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ABSTRACT

Three different algorithms--the power series, the asymp-

totic series, and the recurrence relation method--are investi-

gated with special attention to the single (10
-14) and double

precision (10-2 9) of Computer Data Corporation (CDC) 6000

Series computers. The final accuracy of each method depends

partly on the magnitudes of the largest and smallest terms when

floating point additions are involved. Another consideration

is the number of terms required for each algorithm. Combina-

tion of all considerations leads to a partitioning of the order-

argument domain into partially overlapping areas in which each

algorithm is most appropriate. A wedged area not covered by

any of the algorithms remains for large order and argument

of approximately equal size.

Orders and arguments up to 1024 were investigated and

checked where possible. A FORTRAN IV program in the form of

an external function is included.

ADMINISTRATIVE INFORMATION

The particular work addressed herein was supported by the Naval

Ship Systems Command (037) under Program Element 25684, Project S4628,

Task Area S4628-019, Naval Ship Research and Development Center Work

Unit 1932-010.

INTRODUCTION

Three well-known algorithms to determine the Bessel function JL(X)

are:

(1) The power series expansionl for X/L not too large.

1Abramowitz, M. and I.A. Stegun (Ed.), "Handbook of Mathematical Functions,"

National Bureau of Standards, U.S. Government Printing Office, Washington,
D.C. (1954), p. 360.
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2. The asymptotic series expansion2 for X/L large.

3. The recurrence relation.394

The power series converges always. However, for large values of

X/L, a large number of terms is necessary to reach a given precision. More

seriously, the terms initially increase in magnitude, starting to decrease

only after going through a maximum. When the terms are summed by employing

floating point techniques, using a fixed number of significant digits,

the accuracy of the final answer decreases by the same order as the

order of magnitude of the maximum term. In other words, the final

accuracy corresponds to the number of digits available, counted from the

most significant digit of the maximum term.

The asymptotic series has an additional problem. Since it eventu-

ally starts to diverge, the minimum term may not be small enough to

reach the required precision. In that case this method cannot be

applied without further refinements. Even if the required precision

can be reached, the asymptotic series may still be inappropriate because

of the number of terms involved or because of the magnitude of its

maximum term, which affects the accuracy the same way as described for

the power series in the previous paragraph.

Abramowitz, M. and I.A. Stegun (Ed.), "Handbook of Mathematical Functions,"
National Bureau of Standards, U.S. Government Printing Office, Washington,
D.C. (1954), p. 364.

3Abramowitz, M. and I.A. Stegun, "Generation of Bessel Functions on High
Speed Computers,"Mathematical Tables and Aids to Computation," Vol. II
(1957), pp. 255-257.

British Association for the Advancement of Science, "Mathematical Tables,"
Vol. X, Bessel Functions, Part II, Functions of Positive Integer Order,
Cambridge University Press, Cambridge (1952), p. XIV.

-- ____ 1

I I I I -III



The algorithm based on the recurrence relation appears to be the

least sensitive method. The only disadvantage is that the normalizing

factor of the algorithm consists of the sum of all even order Bessel

functions, down from approximately twice the value of the argument. For

large arguments, this number may become prohibitive. The effect of such

long sums on the accuracy of the method has not been determined explicitly

in this paper, but some checks5 showed that the absolute accuracy was

always within three decimals of the machine precision. Usually it was

much better.

The program given in Appendix A applies bounds that are based on

a number of considerations described in detail in the chapters that

follow. These considerations concern the number of terms required and

the magnitudes of the maximum and minimum terms. The precisions for

which the bounds are derived correspond to the single (10-14 ) and

double (10-29) precision modes of the Control Data Corporation (CDC)

6000 series computers.

Repeated use will be made of a form of the Stirling6 asymptotic

approximation to the factorial:

E K  KK+

e

This approximation is already accurate to 2 percent when K = 4.

Hayashi, K, "Tafeln der Besselschen, Theta, Kugel and anderer Funktionen,"
Springer Verlag, Berlin, Germany (1940).

