
13 9080 02753 734611111





DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
BETHESDA, MD. 20034

ADDED MASS AND DAMPING COEFFICIENTS OF HEAVING
TWIN CYLINDERS IN A FREE SURFACE

by

C. M. Lee, H. Jones, and J. W. Bedel

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

August 1971 Report 3695



TABLE OF CONTENTS

Page

ABSTRACT .............................. ..................................... 1

ADMINISTRATIVE INFORMATION ....................................... 1

INTRODUCTION............. ......................................... I

THEORY ........................................................................ 2

FORMULATION ............. ..................................... 2

SOLUTION ..................................................... 4

ADDED MASS AND DAMPING ...................................... 7

EXPERIMENT .......................................... 9
EXPERIMENTAL SETUP .......................................... 9
EVALUATION OF DATA ........................................... 10

RESULTS AND DISCUSSION ............................................. 12

CONCLUDING REMARKS ............................................... 14

ACKNOWLEDGMENTS .................................................. 14

APPENDIX A EVALUATION OF MATRIX ELEMENTS ....................... 31

APPENDIX B EVALUATION OF POTENTIAL INTEGRALS ................... 37

APPENDIX C EVALUATION OF THE PRINCIPAL VALUE INTEGRALS ......... 43

REFERENCES ............ ............................................ 48

a,.,

a~ I I I II I



LIST OF FIGURES
Page

Figure 1 - Description of Coordinate System ................................... 15

Figure 2 - Description of Boundary-Value Problem for 0 (x,y) .................. .. 15

Figure 3 - Segmentation of Cylinder Contour .................................. 15

Figure 4- Complete Model Setup for Testing .................................. 16

Figure 5 - Block Diagram of Electric Setup on Carriage 2 for
First Series of Tests .............................................. 17

Figure 6 - Block Diagram of Electric Setup on Carriage 2 for
Second Series of Tests ............................................ 18

Figure 7 - Added Mass Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 1.5 ............................ 19

Figure 8 - Added Mass Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 2 .............................. 19

Figure 9 - Added Mass Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 3 .............................. 20

Figure 10 - Added Mass Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 4 .............................. 20

Figure 11 - Damping Coefficient Versus Frequency Number for
Twin Semicircular Cylinders for b/a = 1.5 ........................... 21

Figure 12 - Damping Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 2 .............................. 21

Figure 13 - Damping Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a = 3 ............................. 22

Figure 14 - Damping Coefficient versus Frequency Number for
Twin Semicircular Cylinders for b/a= 4 ............................. 22

Figure 15 - Added Mass Coefficient versus Frequency Number for
Twin Rectangles for b/a = 2 ....................................... 23

Figure 16 - Added Mass Coefficient versus Frequency Number for
Twin Rectangles for b/a = 3 ...................................... 23

Figure 17 - Added Mass Coefficient versus Frequency Number for
Twin Rectangles for b/a = 4 ...................................... 24

Figure 18 - Damping Coefficient versus Frequency Number for
Twin Rectangles for b/a = 2 ...................................... 24

Figure 19 - Damping Coefficient versus Frequency Number for
Twin Rectangles for b/a = 3 ...................................... 25

r*ri ~ _ - v -~- llr urar-a~nnl



LIST OF FIGURES (CONT.)
Page

Figure 20 - Damping Coefficient versus Frequency Number for
Twin Rectangles for b/a = 4 ....................................... 25

Figure 21 - Added Mass Coefficient versus Frequency Number for
Twin Isosceles Triangles for b/a = 3 .................................. 26

Figure 22 - Added Mass Coefficient versus Frequency Number for
Twin Isosceles Triangles for b/a = 4 .................................. 26

Figure 23 - Damping Coefficient versus Frequency Number for
Twin Isosceles Triangles for b/a =  3 .................................. 27

Figure 24 - Damping Coefficient versus Frequency Number for
Twin Isosceles Triangles for b/a = 4 .................................. 27

Figure 25 - Added Mass Coefficient versus Frequency Number for
Twin Right Triangles for b/a = 3 ............... .................... 28

Figure 26 - Added Mass Coefficient versus Frequency Number for
Twin Right Triangles for b/a = 4 .................................... 28

Figure 27 - Damping Coefficient versus Frequency Number for
Twin Right Triangles for b/a = 3 .................... ............... 29

Figure 28 - Damping Coefficient versus Frequency Number for
Twin Right Triangles for b/a = 4 .................................... 29

Figure 29 - Change of Integral Path when Re(z- ') > 0 .......................... 44

Figure 30 - Change of Integral Path when Re(z- F) < 0 .......................... 44

Table 1 - Figure Index of Added Mass and Damping Coefficients for
Each Model Shape; Model Dimensions are Given in Inches .................. 10

---------------- -- ------- --- - ----- -- ---------- -- ------ ----- -- ---- ----- --- --- -~---I--. -.- ----- - -- --------- --. -~. .______.._.~



NOTATION

a Half-beam of cylinder

b Separation distance (see Figure 1)

c. jth line segment of cylinder contour

F Vertical hydrodynamic force

G Complex wave source near a vertical wall

g Gravitational acceleration

ho Amplitude of oscillation

k Spring constant

K o2 /g
M Displaced mass of twin cylinders

n Unit normal vector on the surface of cylinder pointing into the fluid

Qj Source strength at jth segment

s, (j, rj) - Lefthand end point ofjth line segment

z x + iy

aj Tangent angle of the jth line segment

6 02 a/g = Ka

" S + in

X Damping

X Damping coefficient formed by dividing the damping X by the product of the displaced
fluid mass and the radian frequency

