be applied for the
range of normal operating temperature requires powerful, accurately calibrated
and controlled pulse equipment. To cover the entire range of study both dec
equipment and pulse equipment are needed. The drawing of the needed large
currents through the cathode coating creates a sufficiently high electric intensity
within the coating to result in ionic migration or even cathode destruction in the
form of sparking which in turn changes the properties of the emitter as a result
of the test procedure itself. Still another difficulty is associated with the creation
of decomposition products at the surface of the collector. The electro-negative
elements of this decomposition have a poisoning effect as they condense upon the
surface of the emitter and neutralize the effectiveness of the donor centers near
the surface sufficiently to cause a very objectionable change in cathode properties
and thus reduce the emission.

Most of the reported values for the RicHARDSON work-function @y, obtained
by this procedure, fall between 0.94 and 1.1 ev. The RICHARDSON thermionic
constant Ap usually obtained falls within the range 0.01 and 0.5 amp per cm.2-
degree?

80. Deviations from the three halves power line. The second most popular
method for cathode evaluation, aimed principally at an understanding of the
fundamental properties of the emitter, depends on observations taken over a
range of applied potential for which the current is limited by space charge.
The cathode is then evaluated in terms of a departure from the ‘‘three-halves
power space-charge line”. The two methods of analysis of data usually used
will be described in this section and a critical discussion of the results that
may be obtained this way will be presented. A third very closely related
method not known to be in present use is described in Sect. 82.

Coordinate paper is available which has a linear scale across the abscissa and
a two-thirds power scale along the ordinate. This paper is used, as illustrated in
Figs. 43 and 44, by one’s plotting the applied voltage along the linear scale and
the corresponding observed current along the two-thirds power scale. Plots of
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carefully taken observed data according to this method yield fairly straight
lines as long as the current is limited by space charge, but never yield truly
straight lines because the three halves power “law” is at best a rather poor
approximation as will be shown later
in this section. 2

Tig. 43. Observations of NERGAARD ! plotted on 2 power Fig. 44. NEerGAARD’s use of 3 power paper with an
paper illustrating distortion caused by “high-speed extension into the higher voltage range.

10-volt effect”?

The second method of analysis has been developed at the Bell Telephone
Laboratories and is. described very briefly by HANNAY, MACNAIR and WHITE,
Fig. 45 reproduced from that paper, serves
as the best means of describing their meth-
od. which involves the following steps.

The diode under test receives a single,
one-half cycle voltage pulse applied to
the electron collector with respect to the
emitter and derived from the 60-cycle
power line. In four milliseconds, the ap-
plied potential rises to a maximum and
then falls to zero in the next four milli-

seconds. The current, conducted through
the tube, produces a smallIRdropthrough
a calibrated resistance and after amplifi-
cation is applied to an oscilloscope in a
manner to make the vertical deflection of
the spot an accurate measure of the cur-

rent through the test diode. A special
sweep circuit has been designed so that
at each instant of time the horizontal deflection of the oscilloscope beam is
directly proportional to the three-halves power of the applied voltage. On the
a L. S. NERGAARD: RCA-Rev. 13, 464 (1952). Curves are reproductions of NERGAARD’S,
Figs. 14 and 15.

2 See ref. 1, p. 117.
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face of the oscilloscope is a ruled coordinate system that is illustrated by Fig. 45.
Drawn across the coordinates are straight lines which differ in slope by 20%.
The observer uses this equipment by his adjusting the horizontal deflection
amplitude until the lower part of the curve produced by the electron beam
axactly coincides with the socalled “space-charge line”. This adjustment is made
simultaneously with the selection of a suitable resistance in the cathode circuit
so that within the range of the displayed figure on the oscilloscope, the observ-
ed characteristic departs from the upper straight line and intersects the lower

one. The current value at this inter-

section is identified by these observers
as a measure of the emission property
of the test diode.

These two methods of study are
basically the same and therefore are
treated together in this discussion. In
Sect. 58 the theory for the computation
of “master curves” was developed in
detail. The characteristic parameter uj
was defined as the ratio of the true zero-

field emission capability of the emitter
to the emission current observed under
that critical condition for the onset of
space-charge limitation which is zero-
field at the surface of the collector. It
was shown there that over the entire

range of the master curves, correspond-
ing to various values of #§ from approxi-
mately 5 to infinity, they cannot be dis-
tinguished from each other until a suf-
ficiently high accelerating field is applied
to the collector to reduce the value of
the space-charge minimum to V7 or less.
Fig. 46 has been prepared to illustrate
che application of the correct theory to
the interpretation of data plotted accord-
ing to the three-halves power method.
 From computed data found inTables 7,

. 8 and 9, three curves are plotted as a
function of the voltage parameter S’%. The precise relation between this para-
meter and the applied voltage and temperature is given by Eq. (57.1). The
algebraic expression which relates the value of U? to the quantity y, was derived
as Eq. (58.3) as it applied to the emitter of unlimited capability and therefore
forms the basis for curve I of the figure. This equation is repeated as follows:

1 — Xe |?(1+ te) .

100

260

le

The assumption that the three-halves power law will give the same emission
current at very high values of applied potential is the equivalent of writing the
following relation: .

U2=vy(y,):. (80.2)

In this equation, the proportionality factor ¢ determines the slope of the line
irawn between the origin of the diagram in Fig. 46 and any specified point on
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line I. If it is assumed that the value of ¥, is practically equal to S’ over the
important range to which this analysis is usually applied, this approximation
is satisfactory. These equations mav be combined with Ea. (37.8) to yield the
following relation: 3

4 Vn 1 1.413 \} 1.413 \&amp;Y= 4m : 1.8062 (1 + ir] = 0.2422(1 + ad) . (80.3)

This equation shows that the slope of the line which would represent the true
properties of a diode in the very high range over which the three-halves power
law holds with accuracy is 0.2422. Line IV is drawn in Fig. 46 with this slope.

Over an important portion of the range in S’ to which this method of analysis
is often used, the average slope of the true curve is nearly 30% greater than the
line that represents the three-halves power law. This discrepancy does not
usually cause much concern because many experimenters are satisfied to obtain
a linear plot and to not inquire into the detailed relation between the observed
slope and that which would be computed by theory from a knowledge of the
dimensions of the diode and the temperature of the emitter.

Another phenomenon which interferes with the usefulness of this method
of analysis has been given the name “high-speed, 10-volt effect”. According to
MATHESON and NERGAARD?, this effect was first discovered in 1935 by H. NELsoN
and is easily understood qualitatively as being the result of secondary emission of
electrons from the composite surface that exists on the electron collector of
practically all test diodes used to study the properties of the oxide cathode.
This effect is well illustrated by Figs. 43 and 44. Over the low range of applied
voltage the variation in emission current should follow a very nearly straight
line relation even though it does not have the correct slope as long as the emission
is really limited by a space-charge minimum greater than V.. In the range of
applied voltage between 8 and 12 volts, slow secondary electrons are emitted
from the collector and increase the space-charge in the neighborhood of the
collector enough so that the observer needs to apply additional voltage to the
extent of one or two volts or more in order to re-establish the field in the rest
of the tube that would have existed there had it not been for this additional
group of slow-moving electrons in the immediate neighborhood of the electron
collector.

This effect is a property of the collector and can be expected to be different
in detail from tube to tube independent of the emitter properties under investi-
gation. It makes the application of space-charge theory to oxide emitter pro-
perties difficult to interpret with an applied voltage greater than 10 volts. The
fact that very useful data may be obtainedinthelow-voltage range will be
demonstrated in Sect. 83.

There is still another effect which must be guarded against. The bombard-
ment of the electron collector by high-energy electrons produces objectionable
decomposition products which have not been identified with certainty but do
react in an unfavorable manner at the surface of an oxide cathode emitter. This

effect was first reported by HEADRICK and LEDERER2andvestigated by others 34,
Even though Jacoss’ identification of the reaction products is not generally
accepted, practically all experiments indicate that the onset occurs at approxi-
matelv 6 volts electron energy and that the lower the temperature of the emitter,

I R. R. MaTtHEsoN and L. S. NERGAARD: RCA-Rev. 12, 258 (1951).
2 L. B. HEaDRIcK and E. A. LEDERER: Phys. Rev. 50, 1094 (1936).
3 H. Jacoss: J. Appl. Phys. 17, 596 (1946).
4 J.D. Hoses: M.I.T. Thesis “Energy Dependence of Electron Produced Poisoning

of Oxide Cathodes’. 1954.
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the easier it is to detect the influence of this poisoning. The higher the electron
energy, the greater is the supply of poison! and therefore it is possible to explain
the results reported by NERGAARD? which indicated that the higher the tempera-
ture of the oxide cathode, the higher the energy required to produce sufficient
poison to give a measurable reaction at the surface of the cathode.

The current ratio represented by the symbol #? was defined in Eq. (57.3).
The ordinate scale in Fig. 46 is therefore essentially a current scale with the unit
of current that which flows across the test diode at the specified temperature and
creates zero field at the surface of the collector. In most examples, this unit of
current represented by the symbol I is indistinguishable from the maximum
current that can flow across such a diode which was represented by the symbol I,,
and given quantitatively for the plane parallel diode by Eq. (51.1). The theoreti-
cal evaluation of the relation between the radial dimensions of the elements of
a diode made with concentric cylinders and the “effective spacing’ represented
by w of Eq. (51.1) has not been worked out but experiment shows that for a
ratio of radii of 2.5, the effective value of w is 0.83 mm. when the actual difference
‘n the radii for the true spacing is 1.0 mm. (seé¢ Sect. 83). As the ratio of radii
approaches one, the effective spacing should approach the true spacing. This
result came from an experiment applied to the low-voltage range and seemed
to be independent of the temperature. The LANGMUIR? formula, which would
se applicable at best to the very high voltage range would give 0.68 mm. for this
structure. Really accurate fittings to the theoretical curves in the low-voltage
range have not been made except for studies with cylindrical structures and re-
sorted in Sect. 83. The ideal structure for the application of theory is the plane
parallel one and an excellent design has been fabricated by the Bell Telephone
Laboratories and is described in detail in Sect. 84. Test diodes are often made
with oval electron collectors instead of cylindrical ones. Although superficially,
the dependence of observed current on applied potential may follow so close to
the theoretical curves over the low-voltage range that an “‘effective-spacing”
can be established by experiment, the prediction of theory is that such a diode
would be unsuitable for the general purpose of emitter evaluation except under
very specialized conditions.

The equation which yields the data for the plotting of the “limiting curve” II
cf Fig. 46 is the combination of Egs. (57.7) and (57.10). These equations serve
as the basis for Table 7. If the experimental data are not distorted by spurious
affects, then observed points should follow curve I very closely until approxi-
nately half of the maximum zero-field emission from the cathode is obtained.
A very gradual deviation from curve I takes place and continues, as shown by
curve 111, until this curve intersects the limiting curve II. This intersection
establishes the true value of the zero-field current for this particular emitter.
Since the emission increases very slowly after zero-field has been established,
the choice of the 20% point as is Bell Laboratory practice and illustrated in
Fig. 45 and 46 is not very much in error.

81. Analysis by retarding potential data and the application of FOWLER'S and
RICHARDSON'S equations. The study of thermionic emission from an oxide cathode
in the transition range from retarding potentials through to accelerating potentials
by Hung will be used exclusivelv as the basis for this discussion. since it is one

l See ref. 4, p. 127.
? L. S. NERGAARD: RCA-Rev. 13, 464 (1952).
3 I. Langmuir and K. T. CompToN: Rev. Mod. Phys. 3, 191 (1931) p. 245.
t C. S. Hung: J. Appl. Phys. 21, 37 (1950). For greater detail see M. I. T. Thesis, De-

partment of Physics 1048.
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of the most carefully executed studies reported in the literature. His data are
shown in Fig. 47. The diode used for this study contained a cylindrical coated
cathode 0.2 cm. in diameter and 4.5 cm. long concentric with a cylindrical collec-
tor system which had a central section one cm. long insulated from the rest
so that the current to this collector came from the most uniform part of the
emitter. The temperature of the emitter was determined by a calibrated
thermocouple. The collector was movable so that evaporation products normally
found on such collectors were eliminated. The ratio of the collector to the
emitter diameter was four. The

spacing between collector and
emitter was three mm.

[n Fig. 47, experimental results
are compared with the solid lines
which are the theoretical curves
that show the rise in current as
a function of applied voltage as
computed for the tube geometry
used. ‘An idealized Fermi distri-
bution of emitted electrons is as-

sumed (see Sect. 60 and Table 10).
The application of the space-charge
equations indicates that over the
temperature range covered the
effect of space charge is negligible
even very close to zero-field. HUNG’s
evidence is very clear that there
was a deficiency of electron current
at zero field and he interpreted his
results on the hypothesis that a lack
of uniformity of work-function over
the emitting surface was responsible
for this deficiency. The detailed the-
ory of multiple reflection as it ap-
plies to a diode has been presented
in Sect. 62. One of the results of that analysis was that, over a wide range in the
retarding potential part of the characteristic, the shape of the curve is unaltered
by the reflection effect since every observed point is reduced in current value by
exactly the same fraction. Furthermore, this same fractional reduction applies
also on the accelerating side [see Egs. (62.10) and (62.11)]. Although it cannot
be taken as a proof of the reflection effect, detailed calculations show that HuNG’s
experimental points are in excellent agreement with the curve computed by the
multiple reflection equations and it is not necessary to make an ad-hoc assumption
concerning patchiness to explain his results. Patch structure has a far more im-
portant influence on the emission observed with strong accelerating fields. Zero-
field observations made at 563° and 610° K show still more deviation from
theory which is contrary to prediction from patch theory but this result would
be expected because of the space charge created by the extra multiply reflected
electrons. Further evidence for this effect will be given in Sect. 83.

If the reflection hypothesis is assumed, then the procedure used by Hunc
for establishing the applied potential required to create zero field in the space
between the emitter and the collector is precisely the one that should be used.
His table of values of the contact potential as a function of the temperature
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serves as a direct observation of the temperature change of the work-function.
These results are shown in Fig. 48.

Since the change in measured current as a function of applied voltage is so
rapid as the field changes from retarding to accelerating, there can be little doubt
about the choice of the emission value as a function of the temperature that
characterized his specimen. HuNG plotted his data in accordance with the
FOWLER emission equation derived in Sect. 64 and given there as Eq. (64.22).
[t was shown in that section that FOWLER attributes the entire change in the
work-function with temperature as being due to variation of the FERMI level and
assumes implicitly that the electron affinity W, changes so little with temperature
that its contribution may be neglected. Until precise measurements are made
with special attention directed toward the experimental determination of. the

temperature variation of W,, it may
be assumed that the electron affinity
decreases very slightly as the tempera-
ure increases, but that the amount
of this decrease is offset by the very
considerable increase in the work-
function because of the temperature
variation of the FERMI level.

[n the analysis that follows, the
dasic experimental data depend en-
tirely on the results of HunG’s study
reported in much greater detail in his
*hesis than in the published paper.
None of this analysis was made by
HUNG because he did not accept the
fact that his data are in good agree-
ment with the reflection hypothesis.

The reader will find that the analysis presented here demands for its excellent
agreement with theory the recognition of Eq. (62.11) as a suitable means of
correcting the observed current to compute the value I,, which is the current
density which would have been observed at zero field in the absence of any
leficiency of slow electrons which Sects. 72 and 75 have shown.

The curves of Fig. 47 show that the measured emission current is very accura-
tely represented by the theoretical curves applicable to this geometry and char-
acterized by the temperature for each curve as measured by a calibrated thermo-
couple. Consistent with the theories presented in Sect. 62, the applied potential
for zero field and the zero-field emission can be established with high accuracy
in spite of the deviation from the theoretical non-reflection curve. The curve
computed by the theory of multiple reflection does pass through the experimental
points, but since the remaining part of this analysis depends only on the know-
ledge of the zero-field emission and the measured contact difference in potential
as well as its variation with temperature, the needed data are all illustrated by
Fig. 47. HuNG has reported five contact potential measurements instead of
just the four shown in this figure, and zero-field emission current measurements
at seven temperatures. It will be these values that are used in the rest of this
analysis.

The five observed contact potential measurements of Fig. 48 are joined
together by the theoretical curve which depends for its location in this figure
on the emitter work-function value of 1.225 ev. This value is obtained from an
analysis of the emission data according to the method described in detail later
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in this section. The line also depends on the choice of a collector work-function
at a temperature somewhat above room temperature of 4.629 ev. The choice
of donor state concentration and its average energy level with respect to the
bottom of the conduction band will be discussed.

The observations of zero-field current made by HUNG at seven different
temperatures were tabulated in terms of the corresponding current densities
and then, with the help of Eq. (62.11), the corresponding value of current I 00 Was
calculated for each temperature. These values represent the current density
which would have been observed in the absence of any reflection effect and it
is this current density which is appro-
priate for analysis according to the Fow-
LER equation given as Eq. (64.25). The
plot of these points is shown as Fig. 49.
All of the points lie on such an excellent
straight line that its slope can be deter-
mined with high accuracy. The theory
which led to Eq. (64.25) established the
fact that this slope yields an accurate
measure of the #rue work-function at

absolute zero. That is the advantage
of the FOWLER equation compared with
the RICHARDSON 72 equation which,
it will be shown, does not yield the
true work-function at absolute zero,
but gives one determined by a linear
extrapolation which would be valid only
in case the true work-function were a

linear function of the temperature over
the entire range. The values obtained
[rom this experimental study are re-
corded in equation form as follows:

pp=W,—==1.225ev, (81.1)
1.726 X 107% n} =(8.54-0.2)xX105.(81.2)
Note that the unit in Eq. (81.1) is the electron-volt and therefore the electron
affinity W, and the energy level of the donor E are also expressed in electron-
volts instead of joules. The donor density which may be calculated directly
from the result expressed in Eq. (81.2) is the following:

np = (2.4 4- 0.4) X10? per m.2 (81.3)

This analysis yields a direct measure of the donor density which may be used
n association with the theories presented in Sect. 64 to compute the location of
the FERMI level at each temperature. The change in FErMI level with tempera-
ture with reference to its value at absolute zero may be computed by Eq. (64.11)
written as follows:

E E Mars

tu=p—E=E mz Vene | a). (81.4)
Although this equation gives the correct change in the Fermi level over the
entire range of temperature even beyond that for which the FOWLER equation
gives a perfect linear log-plot, the approximation used in deriving his equation
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may be applied and the function suitable for accurate computation over the low
temperature range is the following:

E V . 28

Au=u- = [n2— In DU 4 Jn (rp). (81.5)
Since these equations were used for the computation of Table 11, the data found
there for a donor density of 3 x 10% per m.? and a choice of E of — 0.6 ev yielded
directly the theoretical curve represented by the solid line of Fig. 50. This line
represents the true work-function as a function of the temperature starting at
its measured value of 1.225 ev at absolute zero and carrying through to the

range of observed con-
tact difference in poten-
tial. The points repro-
duced in this figure come
from Fig. 48. Since the
data used for this calcu-
lation came directly from
Table 11 and were not re-

computed for the slightly
smaller donor - density
of 2.4 X 10%, the fit to
the data is not quite as
good as it would have
been if a new curve had

been computed with the
donor energy level taken
at —0.7 ev. These data

therefore place the do-
nor energy level at

(0.74 0.1)ev. This value, combined with the experimental value of the work-
function at absolute zero as given in Eq. (81.1) indicates an electron: affinity
W, of 0.875 ev.

Even though this analysis according to the FOWLER equation gives all of
the information as a result of the very skillful and direct observation of the
electron emission properties of the specimen of an oxide cathode studied by
HuNG, it is important to show additional relations by carrying through the
analysis according to the RiCHARDSON 7? equation. The same basic data for
the emission current density I,,, which would have been observed in the absence
of reflection, were used to form the plot shown as Fig. 51. The experimental
points fall on an excellent straight line since it was demonstrated in Fig. 50
that over the range of observation the temperature variation of the work-function
is dominated by the linear term and the average slope is 5.8.

The direct analvsis of Fig. 51 gives the following results:

Yr = 1.19ev,

142

 188,

5 134
130!

ff.