6Feller, W., "An Introduction to Probability Theory and Its Applications,"
John Wiley and Sons, Inc., New York, Vol. I (1968), p. 52.



POWER SERIES EXPANSION

The power series expansion for JL(X) is

2 / 2 ( L2 /K T
J((X) 2+L +- +

JL(X) 1(+L) 21(2+L) ( K (K+L) +

'7 X X X '2(K-1)+L ' 2

=1 + ** +(4 +**
L! 1+(+L (K-1)!(K-1+L) ' K(K+L)

The desired precision q is reached when the last term TK becomes

less than that precision. The condition is thus

TK : q

where

2K+L

K KI (K+L)

X 2K+L eK+K+L

K+ 1
27 K - (K+L) K+ L + 1

Stirling's approximation to the factorial has been used to obtain the

final expression in Equation (4).

Instead of solving for the K that satisfies Equation (3), it takes

in general less computer time to test if the last term TK has indeed

reached the desired precision q.

(2a)

(2b)

(3)

(4)

11 111
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The precision of the last term does not guarantee the accuracy of

the final answer. The magnitude of the maximum term may be several orders

of magnitude larger than one, so that an equal amount of accuracy is lost

in the final answer of this alternating sign series if floating point tech-

niques are employed. Therefore, the term with the largest magnitude must

be determined. This term occurs when the incremental multiplier in the

last term in Equation (2b) first becomes less than one:

< 1 (5)
K(K+L)

This implies that

X2 /4 < K2 + K L

or

K > K (6)

where

K1 = - +L + 23 (7)

The magnitude T of this maximum term follows from Equations (4) and (7).

(X 2 K +L X 2K +L

TKI K+ L
2[KI (K+L)]K1+ (K1+L)L 2v[(- -L+ - L2 +X2 )( L+ IL+X 2 ) ]K  (KL)

2 K I+ L

2< _Kexp(-L/L +X2+L) _ exp[X/(L/X)2 + 1] (8)

X2K1+l
2n (L + 2 L +X2)L vX[L/X + (L/X)2 + i]

The behavior of the magnitude of the maximum term TKz of Equation (8)

is shown in Table 1.



TABLE I - MAGNITUDE TKz OF MAXIMUM TERM IN POWER SERIES OF JL(X)

X 1 10 100 1000

L

1 0.5 (K=1) 600 (K=5) 1041 (K=50) 1043. (K=500)

10 10 - 9 (K=1) 6 (K=2) 1040 (K=45) 10430 (K=495)

100 10 (K=1) 10-  (K=l) 1020 (K=21) 10429 (K=452)

1000 0 (K=O) 0 (K=1) 10- 868 (K=2) 10228 (K=207)

A more detailed table is given in Appendix B. If a loss in accuracy

of no more than two or three decimals is required, the maximum term must

be less than 102.s or approximately 300.

ASYMPTOTIC SERIES EXPANSION

The asymptotic series expansion for JL(X) is2

JL(X) = x [P(L,X) cos Y - Q(L,X) sin Y] (9)

with

Y = X - (uL + ) ~

P(LX) (4L-12)(4L-3) + (4L2 -la2 )(4L 2 -3 2 ) L25)( -7 2 ) (10)
P(LX) 1 2 (8X)" 4! (8X) 4

Q(L,X) 4L21 8X
Consider 8

Consider the term

(4L2 -1 2 ) (4L 2 -32) (4L2 -52)
3! (8X)3

(11)

4041119 1 16A IIYYY IIHIIIONNIIYINYiN I M

- I IIill rri

+ ...



RK(L,X) =
J[(2L) 2 -l1 2 ][(2L)2 -3 2a].... [(2K-1) 2 -(2L) 2 1

K' (8X)K
(12a)

(12b)1(2K-1)
2 -(2L) 2 1

=K-1(LX) K 8X

These terms decrease as long as

1(2K-1)2 -(2L) 2 1
<8X

K 8X

This yields

4L2 - 4K2 + 4K - 1 - 8XK < 0

and 4K2 - 4K + 1 - 4L2 - 8XK < 0

(13)

(14)

Solving Equation (14) gives for the interval of K for which the terms

RK decrease from maximum to minimum magnitude

Ka < K < K, (15)

where

K = - (2X-1) + 'r(2X -1)2 + 4L2 - 1 (16)

and

K3 = 7(2X+l) + l(2X+I)2 + 4L2 - I

It is obvious that K2 < L < K3, so that K3 - L and L - Ke are both

positive, a fact that will be used in the four following equations.

