APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING

Remort No

*	mepore no
	Prepared by: R.F. Markel
Progress Report to the Department Committee on	Graduate Study and Research
Subject of Research: Gas-Discharge Gaps for Data Storage in Electronic	
Computers.	
Period covered by this reportSeptember 30 to	October 17, 1947
Student(s) working on research:	Noted by:
R. F. Markel	Res. Lab. Office
Room Number 10-212	Grad. Comm.
Expected date of completion January 1948	Sypervisor
Supervisor Jay W. Forrester	7
DETAIL OF WORK CURRENTLY ACTIVE Calculation of Static Breakdown Charac-	
teristics.	
Expected date of completion of this detail: October 25, 1947	
STATEMENT OF PROGRESS SINCE LAST REPORT. Discrepancies between calculated	
results and the experimental data obtained last term have indicated the need	
for a more searching analysis of the problem. A more accurate calculation	
of the electrostatic field existing in the gap was the first step in this	
direction.	

- 1. Conformal mapping was first employed to represent the electrostatic field (Ref. C) with results that indicate that the anode edges must be rounded considerably to eliminate high field concentrations.
- 2. Assuming that the anode is rounded, the electrode structure was then represented by con-focal hyperboloids, and the field problem was solved by using spheroidal coordinates (References A.B). The results show that the field distribution is quite different from that of a cylindrical system.
- 3. The effect of placing dielectric boundaries on the gap was in vestigated, and the conclusion was reached that by making the reasonable assumption that the dielectric boundaries are normal

*APPROVED FOR PUBLIC RELEASE, CASE 06-1104.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING

Page 2

Report No. _______

Prepared by: R.F. Markel

to the equipotential lines, their effect on the electrostatic field strength in the gap could be neglected.

- 4. Calculation of the static breakdown characteristics, making use of the above results, is now under way.
- 5. The following references have been helpful in this analysis;
 - A. J.A. Stratton, "Electromagnetic Theory" pp 47-59, 194-201.
 - B. H. Bateman, "Partial Differential Equations of Mathematical Physics", Chap. 8.
 - C. Rothe, Ollendorf, Pohlhausen, "Theory of Functions as Applied to Engineering Problems", pp 125-145

Signed Richard F. Markel