M Added mass

Added mass coefficient formed by dividing the added mass t by the fluid mass displaced
by twin cylinders

p Density of fluid

a Radian frequency of oscillation

D Velocity potential function of harmonic time dependence

S(= + j Os) steady velocity potential of complex function with respect to j = v'

0C The real part of 4; subscript c indicates that it is associated with cos at

0s The imaginary of 4; subscript s indicates -that it is associated with sin at

_ _ CI __l I ---C- IIICLII~I rns~rr~(ll~~'"nlllmtli





ABSTRACT

A potential flow problem, dealing with twin horizontal cylinders of
arbitrary cross sectional forms vertically oscillating in a free surface is investi-
gated. An associated experiment is carried out for four different sets of twin
cylinders. The results from the theory and the experiment are compared and
are found in good agreement.

ADMINISTRATIVE INFORMATION

The theoretical part of this work was authorized by the Naval Material Command under
the in-house research project and was funded under Project RO01101, Task ZRO11 0101. The
experimental part was funded under the Naval Ship Systems Command Research, Development,
Test and Evaluation program, General Hydromechanics Research, Subproject S-R009 01 01,
Task 0100.

INTRODUCTION

Investigations conducted in the past, concerning the motion of ships in waves, have
demonstrated the practicability of the strip theory for obtaining the hydrodynamic forces and
moments acting on ships in waves. The present work provides the means for computing the
hydrodynamic coefficients associated with the motion of catamarans in regular head waves.
Since the strip method is to be applied in obtaining the necessary hydrodynamic coefficients,
the basic problem is reduced to a two-dimensional flow problem.

Many investigators have already studied similar problems. Potash' obtained a solution
without providing numerical results for semisubmerged twin circular cylinders, rigidly connect-
ed from above, heaving in a free surface. Ohkusu2 investigated the same problem as Potash and
obtained the values of added mass and damping for various frequencies and separation dis-
tances between the two cylinders. Later, Ohkusu3 studied two or more rigidly connected
cylinders heaving, swaying, or rolling and applied the results obtained from this investigation
to the motions of multihull ships in waves. He used an approximate scheme utilizing the results
of his previous work2 on the twin semicircular cylinders to obtain the added masses and
dampings of the noncircular cross sections of the ship. Wang and Wahab4 also investigated
theoretically and experimentally the problem of twin semicircular cylinders heaving in a free
surface. They showed excellent agreement between their theoretical and experimental results;

1 References are lsted on pes 48.
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de Jongs derived solutions without providing numerical results for heaving, swaying, or rolling

twin cylinders of symmetric cross sections, using conformal mapping.

The previously discussed investigators used the method of multipole expansion to "
determine the unknown velocity potential. This method was first introduced by UrsellP in the
solution of the problem of a semicircular cylinder heaving in a free surface. Ursell's method
assumed a series of singularities of increasing order placed at the intersections of the midplane

of each cylinder with the free-surface plane, with each of the singularities independently

satisfying the free-surface boundary condition. The unknown coefficients of the series were
obtained by satisfying the kinematic boundary condition on the cylinder surface. In prin-

ciple, this method may be applied to any shape that can be mapped from a circle. However,

the investigators cited previously chose only those cylinders which were symmetric about

their own vertical midplanes.

The present investigation deals with twin cylinders of arbitrary cross sections which

do not have to be symmetric about their own vertical midplanes. (The problem still assumes

the two cylinders to be of identical shape.) The mathematical tool adopted in solving the
problem is the method of source distribution on the cross sectional contours of both cylin-
ders. The same method was applied for an oscillating single cylinder by Frank7 .

Since the heaving twin cylinders constitute a symmetric flow about a vertical mid-
plane, the problem can be reduced to the case of a single cylinder heaving near a vertical
wall. In fact, the problem is treated in this fashion.

Tests for four different shapes of twin cylinders were performed by vertically
oscillating the twin cylinders in a calm free surface. The four cross sectional forms chosen
were shaped as a semicircle, rectangle, a right triangle, and an isosceles triangle. Several
separation distances between the two cylinders were chosen, and the oscillation frequencies
were selected to cover the practical range of catamaran motions in waves. The results from
the theory and the experiment were compared and were found in good agreement.

THEORY

FORMULATION

Two semisubmerged identical horizontal cylinders of infinite length, connected above
the waterline, are vertically oscillated in a calm water surface with an amplitude which is
small compared to the beam of the cylinders. The fluid in which the cylinders are immersed
is assumed incompressible; its motion, irrotational; and its depth, infinite. It is also assumed
that the oscillation has been going on long enough for the initial transient effect of the fluid
to be completely phased out.

The x-axis is taken to coincide with the undisturbed free surface and the y-axis is
directed vertically upward. The origin is taken at the midpoint between the two cylinders.

I



The distance from the origin to each half point of the cylinder beam is taken to be b; the

cylinder beam is taken to be 2a; see Figure 1. Since the problem described previously

dictates an obvious hydrodynamic symmetry about the y-axis, the problem can be reduced

to the right half of the plane only.