From Equation (12a) it follows that the Kth term, if K > L, can be

written as

(17)

II -~ - ^ ---



RK(LX ) - [(1+2L) (3+2L) (2K-l+2L)] [(2L-1)(2L-3)..3.1.1.3.. (2K-1-2L)]
=K' K (8X)K

(2K+2L)' L! (2L) (2K-2L)!
(2L)! 2K (K+L)' 2L L! 2K- L (K-L)!

(2K+2L)! (2K-2L1. 1 1 1 1

(K+L)' (K-L)! 2 2 K 2 "

1
K. (8X)K

(K > L) (18)

Similarly, for K < L

[(2L + 1) (2L+3).. (2L+2K-1)][(2L-1) (2L-3).. (2L-2K+1)]

KI (8X)K

(2L+2K)! L' (2L)! (L-K) I 1
(2L)1 2K (L+K)' (2L-2K)1 2K L KI (8X)K

(2L+2K)' (L-K)! 1 1 1

(L+K)i (2L-2K)! E i r (K < L)

Using Stirling's formula, we find asymptotically

(19)

K+L K-L
2 (K+L) K+L(K-L)K-L

K(LX) KK 2K eK XK V K

K-L 2 K K L

K2 Xe )}KK-L

RK(L,X) , 1

2 KK K L

(l7 K2Xe ) L-K

By substituting Ka and Ks from Equations (16) and (17) in Equations

(21) and (20), respectively, we obtain the maximum and minimum magnitude

of the asymptotic terms. The minimum term should be within the precision

RK(L,X)

and

) (K > L) (20)

(K < L) (21)

- ~_ 111
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required of the answer, while the accuracy is determined by the number of

decimals lost in floating point arithmetic, i.e., by the order of magni-

tude of the maximum term RK2.

If either of these requirements cannot be met, a different algorithm

must be used.

Tables of terms with maximum and minimum magnitudes are given in

Appendix C.

RECURRENCE RELATION

3,4
The recurrence relation for Bessel functions is

2L (22)JL_1(X ) = JL(X ) - JL+1(X) (22)

with the normalization constraint

JO(X) + 2 J 2 N(X) = 1 (23)

N=l

The algorithm based on this recurrence relation starts with setting

J L+(X) equal to zero and JL(X) equal to a (small) constant. A running

count is kept of the normalizing sum, Equation (23). The final answer

is obtained by dividing the value resulting from the recursive iteration

by the normalizing factor. The method is remarkably insensitive to the

starting point and the starting value. It is advisable to start the

recursion at an order L for which JL(X) equals approximately the desired

precision q, which is usually the machine precision available.