(em) 3390. =— AueAr= (81.7)

Note that the straight line shown in Fig. 50 starting at the RicHARDSON work-
function value of 1.19 and drawn with a slope of 5.8 is in excellent agreement
with Hunc’s observed data on the contact potential changes of his specimen.
With this relation, (d@/dV,) =5.8, the value of the thermionic constant expressed
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here as Aj to indicate that it applied specificallytoHuNG’sdatais thus deter-
mined experimentally as follows:

Ag = 112 X 10* amp/m.2-degree?. (81.8)

This value is in such excellent agreement with the theoretical value of 4 which
is 120 Xx 10% amp/m.2-degree? that there is very little room for improvement in
the application of theory to experiment as it applies to these data.

This demonstration of the application of theory to experimental data should
remove the doubt often expressed as to whether or not the RICHARDSON equation
or the FOWLER equation should be used
for the analysis of emission data as it
applies to semiconductors. The answer
is that both equations apply perfectly
well and give different answers only in
that the fundamental theories ask differ-
ent questions. Thus the difference in the
work-functions. expressed as Eqs. (81.1)
and (81.6) does not in any sense repre-
sent an error in their determination since

the pp represents the effective work-
function at absolute zero on the basis

that a linear extrapolation from that
point will give a satisfactory represen-
tation of the true work-function in the
operating range. Clearly, the most con-
venient formula for the expression of
the true work-function in the operating
range as applied to this specimen is based
on the RICHARDSON value and given as

follows: "| 1915.87. (81.9)

+ 4

a 4 4 26 27

The values of the true work-function,
calculated from its basic definition
(p=W,—pu) by means of Eq. (64.11)
and the experimentally determined value
of W, of 0.875, are in excellent agreement with those given by Eq. (81.9). Since
Eq. (81.9) cannot be used for extrapolation to higher temperatures, it is only
by means of Eq. (64.11) in its complete form that the ‘rue work-function can
be computed for the whole range in temperature. With the fue work-function
known the emission current in the high range can be computed from the low

range data.
Too often in the literature one finds the statement: ‘Thermionic emission

measurements are not capable of deciding the correct power of T to be used in
emission formulae’. Such a statement confuses the issue since it is here demon-
strated that it is not a matter of the correctness of the choice of the power of
T for the representation but the choice must be made entirely in terms of the
information desired. If the emitter is an N-type semiconductor and the range
of investigation is that for which the FOWLER equation applies, then its use
is appropriate and the basic information obtained rewarding. Both forms are
needed for the correct analysis and use of data and neither should be used for
the empirical representation of data since Eq. (9.1) is far more useful for the
ourpose.

Fig. 51. Ricmarpson plot of Hung’s observations cor-
-ected for deficiency of slow electrons gives pg = 1.19 ev
ind 4 p = 3390 amp/m.2-degree?. Combined with aver-
ge temperature coefficient from Fig. 50 gives 4 =

112 x 10% amps/m.2-degree®, Theory gives
120 % 10% amps/m.2-degree?
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82. Indirect methods of cathode evaluation including transconductance changes
and its theory. Industrial laboratories have need for methods of cathode evalua-
tion that are reliable and simple even though often qualitative, since their tests
must apply to production tubes that serve a variety of functions. The tube
types include not only simple diodes but complex multigrid structures. With
very few exceptions, these practical tubes depend on the flow of electrons across
“he space-charge minimum for their performance to be within specification limits.
Sect. 55 through 59 and especially Sect. 58 develop the application of space-
charge theory to the observable emission properties of a cathode to show that
no important observable differences, will occur as the result of major differences
in the available supply of electrons as long as the conditions of test do not reduce
the retarding effect of the potential minimum created by space charge near the
cathode to a value less than V7; as expressed in electron volts or AT" as expressed

law resistance in joules. The fundamen-
ouput winding tal rule therefore the for

| Ta Ds a Omission caTiter —~ pabilityis tha e tes
mw Vr must involve, in one man-

ner or another, an obser-

vation which depends
upon the tube operation
with the space-charge
potential minimum less
than V.. Two specific

test procedures are described here, although there must be many others that
will satisfy this condition. The first will relate to the testing of diodes and the
second to the testing of grid-controlled tubes.

The diode test depends upon the fact that a circuit element, that has both
a nonlinear and nonsymmetrical current voltage characteristic with respect to
a chosen operating condition, is a generator of harmonics including even multiples
of a pure sine-wave input frequency. A block diagram of the test method is
.ndicated in Fig. 52. The diode under test can be biased to deliver an arbitrarily
chosen emission current to the collector that is within the normal operating
range for the diode with the current limited by space charge. The circuit provides
for a modulation of this bias by a sine wave of controllable amplitude and high
purity. Since the current-voltage relation in the diode is nonlinear and may
oe represented by a power series expansion, there will be a second harmonic
omponent of current which can be amplified by means of a narrow band amplifier
and the output observed on an oscilloscope or else rectified to produce a direct
current proportional to the amplitude of the second harmonic. This signal may
be observed with a meter or used to actuate a recorder. For a pre-set bias voltage,
Observations may be made as the temperature of the emitter is lowered. The
second harmonic will decrease very slowly until the emission capability of the
sathode approaches that critical value at which the space-charge minimum is
qual to or less than 7;.. Under this condition, the voltage-current relation be-
tomes much more linear and the harmonic output decreases to a minimum and
at the same time its phase changes. This dip in the harmonic output serves
as a quick index of the fact that the space-charge minimum has decreased to
the order of V;.. The heating current required to maintain this condition is a
practical measure that can be related to predetermined standards. The time
required for the cathode to drop in temperature after the heating power has
been removed may also serve as a measure of the critical temperature. The

 wr 1 arnan
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lower the temperature at which this minimum in second harmonic content occurs,
the higher the emission capability of the cathode.

An alternate way of conducting this test requires the setting of the cathode
temperature at some arbitrarily chosen value. The applied voltage v of Fig. 52
is increased gradually until the second harmonic output indicator shows a minimum.
The observer may record both the critical applied voltage and the corresponding
space current as well as the temperature of the emitter. This test serves as an
excellent method of determining a current which is very close to the zero-field
current capability of the emitter at the specified temperature. Such a test can
be made as nearly automatic as desired to reduce the time required for it to a
very small fraction of a second after temperature equilibrium has been achieved.
With a standardized tube structure

and the application of the theories
presented here, tests made at two
or more temperatures can be ana-

lyzed to yield quantitative data
concerning many detailed prop-
erties of the emitter. Tests made
at a single temperature can be used
very effectively for production
control.

Results that may be obtained by
the use of thismethod of second har-
monic generation can be illustrated
best by the presentation of specific
laboratory data. The emitter was an
indirectly heated cylinder concen-
tric with respect to a collector with
a spacing of 1 mm. and a ratio of
radii of 2.5. The central 12 mm.
section of the emitter was coated with a standard barium-strontium oxide and
on each end beyond this coating the nickel sleeve extended an additional 10 mm.
The diode had been processed according to standard methods and had been
operated at a temperature of 1160° K for one thousand hours with a space-charge
limited current of 55 ma. Additional point-by-point data which show the voltage
current properties of this diode will be presented in Sect. 83. Fig. 53 shows the
second harmonic output as a function of the applied voltage for two different
temperatures. These temperatures were determined bv thermocouple measure-
ments of the emitter.

With the emitter maintained at 837° K, the second harmonic was measured
as a function of the applied voltage and the gain of the analyzer was adjusted
to give an output of 100 units at the maximum located at 0.45 volts (see a of
Fig. 53). This maximum was an accurate measurement of the applied potential
at which zero gradient occurred at the collector and thus represented the onset
of space-charge limitation as discussed in detail in Sect. 57. As the applied po-
tential was made more positive, the harmonic output decreased approximately
as the inverse square root of this change in potential. Over this range, the emis-
sion current increased with the applied voltage in accordance with the theoretical
curves of Figs. 16 and 17. The sharp minimum (b) shown at 4.2 volts was a
direct indication of the fact that the space-charge minimum had moved across
the diode and was practically coincident with the emitter. The emission current
observed with this applied potential was an excellent measure of the ““zerofield””

 2
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thermionic emission from this cathode at this temperature. The change in
potential of 3.75 volts thus observed yields additional information concerning
the properties of the emitter.

As the temperature was lowered, the minimum shifted to lower values of

applied potential and conversely as the temperature was raised, it moved to
higher values. At each temperature, the current flow at the corresponding critical
applied potential served as an excellent basis for the determination of the emission
properties.

Observed data are shown for the emitter operating at 910° K and two minima
are evident, with one at 8.28 volts and the other at 9.3. Detailed study showed
that the 9.3 minimum is the one that characterized the emission property of
the cathode and the 8.28 minimum was a clear indication of the electron energy

required to develop the space-charge distortion effect known as the
“high-speed 10-volt effect” described in Sect. 80. Detailed studies
not yet completed indicate that at higher electron energies of about
20 to 30 volts, additional disturbances in the space-charge situation
caused by secondaries from the collector appear. Fig. 54 is pre-
sented to show both the sensitivity of this method of analysis and

phenomena which observers of therm-
ionic emission must understand in
order not to report misleading data.
Note first the two prominent minima
(d and f) at 7.6 and 9.7 volts applied
potential. These are the direct result
of the “high-speed 10-volt effect’ and
it will be noted that the location of
the first with respect to the condition
of zero-field at the collector occurs at

exactly the same potential difference
of 8 volts as that observed at the lower

temperature and shown in Fig. 53. The feature of additional interest and im-
portance is the small sharp minimum (c) at zero. Detailed study showed that
this minimum was a direct result of the thermionic emission obtained at this
temperature (1160° K) from the bare nickel parts of the emitter outside of the
central section which was coated. At this temperature and this applied voltage
and for all applied voltages more negative than this, the “bare” nickel part of
the emitter, because of its larger area, contributed more current to the collector
than the central portion. These data are presented in this brief form to stress
the need for test diodes designed with guard rings or diodes that use some other
method for insuring that the observed emission originates at that part of the
emitter which is being investigated.

Most grid-controlled vacuum tubes have an electron collector usually called
its “plate” which receives a current from the emitter depending upon the potential
applied to the control grid. Since the control grid itself receives a negligible
part of the emission current, practically all the current which passes the space-
charge minimum is received on one or more of the electron collectors. The fol-
lowing relation is basic to the theory concerning the space-charge control of
emission discussed in detail in Sect. 57:

Vs

I=1Ie "“=1I,¢ Vr (82.1)
In this equation, I, is the zero-field emission current density capability of the
emitter at the temperature 7. The potential in the immediate neichbourhood

re
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of the emitter surface is V; positive with respect to the potential minimum located
a short distance from the emitter. The dimensionless expression for this quantity
was used almost exclusively in Sects. 57 and 58 and is given as Ys, It may be
assumed that the change in plate current of interest is either equal to 1 or directly
proportional to it for all small variations of ¥,. The variation in plate current
may be expressed by the following equation:

Vs

dl Ie Vr
av. — Vv. (82.2)

If the potentials of other electrodes in the tube are held constant, then small
variations in the grid potential will make a directly proportional change in the
potential of the space-charge minimum. Since the grid potential is usually
expressed with respect to the emitter, the making of the grid more positive results
in a decrease in the value of ¥; and thus accounts for the negative sign used in

the following equation: av. = — md, (82.3)

Here, % is the applied potential of the grid with respect to the emitter and m,
is the proportionality constant always less than unity and greater than zero.
In Eq. (40.3) it was shown that the value of ¥, could be represented-withcon-
siderable accuracy by the following very simple formula:

 5 Vr Ye
Vi=a® ze (82.4)

In this equation, @ is the work-factor; the temperature expressed in its electron
volt equivalent is V;; and the temperature for which the space-charge minimum
is exactly zero for a fixed set of applied conditions is given by Vy. The substitution
of these equations into Eq. (82.2) gives the following result when it is remembered
that definition of I, is given by Eq. (39.2): ®

Vo

= ar ALLA, (82.5)
Since the definition of a transconductance (or mutual-conductance) g,, is the
variation in plate current per unit variation ingrid potential expressed as (d1/dV,) A,
this equation shows that the transconductance for an emitter of area A and an
deal structure would show a very small increase as the temperature is lowered
from its normal operating value to one closer to the critical value Vo. This
result is not observed in a practical triode because there is no single value of Vj,
applicable to the entire effective area of the emitter.

Since an equation of the form of Eq. (82.5) expresses some of the most basic
features of transconductance principles and since no theory including them is
found in the textbooks on the theory of vacuum tubes, an illustration of its
quantitative usefulness will be given in this paragraph. A plane surface emitter
of 0.5 cm.2 may be designed into a troide having an emitter to grid spacing of
5 X 1073 cm. The grid structure is such that its effective capacity at the emitter
plane is 6% of the value that it would have if it were a parallel plane instead of
a grid structure. With the grid operated sufficiently negative, so that it receives
no appreciable part of the emission current the plate of the troide may be suffi-
ciently positive so that the current (5) delivered from emitter to the plate is
25X 107% amps. The minimum temperature Vy, of a well-activated oxide cathode
that can meet the current demand may be computed by the following relation:

_®
= Age VO 82.6)
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A typical emitter will have a=3 x 101 amps per m.? (or 3 X 10% amps/cm.2) and
® =1.26 volt. Computation shows that the critical value Vg is 7.03 X10°2 or
0 =816° K. The following equation may be used to compute the minimum
temperature for satisfactory operation for a given emitter as expressed in terms
of the critical temperature (Vo) and the work-factor:

‚ Ve

Vi =~ Vo (1 + 5) . (82.7)

The substitution of numbers yields the value 7.45x1072ev or 865° K. No im-
portant change in the transconductance will be observed in a triode operated as
described if the temperature of an emitter having these specifications is raised above
this’ value V7.. The next step for the calculation of m, of Eq. (82.5) demands
a knowledge of the distance from the emitter to the space-charge minimum.
For all temperatures above V; Eq. (46.11) may be used for calculating the di-
stance to the space-charge minimum. This equation. arranged for direct appli-
cation is the following:

x. = 3.109X 1073 — = 3.109 X10 CT (82.8)

Let the distance from the control grid to the emitter be x, and let the capa-
citance which one can calculate from the known area and this distance for parallel
planes be defined as C,. By a suitably chosen set of measurements the true
capacitance between the grid and the emitter may be determined experimentally.
Let its value be C,. The ratio of these two capacitances (C,/C,) is a measure of
the effectiveness of the grid in controlling a charge distribution in the immediate
neighborhood of the emitter. The fact that the space-charge minimum is at
a fractional distance (x,/x,) from the emitter makes the modulation of the space-
charge minimum by the grid possible. These considerations combine to give
an expression for m, of Eq. (82.5). which is:

 x Cy
Me Ag ; Cry

These equations may be used to yield the following formula for transconductance:

fc (i/A)*3 gg,, = 3.100 x10 2. yi (82.10)

(82.9)

In this equation the factor in the square bracket depends on the geometrical
configuration of the triode. The current ¢ is the actual emission current which
is grid-controlled. Since Eq. (82.10) applies specifically to a structure of parallel
planes. the capacitance C, mav be expressed by the following equation:

C. = gq 4
x Hg -

The proportionality factor g, is the permitivity of free space. This equation
substituted into Eq. (82.10) yields the following:

g.— 3.4003 10-356 WA® _ 3 544 x 408C, HA (82.12)
En Vi Vi

In this equation C, is the true capacitance of that part of the grid which modu-
lates the space-charge minimum and therefore is much less than the input capa-
citance of an actual triode since the latter includes the coupling of not only the
grid wires with respect to all other parts of the structure, but the supports and
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the lead-in wires as well. A close-spaced triode of high transconductance has
been constructed with the following specifications:

1 =25X10"3 amps; A =0.5xX10"¢m.2; Cy =0.5x1072 farad (Estimated)
Xg = 5X10" m.; Vr=0.1 ev.

With these numbers inserted into Eq. (82.12) the computed transconductance
gy 1S 7000 microamps per volt which agrees well with laboratory measurements.
The quantity least accurately known is C,, which was estimated from the known
input capacitance rating for this triode of 2x10712 farad.

This numerical example has been included here to illustrate the usefulness
of the theories of thermionic emission in the presence of space charge which have
been presented. It also illustrates the fact that, as the temperature is reduced
from its normal value to one that is between Vo and Vr as determined by Eq. (82.7),
the distance x; which could be calculated accurately by Eq. (82.8) for the higher
temperatures, shrinks very rapidly to zero. Note that this shrinking of x, reduces
mg to zero as indicated in Eq. (82.9). Since the basic equation for transcon-
ductance is Eq. (82.5), it is evident that in this critical range In temperature,
transconductance falls rapidly to zero because of the my, factor.

Although an equivalent of the above theory of transconductance is notwidely
known judging by the books on tube design, the engineers in the tube industry
use a test for emitter quality control which is related to it.

The better the emitter, as measured in terms of the lowering of the work-
factor @ or the increase in the constant a, the lower the critical temperature Vy
for a given set of operating conditions. These conditions are determined by the
potentials applied to all elements of the tube except the heater, which supplies
power to maintain the temperature of the emitter. It is not customary to make
a direct determination of Vj, but an indirect measure of it comes by the making
of a quantitative determination of the time which elapses between the cutting
off of the normal power and the time that the transconductance begins to fall
very rapidly. A second method is to permit the heating power to be decreased
slowly and determine the minimum value at which the tube under test will
maintain a specified fraction of its normal transconductance. A third and less
quantitative test involves the measurement of the transconductance at the nor-
mal operating temperature and a remeasurement of g» With a 10% reduction in
heater voltage. This method may be used to eliminate very poor emitters but
will not distinguish between exceptionally good emitters and only fair ones if the
less active surfaces are still able to maintain the potential minimum of the amount
Vr over the major part of the emitter surfaces even at the reduced heater power.

83. Voltage-current characteristics with a detailed evaluation of emission
according to space-charge theory. Precision measurements that yield quanti-
tative data on electron emission from oxide cathodes have been discussed in
detail in Sect. 81.. In order to avoid space-charge effects, it was necessary to
hold the temperature to less than 600° K. This temperature is so low compared
with the normal operating temperature of 1160° K that experiments were under-
taken to test the applicability of the space-charge equations as well as the emission
equations covering a wide range of temperature for diodes of very simple con-
struction.

The “ideal” diode for scientific study can be designed and built with a
few main features which will be mentioned in the following tabulation.

1. The emitter and the collector should be parallel planes.
2. The temperature of each should be measurable by means of thermocouples.
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3. A convenient design for the emitter could be a small cylindrical cap, a
few millimeters in diameter similar in general construction to that used by the
Bell Telephone Laboratories and described in Sect. 84. The part of the collector
to which the measured electrons flow should be a pure nickel disc of small diameter
guarded by a surrounding sheet of pure nickel to form the parallel plane structure
and yet limit the measured emission current to the central part of the emitter.

4. The collector should be capable of being heated to any temperature at
east equal to that of the emitter if desired.

5. For fundamental studies, especially of the cathode nickel, all of the parts
nf the test diode except the emitter should be of the purest nickel available.

6. Leakage current to the collector should be eliminated so that electron
currents as small as 1074 amps may be measured with accuracy.

Since the Bell. Telephone Laboratories design is the nearest to this ideal,
details concerning it will be given in Sect. 84 even though no measurements
made with this diode are available for analysis.

The diode on which the test measurements reported in this section were

carried out was one produced by the Raytheon Manufacturing Company?!. It
was built with pure nickel parts except for the emitter. The essential dimensions
are given in the following tabulation:

Table 83.1.

Length Coated band

Emitter. . . . 27 mm. | 1.06 in. | 12 mm. | 0.47 in.

Coated . . . .

After exhaust .

Collector . . . |19 mm. | 0.75 in. |

Qutside diameter

1.15 | 0.045in.

1.35 | 0.053 in.
1.30 | 0.051 in.

Inside diameter

| 3.35 mm. | 0.132 in.

Amer. Soc. Testing Materials 2, 883 (1952) Designation B 270-52T.