By introducing a velocity potential function $P (x,y,t) and by properly prescribing

the necessary conditions on the fluid boundaries, a boundary-value problem in terms of 4

can be formulated. With the assumption of small oscillation, only the linear frequency

response of the fluid to the disturbance will be considered. Thus the velocity potential can

be written as

c(xy, t) = Rej I (x,y)e-io t I = c cos at + 0. sin at (1)

where

0 = Oc + Jos (2)

The motion of any point on the surface of the cylinder is expressed by

y(t) = ho sin at (3)

Continuity of mass implies that

V 2 (x, y) = 0 (4)

in the fluid region.
The assumption of a slight disturbance on the free surface leads to a linearized form

of the free-surface condition, which is given in the form of*

y(X, 0)-K = 0 (5)

where K = a2 /g. The derivation of the expression is given in Wehausen and Laitones .

The linearized kinematic condition on the cylinder contour is given by

On =V45 n = Vn (6)

at the mean position of the cylinder. Here n is an outward unit normal vector on the

cylinder contour, and V. is the normal component of the velocity of the cylinder contour.

It can be readily shown that

*When the space variables x and y and the time variable t are used as subscript, they indicate partial derivatives.
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Vn = ho a cos (n,y) (7)

where cos (n,y) means the directional cosine between the normal vector and the y direction.
Due to the symmetry of the fluid disturbance about the y-axis, there cannot be flow

crossing the y-axis. That is,

x(0,y) = 0 (8)

This condition implies that the plane x=0 can be regarded as a rigid wall.
The expected decay of the fluid disturbance as y + -o can be described by

V (x,-=)=0 (9)

The far-field behavior of 0 as x + o should represent outgoing waves, i.e., Sommerfeld's
radiation condition,

lim (0x-jK0) = 0 (10)

This completes the statement of our problem, and the boundary conditions are shown in
Figure 2. The solution of this boundary-value problem will provide the sought hydrodynamic
quantities such as pressure distribution, hydrodynamic force, added mass, and damping co-
efficients.

SOLUTION

The solution of the velocity potential O(x,y) is assumed to be represented by a distribu-
tion of source singularities over the immersed contour of the cylinder; see Reference 9.

S(p) =f Q(s)G R (p; s) ds (11)
co

where p = (x, y) is the field point,
Q = Q+ jQ is source density,
GR = GRc + j GRs is the source, and
co is the immersed contour of the cylinder in y<0.
A source of unit strength below a free surface can be expressed in the form of

GR(x, y; t, n/) = log r, + H(x, y; t, n) . (1.2)



where r i = [(x-t)2 +(y-~) 2 ], (t,t) is the point of the location of the source, and V2 H=O

everywhere in y<O. It is further required that G, satisfy the free-surface condition

GRy (x,O)- KGR = 0

the radiation condition

lim (GRx - jKG)= 0O

and the deepwater condition

VGR (x,- 0) = 0

The solution for GR is given, for example, in Reference 8 in terms of a complex
velocity potential G (z;t) which is defined by

G (z; G) = G (x, y; t, Q) + i G,(x, y; t, q)

2 (log(z- ) - log (z- )

+ 2 f e-ik(z-f)
0 K-k
0

dk-j2we- iK(z- ') (13)

Here indicates a principal value integral, and I = -i.

It is desired to have the function GR satisfy the symmetric condition

GRx (0, y; , n) = 0

By use of the well-known reflection principle, GR can be made to satisfy the previously
shown symmetric condition. That is, if a new function is formed by

F(z; ) = G(z; ) + G(z; - ) .(14)

it can be shown that

Rei  d F(O+iy; )= 0

Thus, by adding the term G(z;- I) to the right-hand side of Equation (13), the function G is
redefined as

an--- ---- - --- T-*-nnrrn~erlsa l~i~.n -.-- T~.~.- --.- ------ ..~-77-~- ;-^11.---111n-1_~1--~-.~~.1~-I - ~.-~ -P--~_~--_l--l--7777l~- I~l~



G (z; ) = G,(x, y; t, n) +i GI= GRc +j GRs +i(GI, +jGl,)

1 ( -_(z+_ f
- log + 22 (z-)(z+ f

-j2w (e- iK(z- ) + e- iK (z+ )) }

e-ik(z- +eik(z+ dk
K-k

(15)

The function GR given in Equation (15) satisfies the same boundary conditions as
imposed on 0, except for the kinematic boundary condition on the cylinder contour. This

remaining boundary condition is used to obtain the strengths of the sources Q(s) given in

Equation (11).
It will be assumed that the contour of the cylinder co can be approximated by N

number of straight-line segments, each of which is denoted by ci , j = 1, 2, • • •, N. Thus,
Equation (11) can be written as

4(P) = Q (s) GR (p; s) ds
j=l c.

it will be assumed further that the variation of source strength

that it can be treated as constant on each segment. The latter

pression

N
(p)= E QJf GR(p;s)ds

j=1 c.

When the kinematic boundary condition given by Equation (6)
it follows that

on each segment is so small

assumption yields the ex-

(16)

is applied on Equation (16)

n (Po)= Q (-) GR (P; s)ds I
j=l c. P-Po

J

= h ocos a0

where a is the tangent angle of the contour of the cylinder at the point po . By taking N

number of points on the contour co and by assuming that these points are located at the

midpoints of the line segments c, (Figure 3), it can be shown that

Q (nv)fc GR (P;s) ds l=pec
cj ic

= h u cos a.0 1

for i = 1, 2, - -, N

(17)

N

E
j=l

(18)



By definition the function Q and G are made of real and imaginary parts with respect to
the complex number j = v1-. Thus, the separation of the real and the imaginary parts of
Equation ( ) yields

N N
QC 1 Q J i= h a cos a,

j=l j=l

N N
EQcJ1 + F Qj 1(19 0
j=1 j= (19)

for i =1,2, , N,

where

Ii j = (nV) fGRc (p; s) ds i
cjP = Pieco (20)

Ji = (nV) fGRs (p; s) ds pi ec (21)
cj p Pieco (21)

and the derivation of these matrix coefficients is given in Appendix A. Equation (19) repre-
sents 2N simultaneous equations from which the unknown coefficients Qe, Qsj, j = 1, 2, • • , N,
can be obtained.