This starting order is readily estimated from the power series

expansion given by Equation (2b):

~~~~*- ll~*s~ ~II*CI(C~~-



.L

L =q (24)

and, again from Equation (2b),

2 (25)
<1

I+L

The latter inequality ensures that the series in parentheses in Equation

(2b) converges from the start. Since the normalizing factor of Equation

(23) has to be carried all the way down to the zero order function JO(X),

a too high starting order may be computationally unacceptable; however,

in that case an asymptotic expansion may already perform well. An

additional advantage of the recurrence relation method is that function

values for all integer descending orders may be obtained by the same

effort.

Estimates based on Equation (24) for the starting order L of the

recurrence relation of Equation (22) are given in Appendix D. From the

results of Appendix D it follows that L=1.4X + 25 (for single precision

q=10 ) or L=1.6X + 40 (for double precision q=10 ) are good estimates

for starting orders of the recurrence relation algorithm for values of X

up to 200. In general, one would not like to extend the xecursion over

more than 200 terms, in the first place because of possible loss of

accuracy involving the normalizing sum of Equation (23), and in the second

place because of computational efficiency. From the requirement that L

be less than 200, we can derive the requirement that X be less than 125

(for single precision q=10 ), or that X be less than 100 (for double

precision q=10- ).

Y ____~__~ 1111
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How accurate the obtained results are for orders close to their

starting order could not be established exactly, but it is probably close

to or better than the machine precision. Where the values obtained by the

recurrence relation algorithm could be checked against Reference 5, it was

generally found that they were more accurate than the corresponding values

obtained by the power series or asymptotic series algorithms, which

always suffer from the loss of accuracy due to the magnitude of the maxi-

mum term occurring early in this alternating series, as was explained in

the previous chapters.

The high accuracy obtained by the recurrence method over the full

range of orders L, together with the simplicity of the algorithm itself

(three multiplications and two additions per step, following by two memory

exchanges), makes the recurrence relation algorithm very attractive for

the computation of JL(X). For this reason, some of the boundaries indi-

cating when the power series expansion and when the asymptotic series

expansion can be used may be relaxed with respect to the results from

Appendices B and C. The boundaries actually used in the program are given

in the next chapter.

ORDER-ARGUMENT DOMAIN COVERED BY ALGORITHMS

The three algorithms into which the calculation of the Bessel func-

tion JL(X) is divided occupy the following regions in the order-argument

(L-X) domain:

1. Power series expansion when

X less than 1 or X less than &L .

I _ _ _ _ _~_ _ _ _ _ ___ __



2. Asymptotic series expansion when:

X greater than 50 and X greater than L (for mach.prec.10-29)

or X greater than 30 and X greater than +L2 (for mach.prec.10 -14)