Although a number of specimens built according to this design were investi-
gated in sufficient detail to show that the theoretical analysis developed in the
previous sections applied, the data to be presented in this section were taken
with great care on one of these diodes which was known from previous measure-
ments to be typical. Before the test was made, it had been operated at the normal
operating temperature of 1160° K for 1000 hours with sufficient positive collector
potential to give an emission current of about 50 ma which corresponded to a
current density of approximately 0.1 amp per cm.2. Throughout the entire set
of measurements the emitter temperatures were set and monitored by thermo-
couple measurements since the emitter had welded to its interior surface a fine
tungsten wire. The properties of the tungsten-to-nickel junction for the particular
alloy used as the emitter had been studied to obtain the calibration. During a
test, the heater power input was maintained constant to better than 0.1%.
Voltages were set with potentiometer accuracy and the currents measured with
calibrated meters which gave reproducible results to 1%. The emission properties
of the cathode were perfectly stabilized and the total range of applied voltage
never exceeded 6 volts. All currents were accurately reproducible independent
of the temperature sequence used for the investigation. In order to maintain

\ Ravtheon Manufacturing Company, Newton, Massachusetts, U.S.A.
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emitter stability during a particular run, a 4 volt applied potential to the collector
was maintained at all times, except for the short interval of time required for
each individual reading. There were no instabilities that indicated that this
precaution was really necessary. After a change in temperature, the electron
emission took up its final value as quickly as the temperature could be adjusted.
Thereafter, it remained perfectly constant. Because of this reproducibility, it
is thought that the physical structure, including the concentration and distribu-
tion of donors, remained sufficiently constant over the entire range of time and
temperature required for the experiment, so that the analysis, carried out on the
basis that all measurements apply to the emitter in a particular state of activation.
is justified.

Detailed measurements were made at 9 different temperatures ranging from
689 to 1160° K. Currents were measured as a function of applied voltage both
for retarding and accelerating potentials. Over the low temperature range the
6-volt applied potential was sufficient to move the space-charge minimum to
the emitter surface and with the help of the curves shown as Figs. 16 and 17,
it was possible to determine the zero field emission current with accuracy. On
the basis of these data the electron concentration in the immediate neighborhood
of the emitter could be computed for the higher temperatures with sufficient
accuracy for use in the quantitative determination of the contact difference in
potential over the entire temperature range investigated. This evaluation will
be illustrated by Fig. 56 and will be discussed in more detail later in this section.
The important result is the quantitative determination of the donor density in
the neighborhood of the emitting surfaces and the determination of the electronic
energy level associated with the donor. This final step in the analysis comes by
the application of the FowLER and also the RICHARDSON thermionic equations
to determine the electron affinity of the emitter and compare the overall results
with thermionic emission theory. This paragraph serves to outline the analvtic
procedure to be followed.

For the diode structure described above, space-charge influences the measured
current as it develops to give zero gradient at the collector at about 6 xX 10~¢amps
for the lowest temperature and about 20 x 107® amps for the highest temperature.
Since the leakage current was less than 10° amps, the current flow could be studied
as a function of the applied potential over the retarding field range to cover a
current ratio of nearly 10* without the interference of space charge. Three of
the 9 curves have been chosen for Fig. 55 since they serve not only to illustrate
the method of analysis but also the complications that arise which must be
understood in order not to misinterpret laboratory data.

Observations made with the emitter at 760° K serve as the basis for the
plotted points of curve I. The solid line is the theoretical curve which should
be expected for this geometry and this temperature. It will be noted that the
plotted points follow this line very accurately for currents below 1 microampere.
The two points designated a and b fall below the theoretical line as the result
of an influence of space charge at a smaller observed current value than would
have been expected if all electrons that impinge on the collector were absorbed
by it. This result is a direct indication that electron reflection is taking place
at the collector and must be given consideration in the detailed analysis of the
observations.

As the applied potential is made more positive than 0.6 volt, the current rise
follows that anticipated from space-charge theory for this geometry and temper-
ature as the space-charge minimum moves across the diode and is located at the
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emitter surface when the measured current is 220x10~% amps. This method of
analysis is illustrated by Fig. 28.

In order to show the relation between the analysis of the point-by-point
observations of the current as a function of the voltage compared to the second
harmonic method, an additional curve has been drawn in on this figure. This
curve shown by the dotted line is a measure of the second harmonic generated
in this diode as a function of the applied potential and corresponds to the detailed
exploration over the top of the sharp peak shown in Figs. 53 and 54 at a. Although

2nd harmonic

Applied vor

Fig. 55. Retarding potential curves for three temperatures. I. 760° K, dotted line shows second harmonic analysis.
(I. 956° K, dashed line, emission from bare nickel. III. 1160° K, solid line, emission from coating. Dot-dash line, total

emission including bare nickel.

in Fig. 55 the deviation from the solid line was interpreted as the onset of space-
charge, it is very clear from the second harmonic curve that the second derivative
of the current curve is changing very rapidly at this point.

The data points associated with curve II were observed at a, temperature
of 956° K. A superficial analysis of the plotted points would indicate that the
electron temperature was much higher than the thermocouple temperature. The
theoretical curve that represents the true variation in the emission from the oxide
coating is again represented by the solid line which is drawn at the theoretical
slope for this temperature and geometry. The fact that so many points lie above
the predicted line is a direct indication that a contribution to the observed
current of major importance is coming from the uncoated areas of the nickel
sleeve. This uncoated area seems to have a work-function almost exactly the
same as the collector. These work-functions are probably 2.5 and 2.6 respectively.
The zero field emission from the uncoated nickel is approximately 3 X 107% amps
at this temperature. The influence of space-charge is clearly evident for the read-
ng at 0.2 volt under which condition the current flowing is 12%10-¢ amps
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Again the rise in current follows the curve given by space-charge theory as the
space-charge minimum moves across from the collector to the emitter. At this
temperature the measured current increases over 1000 fold and the data presented
in Table 7 indicate that zero field emission would be observed at 12 to 13 volts
applied potential. This prediction was later verified by experiment with the second
harmonic method of analysis described in Sect. 82. The complication introduced
into the analysis by the existence of the “high-speed 10-volt effect’ interfered
with the exact determination of the applied voltage required to force the potential
minimum to coincide with the emitter.

Curve III which represents observations at 1160° K yields a result which would
seem to indicate that the emission changed with applied potential exactly as
one would expect for a MAXwELLian distribution characterized by this temper-
ature.” The line that represents this distribution is shown as dot-dash. The result
which is not so obvious is that the observed distribution follows this line because
there is adequate emission from the entire emitter which includes both the coated
part and the uncoated part and therefore at each point the currents are larger
by about a factor of three than the currents which legitimately belong to the
emission properties of the coated part of the emitter. The solid line drawn parallel
to the dot-dash line represents the emission from the oxide cathode after the total
current has been corrected to subtract out the spurious current. Direct point-
by-point observations and also the harmonic analysis illustrated by Fig. 54 shows
that the emission from the uncoated area saturates at approximately zero poten-
tial. As more and more positive potential is applied, the current is predominantly
that emitted from the oxide cathode and it follows very accurately the master
curve described by the data of Table 8 after proper consideration is given over
the low voltage range to the fact that the observations were made in a cylindrical
diode instead of a plane parallel diode. An applied potential of approximately
180 volts would have brought the potential minimum over to the emitter to
yield a direct observation of the zero-field emission of this emitter. Under these
conditions, the collector would have been required to dissipate about 70 watts.
Pulse equipment, not available at the time these measurements were made,
would be required to verify this prediction.

On the basis of these analyses, the results presented quantitatively in Table 83.2
summarize the necessary information bv means of which an evaluation of the
emission 1s possible.

Table 83.2.
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780 10.243 : 0.265 3.36 14.76
1010 775]0.306 5.04 13.24
7 017 0.340 6.0 12.00

| a 362 0.374 6.01 1081

"710.391 [0.402|7.64 | 10.34
4670 9.054 0.431 0.42] 8.21 | 9.51
1520010.900 10.5051 0.508 | 9.421 7.472

0.993
1.003
0.967
0.956
0.927
0.894
0.894
0.861

 0.742

2.35
8.0
20
133

1 High temperature values * obtained by extrapolation according to Eq. (9.1) based
on temperature range 689 to 837° K.

2 Calculated on basis that equivalent plane-parallel diode had spacing W =0.78 X 10-3 m.;
actual spacing was 1.0 x 107% m. between cylinders: range in equivalent spacing observed
was (0.8 + 0.02) 1073 m.
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Based on the observed current at zero field for the four lowest temperatures
and a detailed analysis of the effect of multiple reflection developed in Sect. 62,
‘he column headed “I,” represents the average current density which these
theories indicate would have been observed in the complete absence of reflection

at both the emitter and the collector. These data
were used in the FOWLER emission equation given as
(64.25) to determine the true work-function at absolute
zero and the donor concentration that would yield
these results. The graphical analysis is represented
by Fig.56. The FOWLER work-function computed from
the slope of this curve is expressed as follows:

or =W,— 2 =129 ev. (83.1)

0

These data also yield a FOWLER thermionic constant
vhich determines the donor density as follows:

_ = 1.15X 10% per m.3. (83.2)B= TE

Tink to the own con acord If the electron affinity W, is taken to be 0.88 ev as
indicated by HUNG’s experiment discussed in detail

in Sect. 81, the energy level of the donor is —0.82 ev with respect to the
bottom of the conduction band.

With this information available it is possible to compare the computed tem-
perature variation of the work-function with the contact difference in potential

observed. With the true
work-function at absolute
zero known to be 1.29 ev
and the donor concentra-
tion and donor level known,
it is possible to use the
data of Table 11 to obtain
‘he true work-function over

“he entire range in temper-
ature. This result is shown
by the solid line in Fig. 57.
The choice of an average
collector work-function of
2.58 ev places the observed
contact difference in poten-
tial found at 956° K exactly
on the theoretical true work-
function line. If it is as-
sumed that the true work-
function of the collector is
independent of the temper-
ature of the emitter, then

all the other nine points of observed contact difference in potential fall as shown
in Fig. 57. Even though the agreement between theory and experiment is not
exact, it is considered to be practically within experimental error, because the
analysis was complicated by the fact that the diode under test was a cylindrical
liode without guard rings, and that the correct introduction of the multiple

&lt; 16
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reflection theory especially as it applies to very low temperature range was not
easy to carry through with exactness.

The next step in the analysis involved the application of the RICHARDSON
formula to the same data shown in Fig. 56. The RicHArRDsoN plot is given
in Fig. 58. The theories discussed in detail in Sect. 81 show that the slope of this
line should give the RicHARDSON work-function which is the one found at absolute
zero by linear extrapolation from the observational range. The value obtained
for gp, from this plot is 1.24 ev. This point is plotted in Fig. 57 and identified by
Pr- The straight line drawn from this gj point through the data points is shown
by a dot-dash line in Fig. 57. The slope of this line is seen to be 5.8 and represents
the apparent average temperature coefficient of the work-function in dimension-
less units:

Comiputation based on the data of Fig. 58 gives the
RICHARDSON constant 4; a value of 0.63 xX 10% amp
per m.2-degree?. If it is assumed that the average
temperature coefficient of the work-function can be
derived from this RICHARDSON constant and its rela-
tion to the theoretical constant 4 of Eq. (18.6), then
the temperature coefficient would be 5.25. The dotted
line of Fig. 57 is drawn with this slope. It is evident
that if the true work-function of the collector were
taken to be 2.54 ev instead of the value chosen of
2.58 ev, the observed points would be in very good
agreement with the theoretical line. An inspection of
Table 11 as it applies to a donor density of 3 x 1022
shows that a choice of a slightly higher donor density
than the one required by Eq. (83.2) would yield
slightly better overall self-consistency.

Since this method of emission analysis has been presented as it was carried
through for the first time, the results may be summarized by the statement
that the emission properties of this oxide cathode are in excellent agreement
with those anticipated by the theories presented here. All factors including
reflection effects, correct space-charge theory and analysis of electron flow
between concentric cylinders were taken into account. The neglect of any one
of these factors would result in a disagreement with theory that would have been
outside of the experimental error.

~7

84. Description of Bell Telephone Laboratories M-1949 planar diode. The
data presented in Sect. 83 serve to forecast the results which may be obtained
by a very careful analysis of voltage, current and temperature relations in diodes
having oxide cathodes. The use of a cylindrical structure in contrast to a planar
structure is distinctly disadvantageous in that far more effort is required for the
analysis of the data. It is therefore important for the advancement of the better
understanding of oxide cathodes to design a test structure which is feasible to
make and at the same time more adaptable in terms of the theoretical analysis.

The Bell Telephone Laboratories planar diode M-1949 so nearly represents the ideal
structure that a description of it is presented here in lieu of the fact that these details are not
available in the scientific literature. The following paragraphs are quoted from information
supplied by Mr. H. E. KErN of the Bell Telephone Laboratories.

A planar type vacuum tube diode has been designed and built at the Bell Telephone
Laboratories for studying the fundamental properties of oxide-coated cathodes. A pictorial
view of the diode structure is shown in Fig. 59.

Handbuch der Physik, Bd. XXI.
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The important structural and material features of this diode are listed below:

1. The cathode is a hat-shaped detail which can be machined from solid rod or formed
rom sheet material of thicknesses ranging from 0.060 inch to 0.001 or 0.002 inch.

2. The cathode hat is located directly over a hole (not shown) in the top surface of a
hollow rectangular cathode heater box and is welded in place along the brim of the cathode
hat. The hole in the cathode heater box facilitates removal of gases from beneath the cathode
hat.

3. The emission coating is deposited on the top of the cathode hat as indicated by the
dotted area. The coated area is 0.05 cm.2.

4. The anode is a hollow rectangular box of exactly the same dimensions as the cathode
1eater box with the exception of the small hole required for the cathode outgassing.

alhode-anode clearance 0075"
A-102%mp

Ma

04e Healer

Pr-m% ph =

Fig. 59. Bell Telephone Laboratories M-1949 planar diode.

5. A heater is contained in the anode box so that the anode may be heated independently
through the same temperature range as the cathode.

6. The anode and cathode heaters are identical and are aluminum-oxide coated-tungsten
aeaters (RCA-FH-484H).

7. Platinum and platinum 10% rhodium (0.002 inch diameter) thermocouple wires are
separately welded to both the anode box and the cathode hat as shown. An average cathode
or anode temperature reading is obtained as a result of the physical separation of the 0.002 inch
diameter, Pt and Pt-10% Rh thermocouple wires. This average reading is perhaps of greater
Interest than a temperature measurement at a single point.

8. The 0.002 inch diameter thermocouple wires are welded to 0.020 inch diameter similar
Pt and Pt-10% Rh stem into the soft glass press. In this way reference junctions within
‘he glass envelope are avoided and more accurate temperature measurements can be made.

9. The anode-cathode assembly is mounted on a 12-lead soft glass tripod stem. The
dimensions of the completed mount are such that the anode-cathode assembly is approximately
2 inches away from the ultimate seal-in area. This positioning minimizes the possibility of
oxidation of parts during seal-in.

10. No ceramics or micas (possible sources of contaminating gases) are contained in this
liode.

11. All parts with the exception of the cathode hat and the tungsten heaters are made
irom high purity vacuum melted nickel.
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Some of the advantages of the structure described above are:

1. Fundamental properties of the oxide cathode can be determined over a wide range of
temperatures with an exact knowledge of the true temperature of the cathode.

2. The anode can be thoroughly outgassed by means of the anode heater before the
carbonates on the cathode are decomposed. During this anode heating, the cathode temper-
ature remains less than the maximum temperature (400 to 450° C) it attained during prior
glass bake-out. For example, with the anode at 1000° C true temperature, the temperature
of the cathode does not exceed 250° C.

3. A complete temperature vs. time record for both anode and cathode can be obtained
during all process steps for possible correlation with the emission and life history of the tube.

4. Because of the relatively small coating area and close anode to cathode spacing, life
tests can be run at dc cathode current densities as high as 500 ma/cm:2 without causing
excessive anode heating.

5. Cathode current density can be varied over a wide range under conditions of constant
anode temperature by making use of the anode heater.

6. A more thorough study can be undertaken of anode deactivation phenomena as related
to anode materials. anode processing, and anode operating temperature.

85. Relation between emission properties and conduction properties of uniform
oxide-coated emitters. The experiments of HANNAY, MAcNAIR and WHITE!
and also YOUNG? serve as examples of researches in which emitters of uniform
structural properties were investigated to determine the relation between con-
duction and emission at an arbitrarily chosen temperature for various states of
emitter activation. The HANNAY, MacNAIR and WHITE data, observed at 970° K,
are best represented by Fig. 40. An examination of this figure yields the ratio
of emission current density to conductivity expressed ds follows:

1

opr - 4x 10% amp-ohm/meter. (85.1)

Results tabulated by Youn when expressed in the same units range from
3 X10° to 25 X 10° amp-ohm per meter for valugs applicable to studies at 1000°K.
The higher value applied to Young's best specimen.

The temperature chosen for both of these studies was sufficiently high to
make the conduction mechanism through the coating be dominated by pore
conduction in contrast to the direct conduction through the crystals. Eq. (65.28)
may be adapted to give an expression for the conductivity through the pores
as follows:

P

Op11 = 2.54X1014V„eVrCpLy. (85.2)
In this expression, the true work-function is expressed as ¢; the temperature
in its electron-volt equivalent is V7; and the constants C, and I, are determined
by the physical structure of the emitter. In both experiments the emission
current density figures used were intended to be as accurate a measure of the

zero-field emission as it was possible to obtain without detailed analysis. In
neither case were the geometrical configurations suitable for an exact evaluation
of this current density. The equation that will best represent the emission current
density is of the basic type used for the analysis of zero-field data given in Sects. 81
and 83. This equation comes directly from Eq. (18.5) with the modification,
which experiment seems to call for, to account for the deficiency in slow electrons.
I'he need for this factor was demonstrated in Sects. 81 and 83. The equation
follows:

m

a”8120X 10*X 1.35 x 108 V7e
sn

1+ —

 yy

(85.3)

- N. B. Hannay, D. MacNair and A. H. Waite: J. Appl. Phys. 20, 669 (1949)
* J. R. Youna: J. Appl. Phys. 23, 1129 (1952).
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In this equation the true work-function is expressed as ¢ as in Eq. (85.2). These
two equations combine to yield the following:

I 63.8 ~2.
pr mm (85.4)

This analysis shows that a comparison between theory and experiment can be
valid only under the condition that the true work-function applicable in Eq. (85.2)
and Eq. (85.3) be the same. In turn this means that averaged over the entire
coating, the electron affinity at the surfaces of the pores and the donor con-
centration found there must be essentially equal to the corresponding quantities
at the emission surface. This demands that operation at a constant temperature
without the drawing of emission current should precede any measurements. It is
also clear that the introduction of poisoning impurities such as oxygen without
a period of coating conditioning can increase the true work-function of the
emitting surface without at the same time influencing to the same extent the
true work-function found at the surfaces of the pores. The experiments of
HANNAY, MACNAIR and WHITE are consistent with this view.

The most important factors in Eq. (85.4) that influence the emission current
to conductivity ratio are the geometrical constants C, and l,. The first of these,
as indicated in Sects. 65 and 77, depends on the detailed nature of the porosity
of the specimen. Without this information it is not possible to do more than
estimate the value of this constant for a given experimental specimen and for
the present purposes the estimated value of C, will be 0.3. Similarly, techniques
for the determination of the most suitable value of J, have not been developed
beyond the estimation stage. It is thought that the range in ly is likely to be
from 2 microns to 8 microns. With the assumption that the product of these
two constants is 1.5 xX 107%, the computation of the ratio expressed by Eq. (85.4)
gives a value of 11X10%amp-ohm per m. for comparison with experiment.
This figure is well within the range of observation made by Youn and is less
than a factor of 3 larger than that observed by HanNAY, MACNAIR and WHITE
as illustrated by Fig. 40.

86. Thermoelectric effects in an oxide coating. The fact that the temperature
coefficient of the FERMI level in an oxide cathode is large indicates that the main-
tenance of a temperature gradient across a coating will result in the production
of a measurable difference in potential between suitably placed electrodes. This
difference in potential has been observed by Younc! and found to be directly
proportional to the temperature gradient. Although the potential developed
depends on the average temperature at which the observation is made, the high
temperature electrode is always more positive than the low temperature contact.
A typical curve as observed by YouNG is shown as Fig. 60. The experiment
involved the application of a barium-strontium oxide coating to two nickel
caps. The coated surfaces were held in contact with each other mechanically,
face to face, and each cap could be heated by a suitable internal heater. Thermo-
couples were used to measure temperatures and temperature differences. Not
only could the thermal emf be measured as a function of average temperature,
but also the electrical conductivity of the coatings. Fig. 61 presents results obtained
by YouNnG for the same specimen as was used for the data of Fig. 60. A com-
parison between Fig. 61 and Fig. 37 indicates that the Loosjes and VINK
ranges I and II are covered by this study. The very low temperature range there-
fore is dominated by conductivity in the crystalline substance and the very

1 J. R. Young: J. Appl. Phys. 23, 1129 (1952).
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high temperature range by conductivity of electrons that build an electron
atmosphere in the pores between the crystals. The conductivity data show no
indication of important space-charge effects within the pores since range III
(see Sects. 77 and 78) is not present. The equations developed in Sects. 64 and 65
may be adapted to the discussion of these thermoelectric effects.