ADDED MASS AND DAMPING

The hydrodynamic pressure at the point (xo ,yo) on the cylinder is obtained from the
linearized Bernoulli equation by

P(x, Yo , t) = -po t (xoYo, t)

= -pRe -j o (x, yo) e-it

= -po( 5 cos aot -. sin at) (22)

The vertical hydrodynamic force acting on the twin cylinders can be obtained by

F =-2 P cosads

=2pu(cos at f, cos a ds - sin aotf cos a ds) (23)
Co CO

---- ---- 777,7------



The separation of Equation (16) into the real and the imaginary parts yields

N
OC(xo, Yo)=

j=1
(Qcj fGRc (Xo Yo; s) ds

c

-Qsj JGRs (X, Yo ;s) ds)
Ci

N A
0(xo ' Yo) = (QCJIGRs (xO YO;s) ds

j= 1 c
+ QS3j GRc (Xo, Yo; s) ds)

Ci

where GRc and GRs can be obtained from Equation (15). The integrals

GR s ds are evaluated in Appendix B.
c.

If we let the total hydrodynamic force be expressed in the form

F = - Ay (t) - X ,

we have by substitution of y(t) = ho sin at

F = ho 02 A sin at- ho oaX cos at

By equating Equations (23) and (27), we find that

Added Mass = g -

_-2p
ho a

(25)

fGRc ds and
C.i

(26)

(27)

2p fe cos ads
ho a c

o

N
S(QC

j,k=l
Ajk- Qsj Bjk)COS Gk ASk I (28)

Damping = = -2p j cos ads
o Co

0

N

-2h . (Qcio j,k=l
Bk+Qsj Ak)cos Ak ISk

and

(24)

(29)



where

ASk = ISk+-Sk I I k+1 k 2 )
k+ I 1

k )2 1%

Aj = G (Xy ; s) ds (30)

Bjk Rs (xk' yk; ) ds (31)

EXPERIMENT

EXPERIMENTAL SETUP

Cylindrical-type models, each consisting of two wooden hulls 7.5 ft in length, were

tested to determine their heave added masses and damping coefficients. The twin-hull

configurations with their dimensions are shown in Table I along with the hull separations

(b-to-a ratios) which were tested for each set. The dimensions b and a are indicated on the

twin-cylinder model in Figure 1. The tests were conducted in two series, the first was

concerned with the semicircular cylinders, and the second comprised the remaining cylinders,

including some repeated tests on the semicircular cylinders for checking purposes.

In order to approach the desired two-dimensional case, a piece of one-half inch plywood

(3 x7.5 ft) was attached vertically to each of the twin-hull configurations. This also served

as rigid coupling between the hulls. Except for the tests of the semicircular cylinders for

b/a = 2, 3, and 4, to minimize oscillation of these end boards and to improve rigidity, the

boards were reinforced with aluminum angles on the outside as shown in Figure 4. The

angles were mounted with head bolts countersunk through the boards into tapped holes in

the angles to minimize forces which might result from adding the angles. Also shown in

Figure 4 with the complete model setup is the X-frame, used for attachment to the oscillator.

For measuring the force required to oscillate the model, four ± 100-1b block gages

were used to obtain most of the data for the semicircular cylinders, while *25 lb block gages,

one at each end of the cylinders, were used for other cylinders.

The heaving frequency of the model was dependent upon the voltage input to the

oscillator motor. This allowed essentially any frequency to be run within the desired range

from 0.5 to 3.0 cps.
Two heave amplitudes were used during the tests. Generally the smaller amplitude of

0.25 in. was used at the higher frequencies, while the 0.50-in. amplitude was used at the lower

end of the frequency range. In the midfrequency range, tests were made at both amplitudes

to check linearity of the forces with the motion. As a further linearity check for the triangular

L I I I A I



Table 1 - Figure Index of Added Mass and Damping Coefficients for
Each Model Shape; Model Dimensions are Given in Inches

1-1-

MODEL
1-w-12---- -- 12--e

1 3

)12 -- 12

models, tests were made over the midfrequency range at

of frequencies tested at each amplitude was extended to

cases.

an amplitude of 0.75 in. The range

provide additional checks in some

The tests were conducted at zero speed on Carriage 2 with the carriage at the mid-

station of the center deep water basin. The plywood ends were parallel to the length of the

basin. This was to prevent the waves generated by the oscillating model from being reflected

back onto the model. Sufficient time was allowed between tests for the water to calm

completely as an additional precaution against undue forces on the model.

EVALUATION OF DATA

To determine the hydrodynamic forces acting on each configuration heaving on the

water surface, a harmonic heaving motion was imposed on the model floating on the surface.

The equation of motion in this case is

(M + Cp) i + Xi + kx = F(t)

a COEF.
1.5 2 3 4
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where F(t) is the force needed to impose the prescribed motion

x = ho sin at is the prescribed motion

M is displaced mass of the model

I is added mass

X is the damping factor

k is the spring constant

When data were being analyzed, it was assumed that the effect of the end boards on the added

mass and damping of the cylinders could be neglected.