3. Recurrence relation method when:

X less than 100 and L less than 200 (for mach.prec.10
- 29)

or X less than 125 and L less than 200 (for mach.prec.10-).

The coverage of the different algorithms is shown graphically in

Figure 1. A wedged area uncovered by any of the algorithms remains for

large orders and arguments of approximately equal magnitude.

Outside the rectangular area in the L-X domain for which the recurrence

relation algorithm seems indicated, the boundaries for the power series and

asymptotic series expansions could be tightened again, but this has not

been attempted in the program presented in Appendix A. Instead, the pro-

gram notifies the user of any entries into this forbidden zone, but returns

with a Stirling approximation to the first term in the power series - which

may be completely wrong - as an exit value.

CHECKING THE RESULTS

To check the accuracy of the algorithms, Bessel functionsJL(X) were

calculated by the recurrence relation method for arguments from 1 to 10

in steps of 1, and from 10 to 100 in steps of 10. The region covered in

the L-X domain in this way is pictured as the hatched area in Figure 2.

Also indicated in Figure 2 are the points in the L-X domain for which

values of the Bessel function were calculated by the power series expansion

or by the asymptotic series expansion. The values of L and X were chosen

close to the boundaries assumed by the FORTRAN program of Appendix A.

- II II I II II I I I I II
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The required accuracy- three decimals less than the machine pre-

cision- was indeed obtained; this is in accordance with the predictions of

the previous chapters. The accuracy obtained by the recurrence relation

method was generally better.

Some of the results obtained are given below.

Jo() (Ref.5) 0.76519 76865 57966 55144 97175 26103

(recurrence rel.) 2612

(power series) 2604

Jo(10) (Ref.5) -0.24593 57644 51348 33519 77608 62485

(recurrence rel.) 6253

(power series) 4585

Ji (1) (Ref.5) 0.44005 05857 44933 51595 96822 03719

(recurrence rel.) 0372

(power series) 0367

J1 (40) (Ref.5) 0.12603 83180 37584 99920 56027 21839

(recurrence rel.) 2185

(asympt.series) 2179

J1 (50) (Ref.5) -0.09751 18281 25175 13766 14589 53873

(recurrence rel.) 53721
(asympt.series) 53782

J1 (50) (Ref.5) 0.00489 81607 77813 78173 17342 69265

(recurrence rel.) 68979

(asympt.series) 69234

J 3 0 (1) (Ref.5) .01 3482 8697

(recurrence rel.) 3482 86979 42514

(power series 3482 75946 71184

J128 (64) .026 3241 50085 84477 63106

(recurrence rel.) 3241 50085 84477 63102

(power series) 3241 82782

From a 60-term power series expansion; also from a recurrence relation
calculation starting at Jso (64).

150A
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The results given here show for example that J (10), when computed by

using the power series expansion algorithm, is accurate only to 25 decimal

places. This is consistent with the fact that the maximum terms

(T 4 =T =678=102"83, see Table 4 in Appendix B) decrease the accuracy by

almost 3 decimal places. Note that the program of Appendix A would have

chosen the recurrence relation method to compute Jo(10), giving a result