If a temperature gradient is maintained across a single crystal of a substance
which has a temperature coefficient of the Fermi level when measured with
respect to the bottom of the conduction band, then in the absence of any current
flow potentiometer methods permit the measurement of the difference in energy
of the FERMI levels at the two points of contact between which the temperature
difference exists. In YOUNG'S experiment observations made in the very low
temperature range permitted a direct deter-
mination of the emf per unit temperature
difference averaged over the specimen.
Since it is presumed that the tempera-
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Fig. 60. Thermoelectric coefficient as observed Fig. 61. Conductivity data as observed by YouNG on
bv Young. same specimen as Fig. 60.

ture difference existed over the same thickness of specimen as that which gave
rise to the emf, it was not necessary to know exactly the thickness in order to
acquire significant data for comparison with theory.

Eq. (64.3) may be used as the starting point for the derivation of an equation
which should relate an observable thermoelectric emf to the temperature gradient
maintained across a single crystal of activated barium-strontium oxide. The
ase of “activated” indicates that the theory is applicable only to a crystal in
which there are a sufficient number of donor centers close enough to the bottom
of the conduction band so that the location of the FERMI level is dominated by
the free electron concentration in the conduction band obtained by transitions
from the donors and that contributions to the electron density from the valence
band are negligible. In the formulation of the theory it is assumed that over
a very small distance within the crystal there is a difference in temperature of
‘AV;) and that over this same distance there is an observable potential differ-
ence (Av). This observable potential difference would have to be measured by
potentiometer methods with the help of a potential indicator of the electrometer
type since in the very low temperature range the resistance of a practical speci-
men as it applies to the oxide cathode may be very high. Any appreciable current
flow mav interfere with the accurate determination of the thermal emf.

The analysis that follows shows that the observable emf may be thought of
as being derived from two phenomena. Since the observable emf represents a
displacement of the FERMI level in the high temperature region, relative to the
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location of the FERMI level in the lower temperature region, the presence of a
temperature variation of the FERMI level will contribute a term to the thermal
emf. An analysis of Eq. (64.8) as well as purely qualitative considerations show
that the concentration of free electrons in the high temperature region will be
slightly greater than the concentration of free electrons in the low temperature
region. Furthermore, these electrons in the high temperature region will be
moving with a greater average velocity as they cross the imaginary boundary
between the low temperature and the high temperature region. In order that the
time average of the current flowing across this boundary be exactly zero, a true
internal field will develop which basically is derived from a small excess of a
negative surface charge on the low temperature end of the crystal and a cor-
responding surface charge of positive electricity at the high temperature end
of the crystal. There will also be a distribution of surface charges along the sides
of the crystal so that the interior field will be uniform and, in the absence of
magnetic fields, the field will be in the same direction as the temperature gradient.
I'his latter contribution to the observable emf will be designated by (4+). With
these definitions and the use of Eq. (64.3) a current density of the electrons that
flow across the boundary from the low to the high temperature regions is given
as follows:

 A 2mmed oh
I1=22"2% y2evr. (86.1)

Eq. (86.2) expresses the current density in the opposite direction under the steady
state condition of zero net current across the boundary that separates the high
and low temperature regions.

27 med TobAELA
I = 2 (Vi + AVyp)2eVr+4Vr)(Vo+4Vr) (86.2)

Clearly these equations are valid only in the extreme case of AV; approaching
zero. The equations are nevertheless useful since the coefficient of the thermal
emf may be defined bv the following relation:

(Av (Adu + Av’ds = I ar a ( AVz ar © (86.3)
To solve for the expression of Eq. (86.3), the logarithms of Eq. (86.1) and
Eq. (86.2) are set equal to each other and the algebraic solution yields the follow-
ing result:

_ Av _ u

d= =—2+ (86.4)

In the use of this equation, it must be remembered that it applies only for values
of yu which are negative, and that the negative sign indicated for the expression
as a whole results from the fact that the current carrier is an electron and that
the high temperature region is the more positive in the electrostatic sense. In
the plot of the theoretical curve as it is compared with YOUNG’s experiment,
the absolute value of the thermoelectric coefficient will be plotted as a function
of (1/V7).

Note that this expression is identical in basic form to that derived by HENs-
LEY! and does not represent a precisely straight line plot since the location of the
FERMI level (u) is an implicit function of the temperature. Over any short range
in temperature the true value of u may be represented as a linear function of the

1 E. B. HENSLEY: J. Appl. Phys. 33, 1122 (1952).
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temperature but to do so hardly serves any immediate purpose since Table 11
makes available accurately computed values of yu for a wide range of donor
densities and donor energy levels.

It was demonstrated in Sects. 17 and 18 that in the absence of space-charge
the potential energy of an electron in a pore differs from that of an electron in
the bottom of a conduction band by the electron affinity W,. Exactly the same
principles that are illustrated above serve to give the following equation for the
thermoelectric coefficient appropriate to a pore across which there is a small
temperature gradient. This equation is the following:

W,—uI =—2——pGBo = AV 86.5.

The evidence presented in Sects. 81 and 83
indicate that a well-activated oxide cathode might
very well have a donor density of 3 x10%2 donors
per m.* at an energy level of approximately —0.6ev
and an electron affinity of 0.9 ev.

The two solid lines of Fig. 62 represent the values
of the thermo-electric coefficient as a function of

(1/Vy) as computed by Eqs. (86.4) and (86.5)
It is an open question as to whether or not either

of these computed curves can be expected to repre-
sent the results obtained in an experiment similar
to that of Young. In the first place over the low
temperature region the conduction of heat from
the nickel contact at high temperature to the nickel
contact at low temperature will be almost entirely
that conducted through the multitude of crystals
which are sintered together to give contact areas
of considerable variability. Of necessity, this re-
sults in a nonuniform distribution of temperature
gradient, and yet it is not completely unreasonable that for small total temper-
ature differences this nonuniformity will average out satisfactorily. The second
difficulty is related to the almost certain lack of similarity between the crystals
in direct contact with the nickel surface and those in the interior of the test
specimen. Although no obvious interface structure may be present, the thermo-
electric behavior of this region might be sufficiently different from the rest of
the specimen that it would disturb the results. Finally, in the intermediate
temperature range there will be conflict between the two sources of thermal emf
since the pores will tend to generate a larger emf than the surrounding solid struc-
ture. If the net current averaged over the entire specimen is exactly zero, then
in the neighborhood of each pore there will be a circulation of current. This
circulation will be in the direction that electrons will flow through the crystalline
substance from the low temperature region to the high temperature region, and
they will flow in the opposite direction in the pores. The transition region indi-
cated by the dot-dash curve of Fig. 62 will be very dependent on the pore structure
and the conduction properties of the specimen under study. No attempt will be
made here to derive equations applicable to this intermediate range. The observed
results of Youn presented in Fig. 60 are reproduced by the dotted line of
Fig. 62.
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Although qualitative agreement between theory and experiment is evident,
the overall picture needs to be clarified. The experiment is not an easy one
and therefore it should be duplicated with attention directed toward improve-
ment in the activation of the specimen. The indications are that Young's speci-
men was not as well activated as would be desirable. Although Young's experi-
ment used potentiometer methods for the measurement of the thermal emf, a
more sensitive indicator of higher internal resistance than a conventional galvano-
meter should be used. In spite of this criticism, the experiments of Youne
contributed valuable information to support the Loosjes and VINK model of
coating conductivity at a time when this theory was less firmly established than
at present.

87. Coating activation and related problems. The crystals that constitute an
oxide cathode coating are generally formed following the decomposition of a
solid solution of barium-strontium carbonate, Some manufacturers include
calcium as well as barium and strontium with a proportion of calcium of approx-
imately 5%. Conversion to the oxide takes place rapidly at temperatures above
1150° K and it is not unusual to use temperatures even above 1450° K for very
quick conversion. Since the results of detailed studies are not available, produc-
tion procedures that yield specific advantageous properties are not well under-
stood, nor is there general agreement concerning some of the most basic factors.
Enough of the theory has been presented in the previous sections to indicate that
a porous structure can be created to have a higher electrical conductivity than
can be expected from a crystalline structure having the same total weight of
material and the same density of donors. The desired lowering of the coating
resistance depends upon the development of pores of optimum dimensions. If
the pore size is too large, the presence of space-charge within the pores limits their
effectiveness as conductors and if the pores are too small crystalline material
interferes with the free flow of the electrons and the resistance of a cathode may
increase.

Porosity also plays a part in the liberation of the decomposition products
and with the physical strength of the coating. Coating strength in turn relates
to coating adherence which is a problem of great practical importance much in
need of scientific investigation.

Although the emission properties of an oxide cathode immediately after its
formation are generally good enough to yield current densities far in excess of
those that would have been available from the base metal, an activation process
is necessary to create a really efficient electron emitter. Much evidence points
to the fact that activation results from a creation of an oxygen deficiency of
approximately 10 to 20 parts per million averaged over the crystalline structure
of the coating. As far as the experiments go, the term “oxygen deficiency”
is completely analogous to “barium excess’. The difference in concept relates
specifically to the location of these donors. Excess barium within the crystal in
all probability will find itself in normal barium sites and the oxygen atoms that
are missing will leave defects within the body of the crystal which serve as trap-
ping centers for the electrons normally associated with the excess barium atom,
This trapping of electrons near negative ion sites is well known as it applies to
the alkali halides. In potassium chloride, for example, electrons from the excess
potassium atoms are trapped near chlorine vacancies and give rise to an absorp-
tion band for visible light in the green. A potassium chloride crystal which would
otherwise be perfectly clear and transparent appears colored when viewed in
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white light because of this absorption band. These trapped electrons are often
known as “color centers”.

Since the crystal of a barium-strontium oxide cathode has an ionic structure,
it is very likely that the donors in an activated cathode are the oxygen vacancies
which are capable of delivering one electron per donor to the conduction band
by the absorption of energy of approximately 0.7 ev. Direct evidence for this
particular transition in an activated oxide cathode is not available although the
conduction and emission properties of well-activated cathodes serve as indirect
indications of the presence of a donor level at this energy.

The difficulties encountered in the production of the necessary concentration
of donors when pure nickel is used as a base metal and great care is exercised to
eliminate reducing reactions by the presence of impurities made available from
neighboring structures, indicates strongly that the most important chemical
reactions responsible for the formation of oxygen vacancies depends on there
being present in the base metal reducing agents such as: magnesium, silicon,
titanium and manganesel. The oxide reduction takes place at the boundary
layer between the base metal and the oxide, and if the reaction takes place too
rapidly, the excess barium which must be absorbed into proper lattice sites within
the crystals in order to be useful may migrate over the surfaces of the crystals
and after evaporation from the cathode, deposit on insulators and other structural
parts of practical tubes in an objectionable manner. In many cases the compound
formed by the oxygen and the reducing agent has a very high resistivity unless
this compound itself can hold within it enough donors so that it may be character-
ized as an “»’’ type semiconductor.

The drawing of an electron emission current during the activation process
serves the purpose of creating within the coating itself an electric field which
tends to maintain a high concentration gradient of donors within the interior of
the coating and inhibit their loss at the exterior surface. With a very small
concentration of a very active reducing agent such as magnesium, a high con-
centration of donors can be created in the first few minutes of the activation
schedule and by suitable heat treatment and aging activate the entire coating
in a few hours. At least in theory, this quick, initial activation is important from
a practical point of view. The ultimate life of an emitter, however, depends on
the maintenance of the required donor density throughout the cathode for a
very long period of time. The presence of excess donor density in the immediate
neighborhood of the vacuum surface of the emitter results in excess barium
evaporation. It is therefore necessary to attain a suitable compromise such that
the rate of production of excess barium is exactly balanced by its loss either as
a result of evaporation or as a result of the neutralization of the oxygen vacancies
by the absorption of oxygen or other electronegative elements brought to the
surface from the external environment. Constructional and vacuum techniques
determine the availability of these poisoning agents. It follows therefore that
the achievement of truly long-life reliable cathodes depends on the maintenance
of a suitable rate of production of oxygen vacancies over a long period of time
and the minimizing of their loss.

Closely associated with this problem of activation is the stability of the
emitter under high current drain conditions. Only a few of the many pheno-
mena that depend on current drain can be mentioned here. It has been established
by WAyMouTH? that in many examples of moderately high silicon content nickel

1 E. S. RirrNER: Philips Res. Rep. 8, 184 (1953).
2 1. F. WavmouTH: J. Appl. Phys. 22, 80 (1951).
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the interface of barium ortho-silicate (2 BaO - SiO,) will have a low resistance
through many hours of emitter life if an electron current is maintained con-
tinuously to keep an electric field applied at all times of cathode operation. Such
a field inhibits the temperature diffusion of donors out of the interface com-
pound. Without this flow of current, a high internal resistance may develop
which could very well interfere with the practical usefulness of such an emitter.
The base metal used for emitters in applications for which intermittent service
is demanded should contain a minimum of silicon and have substituted in its
place reducing agents less prone to develop high resistance in the absence of
current flow.

Attention may be directed to the main structure of the oxide cathode, and
since one realizes that at the normal operating temperature there is considerable
mobility of the atoms that. make up such crystals, there is a strong tendency
for the donors (probably oxygen vacancies) to become more or less uniformly
distributed throughout the interior of each of the crystals if no electron current
is flowing. The maintenance of emission current results in an internal electric
field within the crystals which interferes with the randomness of temperature
diffusion and results in a redistribution of donors with a concentration gradient
which in effect balances the electric field. Thus, the higher the emission current,
‘he higher the field and the higher the concentration gradient. In the extreme
case of high pulse-emission, the concentration gradient can be so great that
the surface crystals increase in work-function so much that a drop in emission
may take place. If the emission is too low to maintain a space-charge potential
minimum at the surface of the emitter of AT or approximately 0.1 volt for a
practical cathode, such an emitter in a vacuum tube may not be sufficiently
space-charge limited to maintain in the desired modulation properties.

 This increase in work-function is basically the result of the increase in the
temperature coefficient of the true work-function as the donor density decreases.
The rapidity with which the work-function and its temperature coefficient changes
with’ the reduction in donor concentration is well illustrated by the data in
Table 11.

With well-activated cathodes, emission current densities of approximately
5 amps per cm.2 may be obtained for reasonable periods of time without pro-
hibitive reduction in donor density at the emission surface. Unless the cathode
is well activated and the vacuum environment free from electronegative elements,
excessive field develops near the superficial surface which in turn aggravates
the situation in that the stronger the field, the greater the difficultv in maintain-
ing a sufficient concentration near the surface.

Although this concept of donor migration in the presence of field dates back
at least to the early work of BECKERL. the most complete recent treatment is
that of NERGAARD2.

These problems of donor concentration, donor distribution and donor mobility
in the presence of fields are likely to be the subject of many researches in the
near future since these phenomena combined with the control of porosity deter-
mine the important emission properties of oxide cathodes.

88. Dispenser cathodes. Dispenser cathodes have been developed to meet
the demand for high emission current density under environmental conditions

1 J. A. BEckER: Phys. Rev. 34, 1323 (1929).
2 1.. S. NERGAARD: RCA Rev. 13, 464 (1952)
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that would often be considered unfavorable to high emission efficiency. One
of the earliest dispenser cathode structures was that proposed by HuLLl. In
this example the emitting surface was molybdenum which received the activat-
ing material by evaporation from a closely woven “stocking” of molybdenum
wire which contained as a filler a fuzed barya-alumina eutectic (70% BaO,
30% AlL,O; by weight). Barium oxide is evaporated from the dispenser and
condensed on the molybdenum surfaces presumably with a sufficient concentra-
tion of excess barium to maintain a well-activated emission surface for thou-
sands of hours. The thickness of the coatings used was never established by
direct experiment, but the properties were so similar to those of a conventional
oxide cathode that it may be presumed that a sufficiently thick layer of barium
oxide existed to create a multi-layer emitter surface with semiconducting
properties.

The development of the “L” cathode by LEMMENSs, JANSEN and Loosjes?2
took advantage of a technique by which a porous tungsten plug could be inserted
into a molybdenum cup into which had been placed barium-strontium carbonate
which was thus sealed into position behind the plug. High temperature operation
permitted the conversion of the carbonate to the oxide and the removal of the
gaseous products of this reaction. The barium oxide and barium diffuses through
the porous tungsten-and activates the surface.

HUGHES and Corpora? have described still another version of the dispenser
cathode. In the preparation of this emitter the principle active constituent is
barium carbonate which is fuzed with a small amount of calcium carbonate and
aluminum oxide (AL,O,). After fusion, this material is ground to a fine powder
and sintered under high pressure with a powdered refractory material. Typical
of this matrix material is the tungsten 25%, molybdenum 75% alloy. The favor-
able properties resulting from the introduction of calcium were first described
bv Levi?

Not unrelated to these emitters are those described by MACNAIR, LyNCH
and HANNAYS. In this example, a plug is formed on a pressed nickel base and
contains particles of nickel pressed in special dies with barium-strontium carbonate
particles. These molded cathodes, after suitable activation, have an emission
efficiency very comparable with well-activated sprayed oxide cathodes.

Still another dispenser cathode has been described by Baras, DEMPSEY, and
REeXER®. In this case, nickel powder is pressed and sintered to form a cathode
matrix. This matrix is filled by water soluble compounds which finally precipitate
the barium-strontium carbonate needed for the eventual conversion to barium-
strontium oxide. The material contained within the matrix migrates to the
surface and activates it. Observations indicate that these emitters have high
efficiency and are generally far more able to deliver continuously high current
density. They also withstand the temporary admission of oxygen to their
surfaces

Most of the observations with dispenser cathodes are interpreted on the
assumption that the surface should be classified as “simple composite’. It

L A. W. HurL: Phys. Rev. 56, 86 (1939).
2 H. J. LemMENs, M. J. JansEN and R. Loosjes: Philips Techn. Rev. 11, 341 (1950).
8 R. C. HuchEs and P. P. Corpora: Phys. Rev. 85, 388 (1952). — J. Appl. Phys. 23,

1261 (1952). — Proc. Inst. Radio Engrs. 44, 351 (1956).
4 R. Levi: J. Appl. Phys. 26, 639 (1955).
5 D. MacNAIR, R. T. LyncH and N. B. HANNAY: J. Appl. Phys. 24, 1335 (1953).
6 W. Baras, J. DEMpsEY and E. F. REXER: J. Appl. Phys. 26. 1163 (1955).
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is assumed that a mono-molecular layer of barium oxide reduces the true work-
function of an otherwise clean base metal with the resulting high emission effi-
ciency. It should be considered an open question as to whether or not this inter-
pretation is entirely correct since in some cases oxidation of the base metal is
a necessary step in the production of an efficient emitter. If this oxide is some
10 to 20 atom layers thick and can be converted into a suitable “x” type semi-
conductor by the presence of the barium oxide, then the concepts associated with
the “complex composite’ surface may be more appropriate for the explanation
of the emission properties.

In order to understand the physics of the emission process for these dispenser
cathodes, research data not available in the literature are needed. The general
discussion of Sect. 69 indicates broadly the nature of the data wanted. Specific-
ally one may ask the question: can a polarizable monolayer of molecules reduce
the work-function as much as is observed? The alternative is that the dispenser
cathode should be described as a complex composite surface, and with this
statement, it is implied that the surface film is thick enough to have taken on
many of the properties of an “x” type semiconductor. If this second picture
represents the facts, then high emission efficiency results from a very great
reduction in the electron affinity and by having present within the complex
ayer a high concentration of donors. The temperature coefficient of the FERMI
level can then be maintained small enough so that a satisfactory true work-
function at operating temperature is obtained.