To obtain the added mass and damping, the forcing function was reduced to its

fundamental components, which were in phase and 90 deg. out of phase with the displace-

ment motion. This put the forcing function in the form

F(t) = A sin at + B cos at

Taking the first and second derivatives of x and equating the coefficients of like terms,

the added mass and damping become

h k-A

/2 h o -M

B
ho

The spring constant k was calculated by taking the product of the waterplane area

of the model and the specific weight of water. This was assumed constant over the range of

amplitudes tested.

The previously described force coefficients A and B.were obtained by analyzing the

data in analog form during testing, using the electronic setup shown in Figure 5 for the first

series of tests and Figure 6 for the second series of tests. This was done in the first case

by summing two of the force signals and multiplying by 2 and in the second case by summing

the four force signals and multiplying the sum by sin at and by cos at, then integrating over

the run time T. The result was multiplied by 2/T to determine the A and B coefficients as

follows.

A = T F(t) sin at dt
0

B =  TF(t) cos at dt
0

_1~1~~^ ___ ___I_ _ ill 11^~~~~ _ 1 ~~^1111_



The total run time was taken during 30 heave cycles. The sine and cosine signals

used for this analog Fourier analysis were obtained from a potentiometer which was mech-

anically coupled to the oscillator.

For the first series of tests with the circular cylinders the data were also reduced

digitally. The reduction was accomplished during testing by first recording the force and

motion signals in analog form on magnetic tape for the post-test analysis of the data. The

data were then filtered, digitized, and fed to a computer program to determine the Fourier

transform coefficients of the fundamental signals. The components in phase and 90 deg. out

of phase with the displacement motion were derived from these coefficients.

RESULTS AND DISCUSSION

The added masses and the dampings obtained from the theory and the experiment

are shown together for the purpose of comparison in Figures 7 through 28. The nondimen-

sional parameters used in the graphs are

= added mass coefficient = M

X = damping coefficient

0 2 a
6 = frequency number -

g

The difference between the two experimental data, one obtained by the analog

method and the other by the digital method, was insignificant. The experimental results

shown are mostly from the analog method. The experimental data for the semicircular

cylinder are identical to those presented in Reference 4.

As mentioned earlier the theoretical approach to the solution of the problem employed

in this work differs from the one employed in Reference 4 in which only semicircular

cylinders were investigated. Thus, both theoretical results are also shown for the case of the

semicircular cylinders. Except in the low frequency range and at some frequencies at which

hydrodynamic discontinuity occurs, both results are in good agreement.

The results of the linearity check with the different amplitudes of oscillation show

that the linear relation between the forcing motion and the resulting hydrodynamic force is

valid for the semicircular and rectangular cylinders. But for the triangular cylinders, particularly

for the isosceles triangular cylinders, the results from the different amplitudes show some

disagreement in the low frequency range. The previously described fact suggests that

nonlinear hydrodynamic effect could be caused by the sloping sides of the cylinders.

Cylinders having sloped sides may create more free-surface disturbances than the wall-sided

cylinders at lower frequencies so that the assumption of slight fluid disturbance to support

the linearity relation may no longer be true for these cylinders at lower frequencies.

"II I I sr



The nonsolid symbols shown in the results for the circular cylinders are the experi-

mental data obtained with the end boards without the reinforcing angles.

Except for some discrepancies in the damping coefficients in the very low frequency

range, both theoretical and experimental results are in good agreement.

At certain frequencies, the source distribution method used in solving an oscillating

body problem causes a mathematical discontinuity. These frequencies, called irregular or

critical, were first pointed out by John.'o Frank 7 gave an approximate method for calculating

these critical frequencies in terms of the beam-to-draft ratios of the cylinder. The approxi-

mate method equally applies for twin cylinders. The irregular behavior of the theoretical

results at the critical frequencies is not shown in the figures. Smooth connections of the

curves are made at the critical frequencies. A more satisfactory method of eliminating the

critical frequencies is being investigated further. The mathematical proof for possible elimination

of the critical frequencies has been established, and the computational implementation of the

elimination technique still remains to be achieved.

tain frequencies in the solution of the twin-cylinder oscillation problem. These frequencies

closely correspond to the gravity wavelength for deep water which satisfies the following

relation

n x (wavelength) = 2 (b - a) for n = 1, 2 ... (32)

In terms of a frequency number, the relation becomes

nr
6 - (32a)

(b/a-l)

The situation described previously is analogous to the breakdown of a periodic solution at

certain frequencies for the problem of a wavemaker in a finite rectangular tank. The break-

down of the solution occurs when the relation given by Equation (32) is satisfied in which

(b-a) corresponds to the length of the tank. In this work the y-axis can be regarded as a

rigid wall, and the wavemaker is situated at a distance (b-a) from the wall. Both theoretical

and experimental results prove that Equation (32a) provides fairly accurate values of the

"resonance"* frequencies. The breakdown of the solution at these resonance frequencies

may be prevented by seeking a time-dependent nonperiodic solution. However, we shall not

attempt to do this here.

Large negative added masses are obtained in the low-frequency range for all four

cylinders, except the experimental results for the right triangular cylinders. For heaving two-

dimensional single bodies in a free surface, no negative heave added mass has been reported.

Thus, the existence of negative added mass for twin cylinders strongly suggests the effect

of hydrodynamic interaction between the two cylinders.