that is accurate to 28 decimal places.

Taking J 6(50) as another example, we can derive from the chapter on

coverage of the L-X domain that the program would again have chosen the

recurrence relation algorithm. The asymptotic series algorithm would in

this case have been slightly more accurate, but both results are good to

more than 26 decimal places as was desired.

J3 o(1) begins to show a difference at the fifth significant digit of

the power series result. This is because of the fact that the algorithm

takes one more term after detecting that the machine precision has been

reached, which in this case is the very first term. The third term is3x10 5

times the first term and this accounts for the difference.

The last result, J (64), again would have been calculated by using

the recurrence relation method; according to the rule of thumb given in

Appendix D, the recursion starts with L = 1.6x64 + 40 = 142, i.ee., with

-29
J (64) = 0 and J (64) = 10 . The maximum term in the power series
142 141

20- 2 ° "4
expansion is T,, = 10 according to Table 4 in Appendix B, so no loss

of accuracy is expected from this effect. However, the summation of the

power series algorithm ends when the terms become smaller than

I r IIII I --- ~-



10-29 (=T30 approximately); we find indeed that the power-series result

is accurate to 30 decimal places. By continuing the power-series expan-

sion further (to 60 terms), the more accurate result of the footnote on

page 13 was obtained.
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APPENDIX A

FORTRAN IV PROGRAM

The FORTRAN IV program is used to compute Bessel functions of the first

kind of positive integer order and positive argument.

The program is written as a double precision function, with indications

of the changes involved when a single precision program is desired. The

program has been checked on the NSRDC CDC 6700 system.

The calling sequence, variable parameters, and options are explained

in comments at the beginning of the program.

-. 1 13 1 __ I I I - _-1L-rZ~R
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C BESSEL FUNCTION 1931,KOOIJ
C -
C

DOUBLE PRECISION FUNCTION DRSL(LPXPlOPT)
SC

C BESSFL FUNCTION J(LX) OF NON-NEGATIVE
C AND NON-NEGATIVE ARGUMENT X.

INTF(,ER ORDER L

C ----------------------------------------------------------------
10 C

INTEGER LP,IOPTLISWIXIMIKKKKMLLLPlM
REAL ALM1,TX
DOUBLE PRECISION XPXMACHEPPISS?,YZ,77
OUlRIE PRECISION AJAJLMI1,AJLAJLPI,ALALFALKAMAKK

15 C INTEGEW TARS. RFAL SORT. DOUBLE PRECISION )ARSI)COS,DSIN*DSORT.
C
C --------------------------------------------------------------------
C
C ARSOLUTE

20 X=DABS(XP)
L=IARS(LP)

VALUES OF L AND X ARE TAKFN HY THIS PROGRAM.

C ----------------------------------------------------------------

MACHEP IS A MACHINE
27,68972, AND 86

MACHEP=2.**(-97)

PRECISION PARAMETER. CHANGFS AFFFCT LINES
IN THIS PROGRAM.

C
C ----------------------------------------------------------------

THE FOLLOWING OPTIONS ARE AVAILABLE
IOPT = I
ALGORITHM IS BASED ON RECURRENCE RFLATION
J(L-19X)=(2L/X)*J(LX) - J(L+19X). STARTING WITH SUFFICIENTLY
HIGH L FOR WHICH APPROXIMATELY J(LX)=MACHEP9 AND J(L+1,X)=0,
AND NORMALIZED BY THE SCALING FACTOR S=J(0X)+2*SIJML(J(LX)),