It is not easy to outline the researches which would give an unambiguous
answer as to the nature of the surface film on a dispenser cathode. Practically
all of the techniques that have been described in Sects. 73 through 83 may be
ised to yield electrical data that serve to describe the emission properties of
‘hese cathodes. Direct measurements of the true work-function over a wide

range of temperature should be most helpful. A determination of the temper-
ature coefficient of the work-function as a function of the temperature could
very well be useful for the identification of the emission mechanism. Still addi-
tional properties may be discovered by the use of a dispenser cathode as a receiver
of electrons. In that manner additional direct determinations may be made of
‘he variation of the true work-function with temperature and with activation
over a very wide range of these variables. After the electrical properties of various
specific types of dispenser cathodes have been determined, they could be com-
pared to the properties of ribbons of the same base metal upon which barium-
strontium oxide had been deposited from exterior sources much after the manner
of the work of MooRE and ALLISON!. They found that a condensation of approx-
imately 10 to 20 molecular layers of barium oxide was required to convert the
properties of a tungsten ribbon to those very analogous to a conventional oxide-
coated cathode. It seems unlikely that such a large number of layers can be
formed by diffusion and molecular migration from the interior of a dispenser
cathode. Yet even though the surface may not be covered with that number of
layers, if the extent of the coverage is appreciably in excess of a monolayer,
the emission properties may be dominated by phenomena associated with
the complex layer structure in contrast to the simple composite type. If oxi-
dation of the base metal beyond a monolayer is a fundamental requirement
for high efficiency then theories applicable to complex-composite surfaces should
apply.

G. E. Moore and H. W. ALLisoN: Phys. Rev. 77, 246 (1950).
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89. Concluding remarks and acknowledgements. This treatise has been pre-
pared with the objective that it might serve as a suitable source of basic physics
as it relates to thermionic emission. The introduction of many cross-references
and the presentation of a glossary of symbols are devices which it is hoped will
assist the reader in the acquisition of information in the particular phases of
this subject of thermionic emission in which he is most interested. In spite of
its length, it touches only lightly on many branches of the subject while at the
same time it attempts to discuss with thoroughness, and it is hoped with rigor
some of the more important phases of the subject.

Criticism may be made because so much of the writing has been allotted to
the analysis and discussion of space-charge problems. The justification for this
emphasis in an article on thermionic emission is that a thorough mastering of
this subject and its intelligent use is needed for the evaluation of thermionic
emission and its application in engineering. It is hoped that this better under-
standing of space-charge theory in its relation to thermionic emission will ulti-
mately assist in the improvement of practical vacuum tubes not only in their
performance characteristics but also in their reliability both on a short time and
a. long time basis.

For similar reasons the oxide cathode well deserves the very best. effort that
any author writing on the subject of thermionic emission can give to it. Millions
upon millions of tubes that depend for their usefulness on oxide cathodes have
been produced and for some considerable time in the future they will still be
needed. It is hoped, therefore, that this treatise will serve as a guide in the
formulation of specific means by which the basic problems can be attacked and
ultimately solved. The acquisition of new and more reliable information may
very well show that the theoretical analysis presented here is not adequate
since it does depend on simplifying assumptions. The reader will note that the
main effort has been to try to bring together in a simplified manner both experi-
mental and theoretical studies basic to the analysis of thermionic emission from
nxide cathodes as it is understood at this time.

Apologies are in order for the very superficial handling of such an important subject as
the dispenser cathode. If more time were available for the preparation of this treatise there
s no doubt that existing experimental data could be organized and presented in a far better
nanner so as to establish more clearly the basic phenomena involved.

A number of my colleagues, acquaintances and assistants have aided immeasurably in
che production of this treatise. Specifically I wish to acknowledge the help given me by
Mr. James CArRDELL and many of his associates at the Raytheon Manufacturing Company
whose studies on the properties of cathode nickel have been most helpful. In addition, this
group has made available innumerable test diodes on which studies of cathode material
could be undertaken.

Among my students and former students who have helped by their suggestions and
criticisms, I wish to mention in particular ANDREW R. Hutson, WiLriam J. LANGE and
Havwoop SHELTON. Without the help of the computing division of the Research Laboratory
of Electronics under the directorship of Miss ELIZABETH ]. CAMPBELL it would have been
impossible for me to have prepared the tables, many of which are being made available in
this treatise for the first time. It is hoped that this choice of tabular information and its
method of presentation will prove useful. Dr. HELEN L. THOMAS, also of the Research La-
soratory of Electronics, assisted in many phases of the editing and the production. Finally
[ wish to acknowledge the great assistance given me in the preparation of this manuscript
&gt;y my assistant, LAWRENCE E. SPRAGUE, who prepared practically all of the drawings. Thanks
and credit are due EVELINE VAN BERKUM who helped me with much of the original draft
and editorial work. My appreciation has been earned by Miss ANNE F. CRIMMINGS who pre-
pared all of the final manuscript and helped most effectively in many aspects of the final
nroduction.
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Table 1. Density of an electron atmosphere in an enclosed space. (See Sect. 24 for details.)
ns = electron concentration just outside of surface. #,,,= maximum possible density at
center of cavity [Eq. (24.4)]. n, =true density at center of cavity. 22 =n,/n,,, [see Eqs. (24.2)
and (24.11)]. Vr= T/11600 = electron volt equivalent of temperature. V,= true potential

difference in volts between surface and center of cavity.

tay | VilVr

0.05
2.10

2.15
2.20

9.25
9.30
0.35
0.40
0.45
0.50
0.55
9.60
0.65
9.70
9.75
2.80
0.82
0.84
0.86
0.88
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

27104
1074

225 x 1074

400x107%
625 X 1074
900x1074

1225 x 1074
16X1072

20.25 x 172
25 x 1072

30.25 x 1072
36 x 1072

42.25 x 1072
49x1072

56.25 x 1072
64.0x1072

5.724 X 1071
7.056x1071
7.396X1071
7.744 x 1071
3.100 X 1071
8.281 x 1071

3.464 x 1071
3.649x1071
8.836x1071
0.025 x 1071
9.216X1071
9.409 x 1071
9.604 x 1071
9.801 x 1071

2.515 x 1073
10.25 x 1073
23.79 x 1073
44.22X1073
73.22X1073
113.4 X 1073

0.1685
0.24445
0.3502
0.5000
0.7171
1.042
1.5475
2.378
3.841
5.701
8.636

(1.41
15.54
22.06
33.10
41.71
33.88
71.83
99.77

146.6
233.7
424.0
973.4

3068.2

1.00619
1.02508
„05764
‘10561
“17158
1.25957
1.37555
1.52781
1.72957
2.0

2.3707
2.8946
3.6627
4.8527
6.8287

10.4699
12.8431
16.1729
21.017
28.481
40.861
50.363
53.654
83.050

112.917
162.462
253.60
450.59

1013.53
4048.7

0.00617
0.02477
0.05604
0.10040
0.15835
0.23077
0.31885
0.42383
2.54787
0.69315
0.86318
1.06281
[.29821
1.57954
1.92114
2.3485
2.5528
2.7833
3.0453
3.3492
3.7102
3.9193
4.1535
4.4194
1.7267
3.0904
5.5358
5.1104
5.9212
8.3062

Table 2. Values of F(S, kT|w) for various values of S and kT|w [see Eq. (26.12)].

I 40
Tl S—0

0 1.0 8.0171
0.06 0.943 7.47
0.12 0.893 6.98
0.20 0.833 6.41
0.40 0.714 5.30
0.60 0.625 4.47

2.80 | 0-556 3.86
1.0 0.500 : 38
1.2 0.455 2.95
1.4 0.417 2.62
1.6 0.385 2.“ las
2.0 0.337 1.92 0.959

3.0 0.250 ' 1.29. 0.611 |5.0 0.167 10.735 | 0.325

3.9171
3.51
3.18
2.81
2.09
1.62
9

26.172
23.1
20.5
17.7
12.6
0.12
2?

11.272
9.5
8.14
6.75
4.39
2.69
2.77

4.672
3.78
3.12
2.45
1.47
0.974
370
nN HR

18.673
14.3
11.7
395
1)
; “1

An

1.62
4.35
3.20
1.75
1.00
2.66
J.502
0.450
0.40

11.374
8.4
6.05
3.99
1.96,
1.12

9.757
0.578
0.46
0.386

1775
11.8
7.9
5.00
2.33
1.25
0.873
0.672
0.552
0.470

&lt;r

0.759
S 7

| 2.011.54
0.879

 nN

0.3% 0%

07
0.4: | 0.143

Note 1: The rowfork T/w = 0is G (S) since the first term of Eq. (26.12) reduces to 2 S? e7S/Vr
in the limit. A more complete table of values is given in Table 10.

Note 2: The superscript at the top of each column indicates the power of ten by which
the numbers in that column should be multiplied.
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Table 3E (Emitter Space). Numerical solution to the LANGMUIR equation for epace charge
in the Emitter Space Eg. (36.1).

3.005
0.006
2.007
0.008
N.000

3.010
0.011
0.012

0.013
0.014
ROLES

0.02

0.025
0.03
0.04
0.045

2.05
0.06
2.07
0.08
3.00

3.1

0.15
0.2

0.25
0.3
0.25

0.4
0.45
0.5
0.55
N.6

0.65
0.70
0.75
0.80
9.85
9.9
2.95

I 0

1.1

1.15
1.2
AR

0.09864
0.1080
0.1165
0.1244
0.1317

0.1387
0.1454
9.1517
0.1578
3.1636
0.1602

0.1947
0.2169
0.2369
0.2721
0.2870

0.3027
0.3302
0.3553
0.3783
0.3990

0.4201
0.5070
0.5777
0.6385
0.6923
N.7306

0.7835
0.8238
9.8605
0.8952
0.9277

0.9581
2.9871
1.014
1.039
1,064
*.088
1.109

“ay

171
„189

1.208
19975

Xs] Xm | (Xe/Xm)?

0.05462
0.05980
0.06451
0.06888
0.072902

0.002983
0.003575
0.004160
0.004746
0.005316

0.07680
0.08051
0.08400
0.08738
0.09059
0.09360

0.005899
0.006481
0.007055
0.007634
0.008204
0.008778

0.10781
0.1201

0.1312
0.1507
0.1594

0.01162
3.01442
0.01721
0.02270
N.02541

0.1676
0.1828
0.1967
0.2095
N.2214

0.02809
0.03342
0.03869
0.04387
0.04002

0.2326
0.2807
0.3199
0.3535
0.3833
1.4005

0.05411
0.07879
0.10231
2.1250
2.1469
3.1677

0.4338
3.4561
0.4765
0.4957
0.5137

0.1882
0.2081
0.2270
0.2457"
0.2620

0.5305
0.5466
7.5615
2.5753
7.5891
7.6024
).6141
7.6262

0.2814
0.2987
0.3152
0.3311
0.3471
3.3630
2.2771
N.3021

0.6484
0.6584
0.6689
0.6782

0.4203
0.427%
0.4577
0 4600

1.3
1.35

1.4
1.45
1.5
1.6
1.7

8
9

2.0
2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.0

2.0
 |
2

le”;

3.6
1.8

4.0
4.2
1,4
1.6
4.8
5.0

SE

» 1

«0
‚6.0

1.242
1.258

1.273
1.288
1.302
1.330
1.356

1.380
1.402
1.423
1.444
1.462

1.480
1.497
1.513
1.527
1.541
1.555
1.568

1.580
1.590
1.602
1.611
1.621
1.631
1.639
1.655

1.670
1.683
1.694
1.705
1.715
1.724

' 742

56

ROK

Xs/ xm

0.6877
0.6966

0.7049
0.7132
0.7209
0.7364
0.7508

0.7641
0.7763
0.7879
0.7996
0.8095

0.8195
0.8289
0.8378
0.8455
0.8533
0.8610
0.8682

0.8749
0.8804
0.8870
0.8920
0.8976
0.9031
0.9075
0.9164

0.9247
0.9319
0.9380
0.9441
0.9496
0.0546

0.9646
0.9723
29784
).9834
1.0873

1.9900
).9939
1.9961
0.9983
0.9994
0 0004

(xs xm)?

0.4731
0.4853

0.4970
0.5086
0.5197
0.5424
0.5638

0.5837
0.6028
0.6208
0.6392
0.6552

0.6714
0.6871
0.7018
0.7150
0.7282
0.7413
0.7530

0.7652
0.7751
0.7867
0.7956
0.8057
0.8155
0.8235
0.8308

0.8551
0.8683
0.8799
0.8913
0.9017
0.0112

0.9305
0.9455
0.9572
0.9670
0.0746

0.9802
0.9878
0.9921
0.9967
0.9989
0.9890

! Based on tables computed by P. H. J. A. KLeyNEN: Philips Res. Rep. 1, 81 (1946).

Note 1: See Egs. (37.1), (37.3), (37.5) and (37.6) for empirical equations for these data
and the means for extrapolation.

Note 2: The limiting value of y; is ¥,, = 1.806.

Note 3: Definitions: y,=V,/Vy=eV,[kTand %2= (x./5,)2 with (x,)? given by Eq. (35.2).
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Table 3C (Collector Region). Numerical solution! to the LANGMUIR equation for space charge
in the Collector Region [Eq. (36.1)].

0.01
2.02

3.03
3.04
3.05

9.06
9.07
2.08
0.09
0.10

0.15
0.20
0.25
0.30
0.35

0.40
0.45
0.50
0.60
0.70

0.80
0.90
1.00
1.10
1.20
‚40
1,60
1.80

2.00
2.20
2.40
2.60
2.80

5.00
3.20
3.40
3.60
3.80

4.00
4.50

0.1440
0.2053
0.2529
0.2933
0.32903

0.3621
0.3924
0.4209
0.4477
0.4733

0.5866
0.6841
0.7714
0.8515
0.9262

0.9965
1.063
1.127
1.247
1.359

1.465
1.567
1.663
1.756
1.846
2.018
2.181
2.336

2.486
2.630
2.769
2.904
3.036

3.164
3.290
3 147

TYN

3.767
4.049

Yelm

0.07973
0.11368
0.1400
0.1624
0.1823

0.2005
0.2173
0.2331
0.2479
0.2621

0.3248
0.3788
0.4271
0.4715
0.5128

0.5518
0.5886
0.6240
0.6905
0.7525

0.8112
0.8677
0:9208
0.9723
1.0221

1.1174
1.208
1.203

1.377
1.456
1.553
1.608
1.681

1.752
1.822
1.890
1.956
2.022

2.086
2.242

(xe! xm)?

0.006359
0.01292
0.01961
0.02637
0.03323

3.04019
0.04721
0.05433
0.06144
N.06868

0.1055
0.1435
1.1825
0.2223
0.2630

0.3044
0.3464
0.3894
0.4767
0.5663

0.6579
0.7527
0.8480
9.9455
1.0449
1.248
1.458
1.673

1.895
2.121

2.351
2.585
2.826

3.069
3.319
3.571
3.827
4.087

4.351
5.026

We

5.00
5.50
6.00

6.50
7.00
7.50
8.00
9.00

10.0
11.0
12.0

13.0
14.0

15.0
16.0
18.0
20.0

25.0
30.0
35.0
40.0

45.0
50.0
60.0
70.0
80.0

90.0
100.0

150.0
200.0

300.0

400.0
500.0
500.0
700.0
800.0

900.0
1000.0

Yn

4.320
4.583
4.838

5.086
5.328
5.564
5.796
5.245

6.680
7.101
7-510
7-909
8.298

8.680
9.053
9.780

10.48
12.16
13.74
15.24
16.68

18.08
19.43
22.02

24.50
26.88

29.17
31.40
41.78
51.25
58.50

84.28
99.04

113.06
126.5
139.4

151.9
164.1

Yel Xm

2.392
2.538
2.679

2.816
2.950
3.081
3.209
3.458

3.699
3.932
4.158
4.379
4.595

4.806
5.013
5.415
5.803
6.733
7.608
8.439
0.236

10.011
10.76
12.19
13.57
14.88

16.15
17.39
23.13
28.38
37.03

16.67
54.84
52.60
70.04
77.10

84.11
90.86

(xe/ xm)?

5.722
6.440
7.176

7-931
8.703
9.491

10.300
11.957

13.68
15.46
17.29
19.18
21.11

23.10
25.13
29.32
33.67
$5.34
57.88
71.21
£85.30

100.22

115.74
148.7
184.0
221.5

260.9
302.3
535.2
305.3

1439

2178
3007
3919
$906
5058

7074
3256

1 Based on tables computed by W. R. Ferris: RCA-Rev. 10, 134 (1949).

Note 1: See Eqs. (37 7) and (37.8) for empirical equations for these data and the means
for extrapolation.

Note 2: The limiting value of y; is y,, = 1.806.

Note 3: Definitions: yp,=V,/Vr= eV [kT and x2 = (x./#,)? with (x)? given by Eq. (35.2).



Tables. 1 54

Table 4. Emitter region potential and its relation to emitter properties and current flow.
(See Sect. 43 and 44 and Fig. 9.)

We

0.02
0.025
0.03
0.04
0.05
0.06
0.07
0.08
N.09

0.10
0.15
0.2
D.25
2.3
3.35

I.4
0.45
3.5
9.55
7.6
9.7
7.8
7.9
' 0

9.1078
2.1201

).1312
3.1507
7.1676
2.1828
2.1967
3.2095
4.2214

0.01162
0.01442
).01721
J.02271
1.02809
1.03342
1.03869
2.04389
3.04902

).2326
0.2807
0.3199
0.3535
0.3833
3.40058

3.05410
1.07879
3.1023
3.1250
3.1469
0.1677

0.1882
0.2080
0.2270
3.2457
0.2639
0.2988
0.3310
0.3629
2.309021

2.4338
0.4561
2.4765
1.4957
2.5137
9.5466
9.5753
0.6024
5.6262

4

2

3.6484
3.6689
0.6877
0.7049
0.7209
0.7364
0.7508
0.7641
7.7763

3.4204
2.4474
1.4729
2.4969
2.5197
9.5423
9.5637
9.5838
3.6026

A

1.8
CQ

2.0
2.4
3

).7879
).7996
).8095
7.8195
1.8289
1.8378
).8455
).8533
3.8610
7.8682

0.6208
0.6394
0.6553
0.6716
0.6871
0.7019
0.7149
0.7281
3.7413
3.7538

2.8
2.0 |
".0
1
“2

a

0.8749
0.8804
0.8870
9.8920
1.8976
1.9031
2.9075
3.0164

0.7654
0.7751
0.7868
0.7957
0.8057
0.8156
0.8236
1.8308

|

18

+O 3.9247 2.8551
+.2 3.9319 0.8684

F+4 3.9380 | 9.8798L.A J.9441 2.8913
+8 1 0.9496 0.9017
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1.0100
1.0126
1.0151
1.0202

1.0253
i 0304
[ 0356
1.0408
1.0460

1.0513
1.0779
1.1052
1.1331
1.1619
1.1013

1.2214
1.2523
1.2840
1.3165
1.3499
..419
1.492
1.568
' 6490

1.733
1.822
1.015
2.014
2.117
2.226
2.340
2.460
2.586

2.718
2.858
3.004
3.158
3.320
3.490
3.669
3.857
4.055
4.262

4.482
4.712
1.953
5.207
5.474
5.755
6.050
3.686

7.389
3.166
9.025

| 9.97411.023

149

1.0202
1.0253
1.0305
1.0408
1.0513
1.0618
1.0725
1.0833
1.0042

1.1052
1.1618
1.2214
1.2840
1.3499
{ 4101

1.4918
1.5683
1.6487
1.7333
1.8221
2.014
2.226
2.460
2.718

3.004
3.320
3.669
1.055
4.482
1.953
5.474
5.050
5.686

7.389
8.166
9.025
9.974

11.023
12.18
13.46
[4.88
16.44
18.17

20.09
22.20

24.53
27.11
29.96
33.12
36.60
14.70

54.60
56.69
81.45
99.48

121.51

UI

0.1089
0.1216
0.1332
0.1538
0.1718
0.1884
J.2037
0.2181
1.2316

0.2445
0.3026
0.3534
0.4006
0.4453
0.4879

0.5299
0.5711
0.6118
0.6526
0.6935
0.7758
9.8584
0.9448
1.032

1.124
1.219
1.317
1.420
1.526
1.639
1.757
1.879
2.007

2.142
2.285
2.432
2.588
2.752
2.924
3.102
3.202
3.491
3.701

3.922
1.148
4.393
4.644
1.013
5.197
5.490
3.127

5.833
7.610
8.465
9.416

10.47

Io/Im

0.01185
0.01478
0.01773
0.02364
0.02953
0.03549
0.04150
0.04755
0.05364

0.05979
3.091 54
0.1249
3.1605
3.1983
7.2380

3.2808
2.3262
9.3743
9.4259
9.4809
0.6018
0.7368
0.8927
1.066

1.263
1.485
1.735
2.015
2.329
2.686
3.086
3.532
4.029

4.587
5.221
5.914
6.699
7.574
8.549
9.623

10.834
12.19
13.70

15.38
17.24
19.20
21. 7

4
27.01
30.14
37.54

16.69
57.91
71.66
88.67

109.6



WayYNE B. NoTTINGHAM: Thermionic Emission.