*This terminology is used to distinguish from the "critical" frequencies discussed earlier.
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CONCLUDING REMARKS

1. Good agreement of the theoretical results with the experimental results confirms

the validity of theory developed in this work.

2. The abrupt discontinuity of the results at certain frequencies found in the theory

is also indicated by the experiment. The frequencies at Which the discontinuity occurs,

termed the resonance frequencies, are given by ao = /nirg/(b-a) for n=l, 2,- -*

3. The linearity between the forcing motion and the hydrodynamic force for the

entire frequency range is confirmed for the twin cylinders having vertical sides, i.e., the

semicircular and rectangular cylinders. With the exception of low frequencies, this linearity

is also indicated for the twin cylinders having sloped sides, i.e., the triangular cylinders.

4. The variation of the values of added mass and damping is greater at lower fre-

quencies (6< 1) than at higher frequencies. For the range of separation distance considered

in this work, the numerical results indicate that as the frequency approaches infinity, the

mutual hydrodynamic interaction between the two cylinders disappears.

5. The decrease of the separation distance between two cylinders results in (1) an

increase of the lowest value of the resonance frequency, and (2) an increase of the absolute

value of the negative added mass coefficient.

6. The validation of the theory found in this work for the case of heaving oscilla-

tion suggests extension of the theory to the cases of swaying and rolling oscillations.
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Figure 4 - Complete Model Setup for Testing
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APPENDIX A

EVALUATION OF MATRIX ELEMENTS

The evaluation of the influence coefficients given by Equations (21) and (22) are

Iij = (n.V) fGRc
C.

J

(p; s) ds i =P=Pi

S= (nV) fGRs (P; s) ds = i

From Equation (15) we find that

1
Gc (z; ') - Re i ogRc 27r 11

GRs (z; ) = -Reife{iK(z-j)

If we let ai denote the tangent angle of the ith segment ci of the cylinder contour,

(Yi+ 1 - Yi)
tan 1-

(Xi+1 - Xi)

= (sin a.,- cos a.)1 1

a.

Ci

Thus, for any analytic function f(z)

a
f (z)I -Re. n a

Z=Zi [s ax

= Rei(- ie i a dz f () z = Z.

- cos a Mf (z)
ay = a.

la =d. I

(37)

We can also show that for 'e c

d" = dt + idir = eiads

(33)

(34)

+2 0e- ik

K-k
dk} (35)

(36)

i.e.,

we have

Rei{(n- v)

unnnnr, n~a -- ~--- --- rll- ,~

(z - )(z + )

(z - )(z + )
(z - f) + e-ik (z + )

+e- iK(z + )

(38)



where a is the tangent angle at the point ', and

dF = e'iads

We substitute Equation (35) into (33) to derive

Ii = -Re (_nV) fog (z- ) ds
ci IZ Zi

- (nV) flog (z-f) ds = Z
C. Z=Z

+2(n ds -ik(z+ dk
C 0 K-k zz

where zi
= xi + yi is assumed to be located at the midpoint of the ith segment.

Utilizing Equations (35) through (37), we can show that

dsz
I Z

ie ia i j+ log (z-')

(z - ')

= Re, {iei (ai- a )log z i-j+

(Xin j) 2 + (yi- ?j) 2

= V2 sin (ai- a.) log (Xi.tj+ 1I j+ 11 J(X- j 12 +(i_,j+ 1)2

+ cos (a.- a.) tan- iXi-tj

L2 Re i {(nV) flog (z- f) ds i
Ci i

= Rei - iei(ai+ a)d f
j+1 log(z- ')d' =

Z=Z

(39)

(40)

= Rei -

= Rei -

e- ia d z = zi

I; i} 1 ]

-tan -
xi- j+ 1 (41)

, MI4 ,411111410llmiu m itNIIIJ ,

~n~a~ I I I I rp

, ,1 11101111 -- --

LI-- Rei (nV) flog (z - )
C.

J

ie i (a i - a.)die J dz - (z - ') log (z - V)



(X i -  ) + (y___ _ j)2
= V2 sin (a.+a ) log (xi j +

S(xi )2 + (y + j+ 1)2

+ cos (a+ a) {tan-'
yi+ r'j
xi- tj

- tan- yi+ 17j+
xi- tj+ 1

L, Re. {(n ) fog (z +f) ds

(Xi j)2 + (yi- _j)2
= - 2 sin (ai+ )log (xi+ j+ 1 +(Yi- 1 )2) (x + ( -t+ )

- cos (a.+ a) tan- Y1 j
xi + tj

tan -
1 , ",

L4 = Re. (n.V) fog (z +)
c.J

ds Z=2z =z i

(xi+ t1)2 + (yi+ ?)2
=- V2 sin (ai-a ) log (Xi+ j+ 1)2(yi+

- cos (ai- a) tan-1
Yi + 77j

X i +

L- Re. {(n-V) fdsf 00

C 0
j

=Re. -ie i

(44)
tan 1 +j+ 1

e-ik (z-1)
K-k

(a i+ a) d i+ 1+
dz j

= Rei {ie i (ai+ a )

dk
z

0

0S~

= ziI

d 'f
0

= Rei {-ii i(ai+ a)f
0

e-ik (z -)_-ik (z - j
K- k

00
dk (yi+ ?)cos k (x- t)-ek(Y+ j+ )cos k (x i+ j+ 1 )

K-k { e y + VJCSk( i

(42)

(43)

e-ik (z-')
K-k

dk
z = z.