WHICH SHOULD HAVF EOUALED ONE FOR THE RIGHT VALUES OF J.

IOPT = 2
ALGORITHM TS BASED ON POWER SERIES EXPANSION
SUMK((-I)**K *(X/2)**(2K+L) /(KFACT*(K+L)FACT) )

IOPT = 3
ALGORITHM IS BASED ON ASYMPTOTIC SERIES EXPANSION
SQRT(2/(PI*X)) *(P(LX)COS(ALF) - Q(LX)SIN(ALF) )q WHERE
ALF=X - (.5L+.25)PI, AND, ASYMPTOTICALLY, WITH MU=(2L)**2
P(LX)=1 - (MU-1)(MU-9)/(1*2 *(8X)**2) + .. ,*
Q(LX)=(MU-1)/(1 *(BX)) - (MU-1)(MU-9)(MIJ-25)/(1*2*3 *(8X)**3))

(-1)**INT(K/2)*(MU-I).*(MU-(2K-I)**2)/(1*2*..*K *(RX)**K) +..
TOPT = NOT EQUAL TO 1,2 OR 3

ALGORITHM DETERMINES MOST SUITARLF OF ABOVE ALGORITHMS, RUT
MAY LEAD TO UNSATTSFACTORY RESULTS, ESPECIALLY TF L AND X
ARE OF SAME ORDER AND LARGER THAN 100.

C ----------------------------------------------------------------
C

55 C o

C
25 C

C

30 C
C
C
C
C

35 C
C
C
C
C

40 C
C
C
C
C

45 C
C
C
C
C

50 C
C
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PT=.314159?6535897Q32334626433833D+01
AL=L.
AX=X
IX=AX
TSW=IOPT
IF (ISW.LE.0) ISW=4
IF (ISW.GE.4) ISW=4
GOTO (10,20,30,40), ISW

40 FInDS MOST SUITARLE ALGORITHM IF POSSIHLE.
40 IF (IX.GF.50 .4ND. 4*IX,GE,.L*L) GOTO 30

TIFOUAITTY MAY HE REDUCED TO
IX.(;F.30 .AND. 4*TX.GE.L*L IF MACHEP=2**(-47).

IF (TIXI.T.1 .04. ?*TX.LT.L) GUTO 20
IF (IX.LT.100 .AND. L.LT.200) GOTO 10
TNFOUALITY MAY HF INCREASED TO
IXLT.125 .AND. L.LT*200 IF MACHFP=2**(-47).

WRITF(6,15)
SIGNALS THAT NO SUITAHLE METHOD IS AVAILARIE, RUT
STIRLING APPROXIMATION TO FIRST TFRM OF POWER S

15 FORMAT(13H WRONG RESSEL)
S=(AX*1.399140914?/AL)**AL/SQRT(6.283185307*AL)
GOTO 47

PROVIDFS
ERIES.

C 10 REClURRENCF RELATION.
10 LP =I..+1

KK=(S*IX)/5 + 40
C FINDS ORDER L FOR WHICH A
C KK=(7*IX)/5 + 25 IF MA

K=2*(KK/2)-1
C STARTS NORMALIZING SUM S
C HIGHFST NON-ZERO TERM.

A,JLPl=0.
AJL=MACHEP
S=0.
DO 23 I=1,K,2
LL=K-I+2
AL=LL
AJLMI=AJL_*?.*AL/X - AJLP1
AJLP 1 =AJL
AJtL=AJLM1
TF (LL.FO.LPI) AJ=AJL
LL=K-I+1
AL=LL
AJLM1=AJL*2.*AL/X - AJLPI
S=S+AJLPL

C ADDS THE NEXT LOWER EVEN
AJIPl=AJL
AJL=AJLM1
IF (LL.EO.LP1) AJ=AJL

23 CONTINUF

PPROXIMATELY
CHEP=2**(-47)

J(LX)=MACHFP.
0

(OF TERMS OF EVEN ORDER)

ORDER TERM TO THE NORMALIZING

60

C
65 C

C
C

C
70 C

C
C

BFCOMES

85

90

95

100

105

110

WITH

SUM S.



S=2.*S+AJL
c COMPLETFS THE NORMALIZING SUIM S=J(OX)+2*SIJML(J(21,X)).

S=AJ/S
GOTO 47

C -----------------------------------------------------------
C
C 20 POWFP SERIES EXPANSION.
20 Y=X/?.

120 ALF=1.
IF (L.O.0) GOTO 37
)0 33 IM=1,L
AM=IM

33 ALF=ALF*AM
125 C ALF IS (K+L)-FACTORIAL. NOW SET UP FOR AND EXFCUTE SUMMATION.

37 Z=1./ALF
Z=Z*Y**L
S=7
KK=1

130 57 AKK=KK
ALK=L KK
Z=-Z*Y*Y/(AKK*ALK)
S=S+Z
ZZ=DABS(7)

135 IF (ZZ.LT.MACHEP) GOTO 47
TF (KK.GE,60) GOTO 47
KK=KK+I
GOTO 51

C
140 C --- ---------------------------------------------------

C
C 30 ASYMPTOTIC SERIES EXPANSION.
30 Y=R.*X

ALMI=4*L*L-1
145 TX=?.*X+1.

KM=.5*(TX+SQRT(TX*TX+ALMI))
C FINDS MINIMUM TERM IN CASE IT OCCURS BEFORF MACHEP IS REACHFn.

AM=4*L*L
Z=1.

15n S=1.
S2=0.
KK=I

77 AKK=KK
M=4*KK*KK - 4*KK + 1

155 ALK=M
7=Z*(AM-ALK)/(AKK*Y)
S?=S2+L
IF (KK+1.GF.KM) GOTO 167
AKK=KK+1

160 ALK=M + 8*KK
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APPENDIX B

POWER SERIES TABLES



TABLE 2 - POWER SERIES FINAL TERM AND COMMON LOGARITHM OF ITS MAGNITUDE FOR MACHINE PRECISION 10 -"