Table 4. (Continued.)

5.0
25
5.0
5.5
7,0
75

2.9546
0.9646
3.9723
0.9784
2.9834
0.0873

9.9900
3.9939
0.9961
0.9983
0.9994
0.9994

0.9113
0.9304
0.9454
0.9573
0.9671
9.9748

12.18
15.64
20.09
5.79

A2
i)

2.9801
7.9878
0.9922
).9966
0.9988
2.9988

54.60
90.02

148.4
403.4

1096.6
2081.0

4
6

Note 1: ys and yx; from Table 3E. z=
Eq. (43.5). (Io/Im) =2%evs from Eq. (43.6).

u? (Io/ Im)? TolIm

148.4
244.7
403.4
665.1

1096.6
1808.0

2081.0
8103.0

22026.0
0.16275 x 108
1.2026x108
8.8861 x 108

11.63
15.09
19.53
25.23
32.57
11.08

135.2
227.7
381.4
636.7

1060.5
| 762.4

34.05
89.47

147.8
402.7

1096.0
2070.0

2021.7
8004.0

21 854.0
2.1622x108
1.201 X 108

8.875x108

stm) from Eq. (43.7). u}=I,/Ip=e¥s from

[able 5. Collector region potential and its elation to emitter Properties and current Flow.
"Use with Eq. (46.2) and related equations.]

J.01
).02

0.03
2.04
).05

0.06
3.07
93.08
2.09
2.10

D.15
0.20
0.25
D.30
).35

2.40
).45
0.50
3.60
).70

1.80
3.90
1.00
1.10
1.20
..40

1.60 |
80

0.02074
0.04215
0.06396
0.08602
0.1084

2.1311
2.1540
0.1772
0.2004
3.2240

3.3441
2.4680
0.5951
0.7251
0.8578

J.9930
1.130
270
„555
‚847

2.146
2.455
2.766
3.084
3.408
4.072
4.757
5.457

F (we) ]

0.08849
0.1420
0.1875
0.22846
N.26654

0.3025
0.3369
0.3698
0.4015
0.4324

0.5757
0.7067
0.8295
0.9462
1.0584

1.1672
1.2716
1.3748
1.5736
1.7649

1.9542
2.1334
2.3101
2.4340
2.6550
2.9896
3.3163
3.6338

Fw)

0.16227
2.23132
0.28494
0.33045
0.37004

0.40792
0.44215
0.47424
0.50438
0.53320

0.66091
0.77078
3.86914
0.95937
1.0436

1.1229
1.1975
1.2696
1.4050
1.5312

..6505
1.7652
1.8738
1.9786
2.0799
2.2735
2.4574
2.6319

[F(we)12

0.02633
0.05351
0.08119
0.1092
0.1376

0.1664
0.1955
0.2249
0.2544
0.2843

0.4368
0.5941
0.7554
0.9204
1.080

1.261
1.434
1.612
1.974
2.345

2.724
3.116
3.511
3.915
4.326
5.169
5.039
5.027
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Table 5. (Continued.)

[F(ye)] FE (we)13 “Fly12

2.00
2.20
2.40
2.60
2.80

6.180
6.917
7.667
8.433
0.217

3.9482
4.2560
4.5583
4.8559
5.1538

2.8009
2.9631
3.1196
3.2711
3.4205

7.845
8.780
9.732

10.70
11.70

3.00
3.20
3.40
3.60
3.80

10.011
10.824
11.649
12.482
13.330

5.4463
3.7367
5.0243
6.3072
5.5008

3.5651
3.7068
3.8453
3.9799
1.1134

12.71
13.74
14.79
15.84
16.02

4.00

4.50
5.00
5.50
6.00

14.190
16.394
18.662
21.004
23.406

6.8708
7.5657
3.2486
8.0243
0.5026

4.2438
4.5618
14.8672
5.1633
5.4507

18.01
20.81
23.69
26.66
20.71

5.50
7.00
7.50
3.00
3.00

25.867
28.388
30.958
33.594
30.000

10.255
10.911
11.559
12.205
13.483

5.7306
5.0033
6.2690
6.5299
7.0363

32.84
36.04
39.30
42.64
49.51

10.0
1.0
2.0

13.0
4.0

14.622
50.424
56.400
52.552
58.857

14.749
16.002
17.241
18.473
10.606

7.5260
8.0006
8.4611
8.9107
0.3493

56.64
64.01
71.59
79.40
87.41

.5.0
16.0
18.0
20.0
25.0
30.0
35.0
10.0

75.342
81.957
05.648

109.83
147.87
188.79
232.26
278.22

20.914
22.115
24.516
26.885
32.782
38.587
44.294
19.966

9.7796
10.198
11.018
11.807
13.700
15.482
17.170
18.704

95.64
104.0
121.4
139.4
187.7
239.7
294.8
353.2

$5.0
50.0
50.0
70.0
RO.O

326.89
377.52
184.88
500.25
722.53

55.637
61.236
72.357
83.426
04.400

20.372
21.891
24.809
27.604
30.285

415.0
479.2
615.5
762.0
017.2

90.0
100.0
150.0
200.0
300.0

850.89
985.96

1745.6
2626.6
1602.3

105.26
116.16
169.97
223.44
328.57

32.863
35.378
47.074
57.741
77.175

1080.1
1252.0
2216.0
3334.0
£056.0

100.0
500.0
500.0
700.0
300.0

7103.1
9808.9

12783.0
16002.0
19432.0

23074.0
269029.0

433.22
537.20
640.95
744.48
847.43

94.958
111.58
127.39
142.52
157.06

9017.0
12451.0
16227.0
20313.0
24 667.0

171.14 29290.0
184.89 | 34184.0

Note 1: Tabular form of Eq. (46.2) comes from relation [F (ww? = 1.2694 32 = ($n) x2
Note 2: Use Eq. (37.8) or (46.5) for vy,&gt; 1000.

|
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Table 6. Relation between maximum and minimum current flow for a given collector region
potential. [See Eq. (46.14).]

f (we) In f (we)

4.3515 1.47052
2.9810 1.09226
2.4674 0.90316
2.1890 0.78344
2.0110 0.69863

5.0 1.8861 0.63451
7.0 1.7929 0.58383
3.0 «7204 0.54256
9.0 1.6621 2.50808

10.0 1.6139 2.47865
12.0 1.5389 0.43107
14.0 1.4827 0.39386
16.0 „4389 0.36388
18.0 .4035 0.33897
20.0 „3744 2.31802

25.0 1.3191 0.27695
30.0 1.2802 0.24702
35.0 1.2511 0.22402
10.0 2283 0.20563
45.0 «2098 0.19046
50.0 1,1946 0.17781
50.0  1708 0.15769
70.0 1529 0.14228
30.0 1389 1.13006
90.0 1277 0.12018

100.0 1.1183 0.11181
150.0 1.0883 0.08462
200.0 1.0717 0.06925
300.0 1.0534 0.05202
100.0 1.0433 0.04239
500.0 1.0368 0.03614
500.0 1.0322 0.03169
700.0 1.0288 0.02839
300.0 1.0261 0.02577
900.0 | 1.0239 0.023621000.0 1.0221 0.02186 |

2

Note 1:  (3p,) = ( 1+ on) (Eq. (46.14)
CC

13 (wo)

2.6654
2.0713
1.8260
1.6859
1.5932
1.5266
1.4758
1.4358
1.4032
1.3759
1.3329
1.3003
1.27455
1.2536
1.2362
1.2028
1.1790
1.1611
1.1469
1.1354
1.1259
1.1109
1.0995
1.0906

1.0834
1.0774
1.0580
1.0473
1.0353
1.0287
1.0244
1.0214
1.0191
1.0173

1.0159 |1.0147

12) In f (we)

0.98035
0.72818
0.60211
0.52230
0.46576
0.42301
0.38922
0.36171
0.33872
0.31910
0.28738
0.26257
0.24259
0.22598
0.21201

0.18463
0.16468
0.14935
0.13709

0.12697
0.11854
0.10513
0.09485
1.08671
0.08012
0.07454
0.05641
0.04617
0.03468
0.02826
0.02409
0.02113
0.01893
0.01718
0.01575
0.01457

[able 7. The universal limiting curve of Figs. 16 and 17 is a plot of uf as a function of S’.
(See Sect. 57.)

YsBR

2.02
9.04
2.06
2.08
0.10

0.15
0.20

0.25
0.30
0.40
0.50
0.60
0.693
7.80 |

Ase

 go

12)| e(¥s RR/2Ys

9.1947 7.01
\2721 2.02
2.3302 2.03
).3783. 2.04
).4201 0.05
1.5070 0.075
2.5777 0.10
1.6385 0.125
).6923 015
2.7835 J.2
1.8605 7.25
1.9277 0.3

7.985 | 0.347 |
1.039 0.4

1.0101
1.0202

1.0305
1.0408
1.0513
1.0779

1.1052
1332
„1618
2214
„2840

1.3499
1.414
1.4918 |

Us Ys R

Xeo

0.1967
0.2776
0.3403
0.3937
0.4417
0.5465
0.6385
9.7235
0.8043
2.9570
1.1049
1.252
1.393
1.550

Wen

0.0180
0.0362
0.0533
0.0703
0.0871
0.1322

3.1750
3.223
2.270
9.372
7.483
0.605
0.732
0.883

ne

Wg R

1.0202
1.0408
1.0618
1.0833
1.1052
1.1618
1.2214
1.2840
1.3499
1.4918
..6487
1.8221
2
2.2926

Ss’

YsR+ Yeo

0.038
0.076
0.113
0.150
0.187
0.282

0.375
0.473
0.570
0.772
0.983
1.205
1.425
1.682
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‚CC;

Table 7. (Continued.)

Ha Ys B J

Us » XsR  owe pl2 | o(WsRI2) Xeo Wo, Je R YsR+ Yeo

1.00 |
1.099
"2

1.386
1.4
1.6
1.792
1.8

2.0

2.079
2.303
2.4
2.773 |
2.8
2.996 !
3.2
3.6
3.689
4.0
4.094
4.4
4.605

1.131
1,169
1.208
1.267
1.273
1.330
1.375
1.380
1.423
1.439
1.480
1.497
1.550 '

'.555
1.580
1.602
1.639
1.645
1.670
1.675
1.694
1.704

0.5
0.549
0.6
0.693 !

0.7
0.8
0.896
1.9
1.0

1.040
1.151

1.2 |1.386
4
498
6
8
“844

A.)

-.047
2.2
2.303 |
2.5
2.649
2.75 |
3.0
3.5
4.0
Ar

1.6487
1.732
1.8221
2.000
2.014
2.226
2.449
2.460

2.718
2.828
3.162
3.320
4.000
4.055
4.472
4.953
6.050
6.325
7.389
7.746
9.025

10.000

12.18
14.142
15.64
20.09
33.12
54.60
90.02

148.4
403.4

1096.6
2081

1.865
2.025
2.201

2.534
2.564
2.961
3.369
3.395
3.868
4.071
4.680
4.970
5.200
6.306
7.065
7.935
2.916

10.40
12.34
12.98
15.288
17.04

20.998
24.47
27.245
35.278
58.821
97.625

161.59
266.97
727.33

1979.36
5380.71

1.22

1.382
1.627
2.068
2.110

2.690
3.33
3.37

4.19
4.55
5.69
6.28
8.92
9.15

10.91
13.09
18.40
19.77
25.59
27.56
35.0
41.0

2.220
2.481

3.320 | 2.827
4 3.454
4.055 3.51
4.953 4.29
6 5.12
6.050 5.17
7.389 6.19
8 6.63

10 7-99
11.023 8.68
16 11.69
16.44 11.95
20 13.91
24.53 16.29
36.60 22.00
40 23.46
54.60 29.59
50 31.6
81.45 39.4

100 45.6

148.4 60.7
200 75.3
244.7 87.0
403.4 124.0

1006.6 247.0
2981 496
8103 084

22026 | 1954

[112026 % 100 75001.2026 X 10° | 28800
| 8.8861 x 10° 110000

5.718 |

5.0
5.208
5.5
6.0
7.0
S
3

1.724
1730

742
1.756
1.770
1.788
1.795
1.799
1.803
1.805
I ROK

55.7
70.0
1.5

118
240
488
975

1944
7490

| 28800
110000

10
12
14
16

Table 8. Master curve for emitter of unlimited capability ud = oo. ( See Sect. 58 and Figs. 16 and 17.

ue

0.02 1.2403
0.04 1.3512
0.06 1.4412
0.10 1.5928
0.20 1.9011
0.40 2.4080
7.60 2.8577
1.00 3.6895
1.40 4.483

9 5.648
“0 7-573
2.0 1.506
7.0 15.60

10.0 22.08
12.0 26.61
14.0 31.30
16.0 36.15
20.0 46.28
25.0 50.80
30.0 74.10

2

Note1: U2=(1 + Ze) [Eq. (58.3)].
 mM

0.23535
0.34099
0.42548
0.56549
0.8424
1.2788
1.6500
2.3055
2.9003
3.7313
5.0246
7.4429
9.7473

13.095
15.281
17.444
19.588
23.835
29.091
234.305

37.0 89.00
40.0 104.8
45.0 121.2
50.0 138.3
60.0 174.1
70.0 212.2
80.0 252.3
90.0 294.2

100.0 338.0
150.0 582.4
200.0 863.1
300.0 1515.0
400.0 2272.0
500.0 3118.0
600.0 4045.0
700.0 5047.0
800.0 6113.0
900.0 7244.0 |1000.0 8439.0

39.490
44.652
49.797
54.929
65.160
75.358
85.531
05.684

105.827
156.37
206.76
307.32
407.73
508.04
608.31
708.53
808.72
908.89

1009.04

Note 2: X=,+In U2 [Eq. (58.5)].
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Table 9. Master curve for emitter of limited capability
ug —&gt; :

2 w

YE 0.6930.985

Ys S’

J |

0.04
9.10.
0.15
0.2

2 1.425
1.922 | 1.126
1.810 {0.929
1.721] 0.802
1.637 10.6918

1.482 0.508
1.341 0.3513
1.213 0.2163
1.097 1.098
0.899

| 0.736

0.3
0.4 |

55
0.6
D.8
1.0

214

2.882
2.714
2.582
2.456

2.222
2.011
1.820
1.646
 oan

1.099
1.169

2.509
2.113
1.836
1.661
1.506

1.238 |

1.015 |
2.817 1
0.6413 ‘

0.7 79

aId

3.843
3.619
3.443
3.275

2.963
2.681
2.426
2.195
1.797
“472

1.386
1.267

3.456
2.999
2.651
2.436
2.244

1.908
1.624
1.376
„15:4

Da
7.4

6
1.792
1.375

ue

D

5.765
5.429
5.164
4.912

5.11
4.5418
4.1157
3.824
3.568

4.445
4.022
3.639
3.293
2.696
2.207

3.127
2.739
2.401
2.094
1.569
43

8
2.079
1.439

Us

7.686
7.238
6.886
6.550

6.629
5.9495
5.4393
5.0995
4.7895

4.2424
3.7684
3.344
2.960
2.309
1.764

5.026
5.362
1.852
4.390
2.504
2.043

Table 10. Electron current in a vetavding field for cylinders of various radii ratios from
1 to oo Sect. 60).

a

s | RS)

J

n.5
-0

i

9
10

1.0000
0.8012
0.5724
0.3916
0.2615
0.1116
1.601 X 1072

5.0
5.0
7.0
3.0
9.0

10.0

1.857 x 1072
0.7383 X 1072
0.2905 x 1072
0.1134X1072
4.398 x 107%
1.697 x 1074

12.0
14.0
16.0
18.0
20.0

0.2498 x 1074
3.632 X 1078
0.5234 x 1076
7.488 x 1078
1.066 x 1078

In F,(S)

U
— 0.2216

— 0.5579

— 0.9374

— 1.3414

— 2.1927

3.0788

—3.9864
— 4.9086

— 5.8413

— 6.7820

— 7.7291

— 8.6812

10.5974
12.526

- 14.463

— 16.407

— 18.357

logy F(S) | Slope - Disp.

0
— 0.0962

— 0.2423

— 0.4071

0.5826
0.9523
1.3371

U

0.608
0.728
0.787
0.826
0.872
0.898

0

0.2784
0.4421
0.5626
0.6586
0.8073
0.0212

— 1.7313

— 2.1318

— 2.5368

—2.9454

-3.3567

3.7702

0.9157
0.9281
0.9370
0.9444
0.9501
N.954

1.0136
1.0914
1.1587
1.2180
1.2709
1.3188

4.6024 0.962 1.4026
~ 5.4400 0.967 1.474
— 6.2812 0.970 1.537

_ 7.1255 | 0.974 | 1.503
_ 7.0723 0.977 1.643

1

a

J

D.5
1 nN
 =

9
.0
CN

5.0
5.0
7.0
3.0
9.0

10.0

F(S,a)

1.0000
0.7979
0.5668
0.3854
0.2557
0.1077
1.384 x1072

1.747 x 1072
0.6858 x 1072
0.2664 x 1072
0.1027 X 1072
3.935 x 107%
1.500 x 1074

In F(S, a)]

0

0.2257
0.5678

— 0.9535

- 1.3639

— 2.2280

3.1272

— 4.0475

— 4.9824

— 5.9278

6.8811
7.8405
8.8050

loge F (S, a)

0
— 0.0980

— 0.2466

— 0.4141

— 0.5923

— 0.9676

- 1.3581

1.7578
2.1638
2.5744

- 2.9884

— 3.4051

— 97.8940

Slepe

0

0.619
0.740
0.800
0.839
0.886
N.Q1 1

0.9286
0.9406
0.9499
0.9566
0.9622
0.9667

Disp.

0

0.2743
0.4322
0.5465
0.6361
0.7720
0.8728

0.9525
1.0176
1.0722
1.1189
1.1595
1 1950|



Tables.

ul = selected values. (See Sect. 58 and Figs. 16 and 17.)

10
2.303 |
1.480

20

2.976
1.580

u? |  Ss ne

io

9.608
9.048
8.607|
R.187

8.003 20
7.2527]19.22
5.6926] 18.00
5.2826[ 17.21
5.091267 16.37

7.408 5.2726] 14.82
5.703 | 4.7226] 13.41
5.065| 4.2276]12.31
5.488] 3.7776[10.97

4.493 3.001 5.92 3,679|2.353 . 7.36

40
3.689
1.645

60
4.094
1.675

C2 "ne Qr 242 Qr

13.906 10 23.489 60
12.905938.43| 22.0588 57.65
12.0559 |36.19| 20.7688"54.29
11.3255 134.43 19.8089 [51.64
10.8454 32.75! 18.9089 149.412

31.644
29.9544
28.2943
27.0443
25.8042

9.8459[29.63| 17.3188 144.45 23.7743
8.046 [26.81] 15.8587140.22| 21.8743
8.2104 [24.26] 14.538 136.39] 20.1443
7.3651 [21.95| 13.3287 32.93 18.4944
6.0761 117.97 11.2187 26.96 15.2443
4.981 |14.72] 9.3992,22.07| 13.2342

22

100

96.08
90.48
86.47
81.87

74.08
67.03
60.65
54.88
44.93
36.79

100
4.605
1.704

Ss’ 2

45.55
43.5651
40.707
39.5598
37.4051

1200
192.2
181.0
172.1
163.7

35.0 148.2
32.3851| 134.1
29.9051 121.3
27.6051 109.7

23.5151| 89.920.0252] 73.6

200
5.298
1.730

S’

75.208
72.2585
68.193
66.2481
63.398

58.4985
54.0986
49.9
46.3
 9.5

2

Table 10. (Continued.)

s | F(S,a) | In F(S, a) | logy, F(S, a) | Slope | Disp.