S= Z.I

e-ik (z- ')
K-k d

dk

cwurr u;------------ -- --" s~-----Llrr---- --r~B

d j+
jp



dk ek (yl+ j)sin k (xi-j)- ek (yi j+ )sin k(x(- 45+ ),K- kj+1

L 6 Re 1
(n dv) fd e- ik (z+ )
( S ) dsf K dk

ci0

= -sin (a-a )oo dk ek(Yi+ i,)co s k(xi+ tj)- ek (yi+ j+ 1)cos k(x i + t + 1

+ cos (ai- a,)o k ek(Y + j) sin k (xi j)-ek(Yi+ 7j+ 1 )sin k (xi+ 1) 1

Substituting Equation (36) into Equation (34), we obtain the following integrals:

L7 = Rei {(nv) fe-iK(z-)
C.

ds
. !

= Rei -ie i (a i+ a)(_ d )fdf2
+ e-iK(z- (') d

= sin (a i+ a) eK(Y,+ j)cosK(x i- t)- eK (yi + j+ 1 )cosK (xi- t+ 1

- cos (al+ a) eK (yi+ 1) sin K(xi- ~j)-eK(Yi j+ i )siniK(x i- ) }

L= Rei (n-V) -iK(z+)cds z = z
5

= -sin (ai- a){eK( y i+ i)cosK(x i+ j)-eK(yi+T + 
1 )cosK(xi+ j+ ) }

+ cos (a,- a) eK(y?+ j)sinK(x+ t)-eK(YiQ+ )sinK(xi+ +i) 

Conibining the previous results, we can finally show that

1
Is = I- (LI -L + L -L+ 2Ls+ 2L )

Z = Zi

(46)

(47)

(48)

(49)

4- 1 I I I I I

-cos (a+ a )o (45)



and

Jij = -L -L 8  (50)

The evaluation of the principal value integrals in Equations (45) and (46), which can

be converted to the exponential integral, are shown in Appendix C.

.. r a~- - - - .. . . . .. ... I .... i irll-r ~a~Xlll~~eYCUrll~VPc*~



111 6 1



APPENDIX B

EVALUATION OF POTENTIAL INTEGRALS

To obtain the hydrodynamic coefficients, we must know the values of the velocity

potentials on the cylinder surface. The expressions for the velocity potentials are given by

Equations (24) and (25) which contain the integrals,

1 fGRc (po; s) ds

and

12 GRs (o; s) ds

where po is a point on the cylinder contour and c is a line segment of the cylinder contour.

We shall use the complex expression given by Equation (15) to evaluate the integrals

li and 1,. Thus, for the point zi = xi+ iy i which is located at the midpoint of the line seg-

ment ci, we have

I -I Rei [ fdslog (zi- ')- log (zi- ) + log (zi+-)

log (z+ ) +2fo " e- ik(zi-f )  e-2f " - ik (zi+ )  (51)
-log (z+ ) +2 K-k dk+ K-k dk (51)

1 = -Rei fe-iK(zi-)ds + e-iK(zi+ ds (52)
c c

We can easily show by using the relations given by Equations (38) and (39) in Appendix

A that

K 1  Rei  log (zi - ) ds

Re[ e-iaj{(z ) - (zi- ) log (z-) +

J



- (xij-+)logj zi]+1j -(y,- j).arg(z1i j+1)

+ (Yi- I) ar(zi- J+ 1

+ sin a, - Qj  + (i, - j) log I z-j I

- (yi- 7j+1) log I zi +1 +(i- j ) arg (zi- ji)

- (xi- tj+ 1) arg (z,-j+ 1) (53)

where

z- (X- ' )2 +(y- ') 2

arg(z-) = tan-1 Y7-9
x-t

If we define

xI (xiyi; +1 ; aj ) = Rei log (zi- ) ds

the remaining integrals involving logarithmic functions in Equation (51) can be given by

K2 Re i flog (zi- =ds= I(xi,yi; j ,-j+ ;- a)

K -Re i  log (zi+') ds = -I (xi yi;- '-,i ji ;-a)
c.

J

K 4  Re i  log (zi+() ds = -I(xiYi;-t j  ,-7 j; a.)
C.

J

If we again define

Ks Rei { C -

we can show that

(54)

(55)

(56)

A i llI 1 , A ,i i.'' l', " I " ,1,IlI
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Ks = Rei e ia

= Rei-ie ia f
0

dk j~

Fj
e-ikzi
K-k

j+ I e-_ik (zi- ') d '

e ikJ+k - eikj dk
k

By use of partial fractions

1 _ 1 1
(K-k)k K K- +k )

we get

Ks = Rei
ie ia{f 0

KotP( O
(zi j+ 1)-e-ik (Zi- )

K- k

e -ik (z i - 'i+ 1)-e -ik (z i - ~j)

dk (7

The first integral in Equation (57) can be regarded as a function of z and can be written as

F(z) =o oo e-ik

0

(z- j+, I)_e-ik (z -)

Then, we have

0o

F'(z) = -if

1

Z -

e-ik (z -

1

Z- j+1

j+ )-e-ik (z - ) dk

from which

z--i
F(z) = log z .- +

j+ 1

--- -- ---~ --------I- ---- -' - ~1^1 s I~ IP-

P lWi < -- .. ' -- "

+ 
e-ik (57)



where we let the arbitrary integral constant be zero to satisfy the deepwater condition as
given by Equation (9).

Substituting the previous results into Equation (57), we have

Ks = Rei - ieiajK5 = i K log
z i4

1 J+ 1 O
K- k dk}]

K 2 sin a.