12.0

14.0 |
16.0

50 |
20.0

0

0.5
1.0
1.5
2.0
3.0
40

5.0
5.0
7.0
3.0
9.0

10.0

12.0
14.0
16.0
18.0
20.0

0.2154X107%
3.059 x 1078
0.4307x1078
6.026 X1078
7.8386x1078

1.0000
0.7960
0.5635
0.3818
3.2524
2.1056
1.966 x 1072

1.688 x 1072
0.6582x1072
0.2541 xX 1072
9.731 x 107%
3.705 x 107%
1404 x 10714

0.1994xX 107%
2.801 x 107%
9.3904x107%
5.410 x 1078
3.7464x1078

i. = 5.0 (Continued)
-10.7454 — 4.6667

12.6973 —5.5144

 14.6578 | —6.3658

— 16.6247 | — 7.2200
18.5067 — 8.0764

1

1
— 4.0

0
-0.2281
- 0.5736

— 0.9628 |
— 1.3768

— 2.2482

3.15844

0
—0.0991
— 0.2491

— 0.4182

— 0.5979

— 0.9764

1.3600

— 4.0817

— 5.0234

— 5.9753

— 6.9351

— 7.9007

~- 8.8712

— 1.7727

— 2.1816

2.5950
3.0119

- 3.4312

~ 2.8527

— 10.8230

— 12.7857

- 14.7562

16.7324
18.7132

—4.7004

~ 5.5528

— 6.4085

— 7.2668

— 8.1270

0.9733
0.9784
0.9821
0.9848
0.0872

0

0.625
0.747
0.807
0.847
0.893
0.918

0.9358
0.9472
0.9566
0.9631
0.9685
0.9725

0.9789
0.9836
0.9869
0.9893
0.9915

1.2546
1.3027
1.3422
1.3753
1.4033

0

0.2719
0.4264
0.5372
0.6232
0.7518
0.8456

0.9183
0.9766
1.0247
1.0649
1.0993
1.1288

1.1770
1.2143
1.2438
1.2676
1.2868

i

 J)

2
7.5
1.0

1.5
2.0
3.0
1.0 |

1.0000

0.7916
0.5562
0.3739
0.2452
0.1010
1.022 x 10-2

0
— 0.2336

— 0.5866

— 0.9837

— 1.4056

— 2.2926

— 23.2135

J
— 0.1015

—0.2548
-0.4272

— 0.6105

— 0.9956

— 4.3056

u
0.640
0.762
0.823
0.863
0.907
0.033

0
0.2664
0.4134
0.5163
0.5944
0.7074
0.7865
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Table 10. (Continued.)

S F(S, a) | In F(S, a) | logy, F (S, a) | Slope Disp.

L = 3.0 (Continued)

5.0
5.0
7.0
.0

9.0
0.0

12,0
14.0
16.0 |

18.0 |20.0

J

0.5
1.0

1.5
2.0

3.0
1.0

5.0
5.0
7.0
3.0
9.0

10.0

12.0
14.0
16.0
18.0
20.0

J

2.5
1.0

"5

„0
1.0

5.0
6.0
7.0
8.0
9.0

10.0

12.0
14.0
16.0
18.0
20.0 |

1.568 x 1072
3.6034x1072
0.2299x1072
3.701 x107%
3.276 x 107%
1998 x 41074

0.1710x1074
2.361 xX 107%
0.3242x1078
4.433 X 1078
0.6045 x 1078

1.0000

0.7867
0.5486
0.3658
0.2379
0.651 X 1072
3.788 x 1072

1.458 x 1072
7.5544 x 1072
7.2090x1072
7.836 x1074
2.024 x 107%
1.088 x 1074

3.1495 X 1074
2.043 x 1078
2.2782x10786
3.779 x 1078
0.5127 x 1078

1.0000

3.7773
0.5335
0.3501
0.2244
8.850 XxX 1072
3.397 xX 1072
1.282 x 1072
2.4795 x 1072
0.1783 X 1072
5.607 x 107%
2.442 x 107%
0.9014 x 1074

0.1224 x 107%
1.660 x 1078
2.249 x 1078
3.044 X 1078
7.4121 x 1078

4.1552
5.1104

— 6.0752

— 7.0469

— 8.0239

— 9.0050

— 10.9764

12.9564
14.9420

- 16.9316

18.9240

J

0.2399
0.6005

- 1.0058

— 1.4357

— 2.3381

2.2735
— 4.2280

— 5.1949

- 6.1704

— 7.1516

— 8.1373

— 0.1263

— 11.1107

— 13.1011

— 15.0950

- 17.0912 |
19.0887

i

7

0

—0.2520
0.6284
1.0494
1.4943 |

— 2.4238

— 3.3824

— 4.3567

— 5.3402

— 6.3296

— 7.3222

- 8.3173

9.3141

1.3104
3.3086
5.3077
7.3074

19.3073

— 1.8046

— 2.2194

-2.6384
- 3.0604

- 3.4847

3.9108

— 4.7670

— 5.6269

— 6.4892

— 7.3533

— 8.2186

2. g

0
— 0.1042

— 0.2608

— 0.4368

— 0.6235

— 1.0154

— 1.4217

— 1.8362

2.2561
2.6708

— 3.1059

— 3.5340

— 3.9635

4.8253
5.6897

— 6.5557

— 7.4226

— 8.2901

2.0

0
— 0.1094

— 0.2729

— 0.4557

— 0.6490

— 1.0526

— 1.4690

1.8921
2.3192
7 7489

800
122

— 4.9120

— 5.7799

- 6.6480

~ 7.5165

8.3851

0.9492
0.9609
0.9687
0.9747
0.9795
0.9829

0.9883
0.9916
0.9940
0.9957
0.9968

i)

0.658
0.780
0.839
0.878
0.922
0.947

0.9610
0.9724
0.9787
0.9840
0.9878
0.9902

0.9941
0.9962
0.9977
0.9984
0.9990

J
0.688
0.812
0.870
0.908
0.947
0.968

0.9794
0.9876
0.9911
0.9941
0.9963
0.9974

0.9988
0.9993
0.9998

0.9999 |1.0

0.8448
0.8896
0.9248
0.9531
0.9761
0.0050

1.0236
1.0436
1.0580
1.0684
1.0760

0
0.2601
0.3995
0.4942
0.5643
0.6619
0.7265

0.7720
0.8051
0.8296
0.8484
0.8627
0.8737

0.8893
0.8989
0.9050
0.9088
0.9113

0
0.2480
0.3716
0.4506
0.5057
0.5762
0.6176

0.6433
0.6598
0.6704
0.6778
0.6827
0.6859

0.6896
0.6914
0.6923
0.6926
0.6927



Tables.

. (Continued.) |

Table 10. ( one | oi.
nF (S, a) | logy,F(S,a)s | F(Sa) | 1

0

0.5
1.0

1.5
2.0
3.0
1.0

5.0
6.0
7.0
8.0
9.0

10.0

12.0
14.0
16.0
180 |
20.0 |

1.0000

0.7678
0.4960
0.3142
0.1953
7.357 X 1072
2.731 X 1072

1.008 x 1072
0.3714x1072
0.1367x1072
5.035 X 107%
1.851 x 1074
9.6810x1074

0.216 xX 1078
1.247 X 1078
0.1688 x 1078
2.284 x 1078
0.3091 X 1078

 J)

— 0.2642

0.7012
- 1.1577

— 1.6330

— 2.6095

3.6006

4.5971
— 5.5956

— 6.5952

— 7.5949

~ 8.5946

— 0.5046

- 11.595

- 13.395

- 15.595

— 17.595

— 19.595

i

7

- 4

J

— 0.1147

0.3045
— 0.5028

—0.7092
— 1.1333

1.5637
— 1.9965

— 2.4296

— 2.8643

— 3.2984

— 3.7326

— 4.1669

— 5.0354

- 5.9042

— 6.7728

— 7.6414

— 8.5100

J

0.8543
2.8942
0.9320
0.9640
0.9866
9.9950

0.9977
0.9990
0.9996
0.9998
0.9999
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000

U

0.2358
0.2988
0.3423
0.3670
0.3905
0.3004

3.4029
3.4044
0.4048
0.4051
0.4054
0.4054

0.405
0.405
0.405
0.405
0.405

1

= 1.0
0
0.5
1.0

1.5
2.0

3.0
1.0

1.0

0.6065
0.3679
0.2231
0.1353
4.979 x 1072
1.832 x1072

0.6738x107?
0.2479x1072
9.119 x 107%
3.355 x 107%
1.234 X 1074
0.4540x1074

J

~ 0.5

—1.0
—1.5

—2.0
— 3.0

4.0

J

— 0.2171

— 0.4343

— 0.6514

— 0.8686

— 1.3029

—1.7372

— 2.1715

— 2.6058

— 3.0401

— 3.4744

— 3.9087

4.3429

5.0
5.0
7.0
3.0
9.0

10.0

5.0
-6.0
-7.0

7.0
9.0

10.0

12.0
14.0
16.0

— 18.0 |
— 20.0 |

12.0 6.144 x 1078
14.0 0.8315x107%
16.0 0.1125x107%18.0 | 1.523 x1078
20.0 | 0.2061 x 1078

— 5.2115

— 6.0801

— 6.9487

— 7.8173

— 8.6859

Table 11. The FERMI level and its temperature coefficient for selected downov concentration and
energy level. (Sect. 64.)

1018nr
r

7 El 73
E=—06 | E=—08 | E=—09 | &amp;-a E: TN l f——14 | E=— 16

8 2.512
10 1.976
2 1.624
4 1.375

{6 1.191
18 1.049
20 0.936!
22 0.844
24 0.769"
26 1 0.705

— 2.425:

— 1.907,

— 1.566

— 1.326

— 1.148

— 1.010

—0.902

—0.813

—0.741]

—0.682!

— 2.425

— 1.907

— 1.566

— 1.326

— 1.148

—1.012
- 0.907

—0.831

—0.780

— 0.743

— 2.425

— 1.907

— 1.566

— 1.326

— 1.149

1.017
- 0.925

— 0.865

— 0.820

— 0.789

— 2.425

1.907
— 1.566

— 1.327

— 1.153

1.034
- 0.960

— 0.907

— 0.870

— 0.839

— 2.425 — 2.425

- 1.907 —1.907

—1.566 — 1.567

-1.320 —1.336
-1.166 —1.194

1.067 —1.105
-0.998 — 1.051

-0.956 — 1.006

—0.920| —0.970
— 0.880 —0.939

—2.425

— 1.907

—1.576

— 1.384

— 1.278

- 1.205

—- 1.151

— 1.106

— 1.070

— 1.030

—2.425

— 1.911

— 1.616

— 1.468

—1.375

—1.305

— 1.251
— 1.206

— 1.170

— 1.139
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Table 11. (Continued.)

np == 10'® (Continued)

E=-06 | E=—08 | E=—09 | E=—1.0 | E=—14 E=—12 | E=—14 | E=—16

du
ave

8 21.596
0 21.261
'2 20.987
'4 20.756
16 20.556
18 20.379
20 20.221
22 20.078

24 op26 119.828

— 20.902! — 20.902

—20.598 20.568
—20.294 — 20.293

—20.063] — 20.056

~19.861| — 19.813

—19.680] — 19.370

-19.498| — 17.972

- 19.262] — 15.012

— 18.785 — 12.309

- 17.623] — 10.809

— 20.902 20.902

— 20.568 20.567

—20.290 - 20.280

— 20.030 — 19.916

— 19.595 — 18.654

18.062 — 15.058

14.661 — 11.921

-11.891 — 10.444

— 10.472 — 9.908

~ 9.916 | — 9.672

— 20.902

— 20.564

20.244
19.468

— 16.252

12.384
10.508
9.966

— 9.720

9.508

— 20.902

20.557
20.117

- 18.099

— 13.489

— 10.891

— 10.085

— 9.791

— 9.658

— 0.576

— 20.894 — 20.885

-20.478 19.896
—18.621 14.456

— 13.335 —10.980

~10.790 — 10.126

—10.045 — 9.883

— 0.818 |— 9.772

— 9.706 | — 9.694
— 9.631 | — 9.628
— 0.568 | — 9.565

np = 3X 1018
~ 1

Vp ¥

8
{0
2

4
16 |
18
20
22

24
6

2.375
1.866
1.532
1.297
1.122

0.988
0.881
0.795
0.723
0.663

2.288 2.288
1.797 1.797

—1.47. — 1.475

—~ 1.247 — 1.248

— 1.079 — 1.080

— 0.949] — 0.953

— 0.847 — 0.860

— 0.764) —0.796

— 0.698) — 0.753

0.646! — 0.720

Ba | aw
rt avm

20.497 10.804 — 19.804
20.162 19.469] — 19.469
19.889 - 19.196| — 19.193

19.658 — 18.963] — 18.942

6 19.457 — 18.759] — 18.616

18 19.281 — 18.567 — 17.748

20 19.123 — 18.341] — 15.393

22 18.980 — 17.938] — 12.487

24 "18.849; — 16.971] — 10.654

6 118.720|—15.083)—0.935

— 2.288

— 1.797

_ 1.475

— 1.248

_ 1.082

— 0.964

— 0.888

— 0.836 |
— 0.799

— 0.769

19.802
19.468

— 19.202

— 18.866

— 18.041

— 15.450

— 12.243

— 10.427

— 9.607

— 0.235

— 2.288

— 1.797

— 1.475

— 1.250

— 1.092

— 0.992

— 0.929

— 0.883

— 0.842

— 0.818

ap
AVrp

— 19.803

— 19.46¢€

—19.154

— ‘8.58

- R21

„RE

1,4

— 2.288

-1.797
— 1.476

1.255
1.115
1.032

— 0.975

— 0.932

— 0.897

— 0.868

2.288
- 1.797

— 1.478

—1.270
—1.151
— 1.0776

— 1.024

— 0.982

— 0.947

— 0.918

— 19.802

19.438
18.700
15.365
1.502
9.950
9.415

&gt; ' | = 9.204

94 5|— 9.097
9.037 — 090.024

19.803
‚9.456

NA fc

2.288
1.799

— 1.497

— 1.336

1.242
175

1.123
- 1.082

— 1.047

— 1.018

— 19.794

— 19.210

— 15.756

— 11.440

— 9.878

— 9.418

— 0.246

— 9.151

— 9.080

— 0.018

2.288
— 1.809

— 1.557

— 1.427

— 1.340

— 1.275

- 1.223

182
147
448

— 19.750

—17.596

—12.206

—10.031

— 9.408

— 9.317

— 9.220

— 9.144

— 9.078

— 0.018

nn=—1019

ya

8
10
2

4
16
18
20
22

24
26 |

1’

2.224
1.746
1.432
1.211

1.047
0.921
0.821
0.740
0.673
0.6161

— 2.137 2.137

— 1.676. —1.676

—1.374, — 1.374

—1.161) —1.162

—1.004] —1.006

— 0.883] —0.892

—0.787 —0.814

—0.712| —0.762
—0.654] —0.725
— 0.612] —0.696

— 2.137

1.677
1.375
1.163

— 1.013

— 0.914

— 0.851

— 0.807

— 0.773

—0.745

—2.137

— 1.677

— 1.375

— 1.168

— 1.033

— 0.951

—0.896

—0.855

—0.822

— 0.795

— 2.137

—1.677
— 1.377

— 1.181

1.066
-0.995
- 0.944

—0.904

—0.872

—0.845

--2.138
— 1.677

-1.383
-1.207
1.108
1.043
0.994

— 0.954

— 0.922

— 0.895%

— 2.138

— 1.682

— 1.422

— 1.287

— 1.203

— 1.141

— 1.093

— 1.054

— 1.022

— 0.905

—2.152

— 1.706

— 1.498

— 1.382

— 1.302

— 1.241

— 1.193

—1.154
— 1.122

— 1 005
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Table 11. (Continued.)

np = 1019 (Continued)

ur

3
10
12

4
16
18
20
22
24
26

ay
dVm

19.293
18.958
18.685
18.454
18.253
18.077
17.919
17.776
17.645

117.525

E=—06 | E=—08 | E=—09 | E=—10 | E=—14 | E=—12 | E=—14 | E=—16
4 rr

dm

18.600! — 18.600

18.265 — 18.264

17.991, — 17.987

7.757) — 17.688
17.544.—17.104
17.315! — 15.364

16.945 — 12.532

16.095] — 10.436

14.379] — 9.344

12.266] — 8.810

— 18.599

— 18.261

— 17.954

— 17.448

— 15.753

— 12.580

— 10.316

— 0.247

— tn

— 8.1

— 18.599

— 18.253

— 17.856

— 16.611

— 13.283

— 10.531

-- 9.30%

3 =

— 18.597

— 18.231

— 17.535

— 14.739

— 11.164

— 9.542

5.789
Q 6144

Q 5017

 7

—18.594

—18.162

— 16.652

— 12.517

— 9.955

— 9.052

— 8.723

— 8.575

— 8.486

— 8.419

—18.568

— 17.500

— 13.016

— 0.963

— 0.041

— 8.760

- 8.630

- © FAS

— 7

— 8.416

— 18.426

— 14.985

— 10.450

— 9.181

— 8.842

— 8.706

— 8.615

— 8.541

— 8.476

— 8.415

7

A

“p= 3:¢10%

vil r

8 2.087
10 = 1.636
12 1.340)
14 1.132
16 | 0.978
18 0.860"
20 " 0.766

22 0.690
24 0.627
26 0.574

al dur
vt avy

8 18.194
10 17.860
12 17.586
14 17.355
16 17.155
18 16.978
20 "16.820
22 "16.677

24 [16.5426 116.4261

— 2.000

— 1.567

— 1.283

— 1.083

— 0.935

— 0.822

— 0.735

— 0.668

— 0.619

— 0.583

— 17.501

— 17.166!

— 16.891

— 16.652

— 16.415

— 16.086

— 15.387

— 43.900!

11.887
— 10.209

— 2.000

— 1.567

— 1.283

— 1.084

— 0.941

— 0.842

— 0.778

— 0.734

— 0.701

— 0.674

— 17.501

— 17.163

— 16.863

— 16.452

— 15.327

— 12.837

— 10.448

— 9.097

— 8.429

— 8.095

— 2.000

— 1.567

1.284
— 1.088

— 0.956

— 0.874

— 0.820

— 0.781

— 0.750

— 0.724

— 17.500

— 17.155

— 16.782

— 15.844

— 13.241

— 10.504

— 9.055

— 8.400

— 38.094

— 7.9235

— 2.000 2.000

1.567 1.568
— 1.285 - 1.291

—1.099 —1.122
—0.986 — 1.026

—0.916 — 0.963

—0.867| — 0.916

— 0.830 | — 0.879
—0.799 | — 0.849
—0.774 — 0.824

i.

dVa

—17.498 — 17.494

—17.131 — 17.062

— 16.513 | — 15.751
— 14.300| — 12.190

11.019|—0.627
9.214 — 8 747

OA

fa 7.575

2.000
- 1.569

— 1.304

— 1.157

— 1.071

— 1.012

— 0.966

— 0.929

— 0.899

— 0.874

— 17.485

— 16.871

— 14.250

— 10.519

— 8.911

Q ~ rn

7.864

2.001

1.582
1.362

— 1.245

— 1.168

~-1.111
— 1.066

— 1.029

— 0.999

— 0.974

— 17.408

— 15.416

10.889
8.958
8.397
8.182
R.073
7 905

7.927
— 7.867

— 2.005

—1.624
— 1.448

— 1.342

— 1.268

— 1.211

— 1.166

— 1.129

— 1.099

— 1.074

— 17.020

12.405
9.289
8.504
8.266
8.150
8.065
7.992
7.927
7.867

102¢np =

ya

8 1.936! —1.850
10 1.516 —1.446

12 1.240 —1.182
14 1.046 — 0.997

16 0.903 — 0.861

18 0.793 —0.758

20 0.706 — 0.680

22 0.635 —0.624

24 0.5771 —0.585
26 |. 0.5281 — 0.556

— 1.850

— 1.446

— 1.183

— 1.001

— 0.876

—0.795

— 0.742

- 0.704

—0.675

— 0.651

— 1.850

— 1.447

— 1.185

— 1.011

— 0.902

—0.835

—0.788

— 0.753

—0.724

—0.701

— 1.850"

— 1.447

1.190
— 1.032

— 0.940

—0.880

- 0.836

— 0.802

—0.774

—0.75*

— 1.850

— 1.449

— 1.204

— 1.066

— 0.985

— 0.928

— 0.886

— 0.852

— 0.824

— 0.801

— 1.850

— 1.454

— 1.228

— 1.107

— 1.032

-0.978
— 0.936

— 0.902

— 0.874

— 0.851

— 1.853 —1.864

— 1.482 1.546

— 1.302 —1.395

— 1.201 — 1.299

—1.130 1.230
1.077 177

—1.036 — “136
—1.002 — 41.102

—0.974 —1.074
—0.051! — 1.051
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Table 11. (Continued.)

np = 1020 (Continued)