+fo

(Xi- tJ)2 + (yi+ rj)2
((Xi j+ 1 )2 + (yi+ 7 1 )2

K0 k j ek (yi + j+ 1 )cos k (x i - j+ 1 )

- ek (yi+ Rj)cos k (xi- )I

+ cos a. {tan-f
yi + rj
x- tj

- tan y + 1

Xi j+ 1

00

+f dk ek(i+ j)sin k (x- t) -
0

ek(yi+ *ij+I) sink (xi- J+ ) } (58)

If we let

Ks = L (xi,Yi; 2 q 1; a.),

we can show that

K Re i { fds
c. o

d-ik (zi + )
K-k

The integrals in Equation (52) can be readily evaluated as

e-iK(z -D)ds = Rei f +1 e-i K(z - ')

- eK(yi+ .j+ )sin K (xi+ + 1) -
I
K

dk} =

K7 -Rei{

(59)

9IC.

- ai d '}

a I I I I

o - ik (zi- Tj+ 1)-e -ik (zi--j)

a IeK(Yi + i)sin (60)K(xi- j) - a



K = Re, e-iK (z + ()ds = Re{ J+ 1 e-i K(z + ') + -a. d
j J

= I [eK(yi ?j+)sin K(x.+tj+)i +a-eK(y+ )sin K(xi+ t)+a4] (61)

Combining the results obtained from Equations (53) through (61), we can show that

I1 = (Ki - K + K3 - K4 ) + I (Ks+K 6 )  
(62)

I2 = - K, - K, (63)

The principal value integrals in Equations (58) and (59) can be expressed in the form

of the exponential integral, which can be easily converted to an infinite series. The details

of this procedure are given in Appendix C.
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APPENDIX C
EVALUATION OF THE PRINCIPAL VALUE INTEGRALS

In the derivation of Green's function G (z; '), which can be interpreted as a wave

source near a vertical wall, the principal-value integrals were encountered as shown in Equation

(15). These integrals can be reduced to the exponential integral which can be expanded to
an infinite series.

We show below how to make this conversion. We have

ik(z-) = -ik(z-) dk + ir e-iK (z-)(64)
K-k - dk = (64)

where Jf indicates that the path of the integration is indented above the pole at k=K, and

the last term above is the residue value at the pole. Let us first concentrate on the integral
on the left-hand side of Equation (64). If we make the transformation

w = i(k-K)(z- ) (65)

where k = kR + ikI and w = w R + iwI

we can show that

w = -ki(x-t)-(kR- K)(y + 7)

+ i (kR -K)(x -)-k,(y + R) (66)

Noting that the path of the integral limits the values of k confined to kR, k,>O and that

y + r<0, we apply the transformation of Equation (65) into the integral

* e-ik (z-) dk
K- k

As shown in Figures 29 and 30, the path of the integral in the k-plane changes to

the two different paths, depending on whether x - t >0 or x - t<0.

4.
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When x-t >0 (Figure 29)

f +i _ ed iK) (z-) e w

e-ik(z-) = iK(z-) e w w = e-iK ( z )  e dw +2 i)
K-k dk- -e _ w w

-iK (z- ) r

-= iK(z- ) dw + 2 r e-iK (z -)
w

(67)

vanishes when we let R + c.

Similarly, for x - t<O, we can show (Figure 30) that

00 O(,J*- i0o- OSe-ik(z-) dk = -e -iK (z-f) f
-iK (z- -)

e-W
w dw

w

e-iK (z- F) (+ -iK(z- ) dw

Note that the singularity at w = 0 is outside

therefore, there is no residue value involved.

into (64) yields

(68)= e-iK(z - f e - dwf w
00

of the closed path of the integration in this case;

The substitution of Equations (67) and (68)

o -ik(z = 
e- (z- dk-i e-iK (z- )

J0 0

S00
= -e -iK (z- J)

-iK ( -f)

-w
e-  dw i n e-iK (z- ) for x-4 0
w

We make use of the exponential integral which is defined by"

E (z) -t dt (for I arg(z) I < r)

=y - log z- n (l)n!
n=l

sinceJ
p=ReiO

(69)
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where 7 = 0.5772..- is the Euler constant, in Equation (69) 'to derive

Se-ik (z-)

e K-k dk
e-iK (z- E El (-iK(z- f))+ire-iK (z- )

= eK (y +) {cos K(x- t) -i sin K(x- ) [{I +log r

rncos nO +
nn! i{0+n

n=1

rnsin n
nn!

where r = K {(x-)2 + (y+2) } and 0 = tan-1

If we let

A(r, 0) = + log r + j n cos n
n= I

and

oor
n sinn

B(r,) = 0 + sin n
n n!

n = 1

we can separate Equation (70) into its real and imaginary parts

ek (y+ )cos k (x- E) dk = eK (y
0K-k

+ t) {A(r, O)cos K (x- t)

+ B (r, 0) sin K(x- E)l

Sdk ( y + )sin k(x- dk = eK (y+ ) {A (r, 0) sinK (x- t)

- B (r, 0) cos K (x- t)}

+n=
n=1

(70)

(71)

(72)

and

(73)

nill I I I L I I I I I I I I

(74)



Exactly identical derivations as shown in Equations (73) and (74) can be applied for

the integral

o0 e-ik (z + ') dk
of _K- k

except that r and 0 for this case are defined by

r K (x + )2 + (y + 7)2

and

0 = tan 1 X+
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