774 au’
avy

E=—06 | E=~08 | E=—09 | E= tc ! B=—14 | E=—12 | E=—14 | E=—15
t

8 16.990 — 16.297 — 16.295

0 16.656! — 15.961] — 15.949

12 16.382! “18652 ~ 1555014 16.151 - 15.424)—14.837
6 15.951 15.107,—12.857

18 15.774 14.493—10.372
20 115.616 13.172) _ 8.794
22 15.473 11.282 7.997

24 15.3421 — 9.644| 7.60026 115.222] — 8.574 7.390

- 16.293

15.923
15.344
13.552
"0.694
8.859
8.006'
7.614
7.416
7.302|

— 16.288

— 15.846

— 14.645

— 11.608

9.198
2 # 20

— 16.274

15.634
13.253
9.966
8.399
7.800 |
7.549
7-420
7.335
7.268

— 16.242

— 15.118

— 11.543

; 8.946

8.002
7.653
7.496
7-401
7.328
7.266

16.243 + — 15.018

2.708 —10.187
).208 — 8.308

8.073 — 7.824

7.715 7.647
7.562 7.544
7.467 7.462
7.391 — 7.390

7.325 — 7.3257.265 | — 7.265

np = 3% 10%

x

8
0
2

1
5

18
20
22

24
26

1.799
1.406
64
0.968
0.8351
0.7321
2.651
0.585
0.531 '
9.486

— 1.712 1.712

—1.336 1.337
— 1.091] — 1.093

—0.919/ —0.929

—0.794) — 0.824

—0.702| —0.757
—0.636 —0.712

—0.590 —0.678

—0.557| —0.652

„0.532 —0.630

du’7 —1
Tr avr

8
0
‘2

‘4
‚6
18
0

15.892 — 15.198] — 15.194

15.557 — 14.860] — 14.825

15.284 — 14.569 — 14.309

15.052" — 14.260 — 12.946

4.852" — 13.745 — 10.550

14.675 —12.638 — 8.678
14.517 —10.892| — 7.686
14.374 — 9.252) — 7.192

"4.244 — 8.143] — 6.934

14.124|—7.475— 6.787"
D4.
6

— 1.712

1.338
— 1.098

— 0.948

— 0.858

— 0.801

— 0.760

- 0.727|
- 0.701

0.680

— 15.187

— 14.748

— 13.718

— 11.209

8.916
7.756
7.227
6.970

— 6.828

— 6.737

1.713
1.340

-1.111
— 0.979

— 0.901

—0.848
— 0.809

—0.777

— 0.751 |
— 0.729

du
21V m

-15.170
14.536

— 12.485

— 0.567

— 7.993

— 7.332

— 7.039

— 6.888

— 6.793

— 6.722

—- 1.713

— 1.344

-1.134
- 1.019

-0.948
0.897

-0.858
—0.827

—0.801

— 0.770

— 15.131

— 14.025

— 10.897

— 8.404

7.525
7.741
. 753

858
- 6781

A7171

1.714
1.356
1.167

— 1.064

— 0.997

— 0.947

— 0.908

— 0.877

— 0.851
—0.829

.039

© 13.0529.557a
"205

87
“22
47

ry
0.716

—1.722
— 1.404

— 1.252

— 1.160

— 1.096

— 1.047

—1.008
—0.977

—0.951

— 0.929

-14.431
{0.438
8.087
7-378
7.129
7.004
6.915
6,842

- 6.776

— 6.715

— 1.746

— 1.482

—1.347

— 1.260

— 1.196

— 1.147

— 1.108

= 1.077

— 1.051

 —- 1.029

— 12.729

8.726
7.563
7.235
7.184
6.993

— 6.913

- 6.841

- 6.775

6.715

nny = 102

ya u’

1.648|
1.285|
1.048
0.882

6 0.759!
8 0.665!

20 0.591
2 0.530
4 + 0.481,
26 | 0.439)

—1.5621 —1.562

— 1.216] —1.218

— 0.991] —0.998

— 0.835] —0.858

—0.724] —0.774

—0.646] —0.719

— 0.594 0.680
—0.557 0.650
—0.530| —0.626

—0.508] — 0.606

— 1562

- 1.220

— 1.010

— 0.888

— 0.815

- 0.766

— 0.729

— 0.700

— 0.676

— 0.656

— 1.563

1.226
— 1.033

— 0.927

— 0.861

0.814
0.778
0.750,

- 9.726 |
— 0.706

—1.565
— 1.238

— 1.067

— 0.972

— 0.909

— 0.864

— 0.828

— 0.800

— 0.776 |
— 0.756

— 1.586

— 1.260

— 1.107

— 1.019

- 0.959

-0.913
0.878

- 0.850

—0.826

— 0.806

4.587
—1.328
— 1.199

—1.117
— 1.058

— 1.013

—0.978

—0.949

— 0.926

— 0.906

— 1.634

~ 1.415

1.296
1.216
1.158

-1.113
-1.078

— 1.049

— 1.026

— 1.006
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Table 11. (Continued.)

np = 1021 (Continued)

au
vet avr

, E=—06 | E=—08 | E=—09 ' =. an | E=—14 | E=—12 | E=—14 | E=—16
| —

du
dVm

8 14.688 —13.992| — 13.979
10 14.353 —13.646) — 13.534

12 14.080 — 13.318] — 12.605

‘4 113.848 — 12.849! — 10.546

16 13.648 — 11.887 — 8.498

18 13.471 — 10.285 — 7.324

20 13.313§— 8.696] — 6.735
22 143.171 |— 7.596 — 6.431

24 [Soe — 6.928] — 6.260
26 [12.920 — 6.531] — 6.153

— 13.956 — 13.903 — 13.777

—13.304 - 12.766 — 11.797

— 11.485 —10.033 — 8.794

— 9.011 — 7.918 — 7.302

— 7.408 — 6.979 — 6.722

6.809 — 6.576 - 6.471

6.482 — 6.379 -- 6.338

— 6.309, — 6.264 -- 6.248

— 6.202 | 6.183 | — 6.176
— 6.125! — 6.117' — 6.114

— 13.518 —12.232 — 10.220

— 10.563 8.542 — 7.543

— 7.955 7.128 — 6.840

— 6.965 6.686 — 6.608

— 6.596 6.505 — 6.484

— 6.425% 6.396 — 6.390

— 6.321 6.312 — 6.311

— 6.242 — 6.239 |— 6.239

— 6174 — 0.474 | — 6.173
— 6114 |— 6.1131— 6.113

np=3X 10%

Vz oy
i]

8
10
12

4
6
8
20
22

24
26

1.511
1.175
0.957
0.804
0.691
0.604
0.536
0.480
0.435
0.397

— 1.425 — 1.425% — 1.426

—1.107 —1.11C 1.117

— 0.901 — 0.917 — 0.939

—0.761" — 0.802 —0.840

—0.666] —0.733 —0.778

— 0.603] —0.686 —0.734

— 0.560, — 0.652 — 0.701

—0.529] —0.625' — 0.675

—0.505] —0.603' — 0.65"
— 0.486 — 0.585 —0.637

— 1.428

— 1.130

—0.972

—0.883

— 0.826

— 0.783

—0.751

—0.725

— 0.703

— 0.685

ave
or

AVry

8 13.589 — 12.889!—12.850—12.785—12.638

10 13.254 — 12.521—12.215—11.69310.776
12 12.981 — 12.092) — 10.682 — 9.360 8.190

14 12.750—11.298—8.546—7.455 6.807
16 12.550 — 9.877 — 7.117 6.520 6 24

18 “12.373 — 8.316 — 6.389 5.082 £94
20 2.215. — 7.180| — 6.006 5.860 ror

22 '12.072 — 6.479 — 5.800 | — 5.730 —- 5.70.

24 11:09] 6.061 — 5.074 — 5.641'—2.620
26 111.821]— 5.8061— 5.587' — 5.571 — 5.566

— 1.437

— 1.152

— 1.012

— 0.930

—0.874

—0.833

—0.801

—0.775

—0.753

— 0.7385

— 12.332

9.640
7.381
6.446
5.069
3.887
1.762
5.695
5.626
5.565

— 1.441

— 1.184

— 1.056

— 0.979

— 0.924

— 0.883

— 0.851

— 0.825

— 0.803

— 0.78%

— 11.784

8.603
6.877

— 6.251

— 5.996

— 5.860

— 5.768

— 5.691

| — 5.625

— 5,564

1.478
— 1.265

— 1.152

— 1.077

— 1.024

—0.983

— 0.951

— 0.92}

— 0.903

— 0.88%

— 10.041

7.281
6.395
6.09C
5.943
5.844
5.762
5.690

| — 5.624

' — 5,564

— 1.543

— 1.357

— 1.250

— 1.177

— 1.124

— 1.083

— 1.051
— 1.025

— 1.003

— 0.985

— 8.413

— 6.693

— 6.228

— 6.029

— 5.932

— 5.840

— 5.761

— 5.689

— 5.624

— 5.564

nn = 1022

veil 7

8 ' 1.361

10 1.055
12 0.856
14 0.718"
16 ' 0.615

18 0.5371
20 ' 0.476]

22 0.4261
24 ' 0.385!

26 + 0.351

— 1.27%

— 0.988

— 0.805

— 0.687

— 0.610

— 0.560

— 0.526

— 0.500

— 0.479

— 0.462

— 1.277

— 0.999

— 0.839

— 0.748

— 0.691

— 0.651

— 0.621

— 0.597

— 0.578

— 0.562

1.280
-1.014
— 0.872

— 0.791

— 0.738

— 0.700

— 0.671

— 0.647

— 0.628

— 0.612

1.28¢€
— 1.038

— 0.912

— 0.838

— 0.787

— 0.750

— 0.720

— 0.697

— 0.678

— 0.662

— 1.297

— 1.071

—0.956

— 0.886

— 0.836

— 0.799

— 0.770

—0.747

—0.728

— 0.712

— 1.316

— 1.110

— 1.003

~ 0.935

—0.886

—0.849

— 0.820

— 0.797

—0.778

—0.762

1.374
— 1.190

— 1.100

— 1.034

— 0.986

— 0.949

— 0.92(

— 0.897

— 0.878

— 0.862

— 1.454

— 1.295

— 1.200

— 1.134

— 1.086

— 1.049

— 1.020

— 0.997

— 0.978

— 0.962
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Table 11. (Continued.)
np = 1022 (Continued)

 rr

E=—06| E=—08 | E=—09 | F-- -1.0 E=—14 | E=—12 | E=—14 | E=—16
dw
iVm

12.388 — 11.668] — 11.547

12.050 — 11.229] — 10.463

1.772 — "9.534 — 8.486

1.552 — 0.267| — 5.860

5 11.340 — 7.776|— 5.082

8 11.166 3.648] — 5.53%
20 11.020 8.044! — 5.293
22 10.872 - 5.521 — 5.148

24 [10-749] - 5.261 — 5.050:
26 110.626] — 5.0941 — 4.975!—

— 11.359

9.582
7.426
5.216
“651
“777

4.966

— +n 088

3.556
5.688
* 854

‚or

X

| 25 | —
4.062 —

— 10.376

7.656
5.225
5.656
1.403
1.264
5.167
5.090
5.023
1.062

— 9.572

— 6.989

— 5.944

— 5.549

— 5.364

- 5.249

5.162
5.088

~ 5.022

— 4.962

7.980
— 6.229

— 5.680

— 5.461

— 5.335

— 5.240

— 5.159

— 5.087

— 5.022

— 4.962

— 6.910

— 5.905

- 5.588

— 5.436

— 5.328

— 5.238

— 5.159

— 5.087

— 5.022

— 4.962

N. — =— 774022

rz!

8
{0
12

4
16
‘8
20
22

24
26

1.223
0.945
0.765
0.639
0.547
0.476
0.421
0.376
0.339
0.308

— 1.138

— 0.882

— 0.724

— 0.627

— 0.566

— 0.525

— 0.496]

~ 1.144

0.906
-0.777
-0.703

—0.655

—0.620

—0.593

— 0.572

— 0.555

— 0.541- 0.4.4

1)yr
du’
avy

11.284 —10.524| — 10.210

10.950 — 9.916 — 8.610

10.680 — 8.836 — 6.803

10.446 — 7.413 — 5.714

5 10.252 — 6.254]— 5.156
18 10.068 — 5.513'- *.R60
20 1 9.920" - 5.2154 aR

22 ' 9.772 — 4.780

24 9.636 — 4.611
26 | 9.5081— 4.489! -

— 1.152

— 0.931

— 0.817

— 0.749

— 0.703

— 0.669

— 0.643

— 0.622

— 0.605

— 0.591

— 9.806

7.686
— 6.104

— 5.334

- 4.654

— 1.166

— 0.965

— 0.861

— 0.797

—0.752

-0.719
0.693

— 0.672

—0.655

—0.641

—0.184

5.888
5.659
5.124“869|

23

187
“004

— 0.908

— 0.846

— 0.802

— 0.769

— 0.743

- 0.722

— 0.705

~ 0.691

— 8.428

— 6.298

— 5.388

— 5.010

—4.822

~4.704

- 4.615

4.541
„4.472
—441

— 1.216  -1.290

— 1.048  -1.142

—0.956 —1.054
—0.895 —0.995
—0.852 —0.952

—0.819 —0.919
—0.793 —0.893

— 0.772 —0.872

—0.755 © —0.855

0.741 | —0.841

— 7.684

— 5.892

— 5.225

—4.948

—4.798

„4 AOE

— 6.561

— 5.448

— 5.072

—'4.897
— 4.782

—4.690|
— 4.610

-4.538
4.473
4.4172

— 1.378

— 1.239

— 1.154

— 1.095

— 1.052

— 1.019

— 0.993

—0.972

— 0.955

— 0.941

— 5.934

— 5.260

— 5.019

—4.882

—4.778

— 4.689

— 4.610

—4.538

—4.473

— 4.413

Appendix 1.
Thermionic constants.

The following empirical equations may be used with the tabulated constants
fo calculate approximate current densities in amp/cm.? from the sources listed.

OR — _

/=4.Tie AT | I=A,T%e T, I=A,T%210
- ~L u

[=ae * I=ae 7, I=a10 T

Note 1: Z, and 7, are minimum and maximum temperatures,
Note 2: 7, computed from 7,, and T,, by Eq. (50.5)
Note 3: @ computed from ¢g by Eq. (50.3).
Note 4: a computed from 4» by Eq. (50.6).



Appendix 1 and 2.

Source Tr Ta | 7HE I = | 1 B

1300 [2200 [1520} 50340 21870
1300 [2200 [1520 50810 22080
1040 [1180 [1010 51970 22580
1180 (1680 [1240 48840 21220
1300 [2100 [1480 50690 22020
1350 {2000 [1450+ 18140 20920
1300 11700 [1300 33480 23230
1150 [1700 [1240 50780 126410
1700 |2100 {1650 6171026810
1200 [2000 [1390 $8600 121120

400 2400 1650 52430 |22 780
200 120001390 52320 (22730

W+Th 1200 [2000 [1390| . 30510/13255‘L” (W+Ba)|1300|170011300 ' i 9170
1300 1700 [1300 &lt;) "23200140730

La+LaBe [10 1900(1500, . [2:65 [30000 |" 9BaSrO 600 |1200 | 780] 0.5/1.0 111600] 5040

x

70X107
5X107
27Xx 107

2.3X 107
250X107
155x107
50Xx107
80x 107
90X107

100 X 107
200X107
120X107
6 107

107
07
or
08

175

R ! /ß I Ref.

4.64 53820 23390!
4.68 54290 23590

4.68 54290 23590
4.46'51740 22490
1.69 54400 23640
4.44 '51 500 22380
4.86 56380 24490
5.49 163680 27670
5.65 '65540 28480
4.47151850 22530
4.85 '56260 24440
4.79 |55 560 24140
2.91 133760 14670
2.06 [23900 10380
2.26 [26220 11390

2.92 33870 147201.16 [13460 | 5846

a

b
c

c

G
e

fr

ry

Im

n

a) A.L. REmMANN: Proc. Phys. Soc. Lond. 50, 496 (1938).
b) A. BrauN and G. Busca: Helv. phys. Acta 20, 33 (1947).
- H. B. WaHLIN: Phys. Rev. 61, 509 (1942).

R. W. WricHT: Phys. Rev. 60, 465 (1941).
L. A. DUuBRIDGE and W. W. RoeHR: Phys. Rev. 42, 56 (1932).
A. B. CARDWELL: Phys. Rev. 76, 125 (1949).

) L. V. WHITNEY: Phys. Rev. 50, 1154 (1936).
“) M. D. Fiske: Phys. Rev. 61, 513 (1942).

A. L. REIMANN: Phil. Mag. 25, 834 (1938).
W, B. NoTTINGHAM: Phys. Rev. 47, 806 (1935).

‚) S. DusHMAN and J. EwALD: Phys. Rev. 29, 857 (1927).
) H. J. LEmMENns, M. ]. JANson and R. Loosjzs: Philips Rech. Rev. 11, 341 (1950).
m) J. M. LAFFERTY: J. Appl. Phys. 22, 299 (1951).
n) Reliable thermionic constants for the oxides are particularly difficult to obtain. The

ones proposed here depend on emission measurements made on selected diodes constructed
by the Raytheon Manufacturing Company.

Appendix 2.
Some useful equations from statistical theory of free electrons.

Particle current I(e,) in x-direction per unit energy range of eg, (FERMI
Statistics)

4m mhT ( —I(e)de,=—5—1In 1-+e kT de,

Energy of FERMI level:
For high concentrations of electrons:

 MW /3n\} 72 AT 2

n= (32) Iss(|+ A
1 2m \8xn/ |

Tor
_ _ WM /3n\$

T=0, wu=,_ (37)
For low concentrations of electrons:

v=— kT In| 20 RamkT)],
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i. Teil: Atome und Ionen.
Herausgegeben von A. Eucken t in Gemeinschaft mit K. H. Hellwege. Mit 248 Abbil-
Jungen. XII, 441 Seiten 4°. 1950. In Moleskin gebunden DM 126.
2. Teil: Molekeln I (Kerngeriist).
Herausgegeben von A. Eucken t und K. H. Hellwege. Mit 460 Abbildungen. VIII, 571 Sei-
ten 49. 1951. In Moleskin gebunden DM 168.—
3. Teil: Molekeln II (Elektronenhiille) nebst einem Anhang zu den Teilbéinden I/1, I/2, 1/3.
Herausgegeben von A. Eucken t und K. H. Hellwege, Mit 364 Abbildungen. XT, 724 Sei.
ten 4°. 1951. In Moleskin gebunden DM 218.—
4. Teil: Kristalle. .

Herausgegeben von K. H. Hellwege. Mit 930 Abbildungen. XI, 1007 Seiten 4° 1955.
In Moleskin gebunden DM 318.—

5. Teil: Atomkerne und Elementarteilchen.
Herausgegeben von K. H. Hellwege. Mit 471 Abbildungen. VIII, 470 Seiten 4°. 1952.

In Moleskin gebunden DM 148.—

Zweiter Band: Eigenschaften der Materie in ihren Aggregatzuständen. In7Teilen
1. Teil: Mechanisch-thermische Konstanten homogener Systeme. —

Mechanisch-thermische ZustandsgrofSen. In Vorbereitung
2. Teil: Gleichgewichte auBer Schmelzgleichgewichten. In Vorbereitung
3. Teil: Schmelzgleichgewichte und Grenzflichenerscheinungen.
Herausgegeben von Klaus Schäfer und Ellen Lax. Mit 998 Abbildungen. XI, 535 Seiten
4°, 1956. In Moleskin gebunden DM 198.—
4. Teil: Kalorische Zustandsgrößen. In Vorbereitung
5. Teil: Physikalische und chemische Kinetik und Akustik, In Vorbereitung
6. Teil: Elektrische Eigenschaften; Optische Konstanten (1. Teil). In Vorbereitung
7. Teil: Optische Konstanten (2. Teil): Magnetische Eigenschaften. In Vorbereitung

Dritter Band: Astronomie und Geophysik.
Herausgegeben von J. Bartels und P. ten Bruggencate.
Mit 331 Abbildungen und 8 Nomogrammen. XVIII, 795 Seiten 4°. 1952.

In Moleskin gebunden DM 248.—
Vierter Band: Technik. In 4 Teilen.

1. Teil: Stoffwerte und mechanisches Verhalten von Nichtmetallen.
Herausgegeben von Ernst Schmidt, Mit 1104 Abbildungen. XVI, 881 Seiten 4°. 1955.

In Moleskin gebunden DM 288.—
In Vorbereitung
In Vorbereitung
In Vorhereitung
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