(Algorithm continues for 60 terms or until required precision is reached)

X 1 2 4 8 16 32 64 128 256 512 1024

L 8 10 14 21 33 55 99 186 360 707 1403

1 -15.3 -14.2 -14.3 -14.9 -14.9 -14.3 -14.4 -14.3 -14.5 -13.8 -14.2

8 10 14 21 33 55 98 185 359 707 1403
2 -16.6 -15.2 -15.2 -15.6 -15.5 -14.8 -13.9 -13.9 -14.0 -14.3 -14.6

6 9 13 20 32 54 97 184 358 706 1402
4 -14.2 -15.3 -15.3 -15.7 -15.6 -14.9 -13.9 -13.9 -14.0 -14.3 -14.6

4 7 11 17 30 51 95 182 356 704 1400
8 -14.9 -15.8 -15.7 -14.5 -15.7 -13.9 -14.0 -13.9 -14.0 -14.3 -14.6

1 1 5 13 25 48 91 178 352 700 1396
16 -19.9 -14.5 -14.0 -15.5 -15.1 -15.3 -14.2 -14.0 -14.1 -14.3 -14.6

1 1 1 1 15 38 82 170 344 692 1387

32 -47.1 -36.9 -26.7 -16.4 -15.5 -14.8 -14.1 -14.5 -14.3 -14.4 -13.8

1 1 1 1 1 14 62 152 327 675 1371
64 -110.7 -90.9 -71.0 -51.1 -31.3 -15.2 -13.9 -14.4 -14.3 -14.0 -14.1

1 1 1 1 1 1 1 111 291 641 1338
128 -256.8 -217.7 -178.5 -139.4 -100.3 -61.1 -22.0 -14.3 -14.6 -14.1 -14.1

1 1 1 1 1 1 1 1 207 568 1270
256 -587.0 -509.3 -431.6 -354.0 -276.3 -198.6 -121.0 -43.3 -14.1 -14.0 -14.5

1 1 1 1 1 1 1 1 1 399 1123
512 -1323.9 -1169.2 -1014.5 -859.8 -705.0 -550.3 -395.6 -240.8 -86.1 -13.8 -13.7

1 1 1 1 1 1 1 1 1 1 784

1024 -2951.6 -2642.7 -2333.9 -2025.0 -1716.1 -1407.3 -1098.4 -789.6 -480.7 -171.9 -13.9



TABLE 3-POWER SERIES FINAL TERM AND COMMON LOGARITHM OF ITS MAGNITUDE FOR MACHINE PRECISION 10"2 9

(Algorithm continues for 60 terms or until required precision is reached)

X 1 2 4 8 16 32 64 128 256 512 1024

L 14 17 22 30 44 68 113 201 376 724 1420
1 -31.8 -30.4 -29.9 -29.6 -30.1 -29.7 -29.1 -28.8 -29.2 -29.0 -29.2

13 16 22 30 43 67 113 201 376 724 1419
2 -30.3 -29.1 -31.0 -30.5 -29.4 -29.0 -29.6 -29.3 -29.6 -29.5 -28.7

12 15 21 29 42 66 112 200 375 723 1418
4 -30.4 -29.2 -31.0 -30.6 -29.4 -29.1 -29.7 -29.3 -29.6 -29.5 -28.7

10 13 19 27 40 64 110 198 373 721 1416
8 -30.8 -29.5 -31.3 -30.7 -29.5 -29.1 -29.7 -29.3 -29.7 -29.5 -28.7

5 9 14 22 36 60 106 194 369 717 1412
16 -29.6 -30.7 -30.1 -29.6 -30.0 -20.4 -29.9 -29.5 -29.7 -29.5 -28.7

1 1 3 12 27 51 97 186 360 709 1404
32 -47.1 -36.9 -29.3 -29.4 -30.5 -29.4 -29.5 -29.9 -29.0 -29.6 -28.8

1 1 1 1 1 31 78 168 343 692 1388
64 -110.7 -90.9 -71.0 -51.1 -31.3 -30.2 -29.4 -29.5 -29.0 -29.2 -29.0

1 1 1 1 1 1 31 128 307 658 1355
128 -256.8 -217.7 -178.5 -139.4 -100.3 -61.1 -30.4 -28.9 -28.9 -29.2 -29.1

1 1 1 1 1 1 1 1 226 585 1287
256 -587.0 -509.3 -431.6 -354.0 -276.3 -198.6 -121.0 -43.3 -29.2 -28.7 -29.3

1 1 1 1 1 1 1 1 1 419 1141
512 -1323.9 -1169.2 -1014.5 -859.8 -705.0 -550.3 -395.6 -240.8 -86.1 -29.0 -29.0

1 1 1 1 1 1 1 1 1 1 804
1024 -2951.6 -2642.7 -2333.9 -2025.0 -1716.1 -1407.3 -1098.4 -789.6 -480.7 -171.9 -28.7

_ _~ __~_I~_



TABLE 4-POWER SERIES MAXIMUM TERM AND COMMON LOGARITHM OF ITS MAGNITUDE

(Dashed line indicates boundary at which loss of accuracy may be 2 decimals;
algorithm chooses power series if X is less than I L or if X is less than 1)

X 1 2 4 8 16 32 64 128 256 512 1024

L 1 1 1 3 7 15 31 63 127 255 511
1 -1.2 -.2 .7 2.1 5.2 11.9 25.5 53.0 108.3 219.2 441.2

1 1 1 3 7 15 31 63 127 255 511
2 -1.9 -.7 .5 2.0 5.2 11.9 25.5 53.0 108.3 219.2 441.2

1 1 1 2 6 14 30 62 126 254 510
4 -3.8 -2.0 -.2 1.7 J 5.0 11.8 25.4 53.0 108.3 219.1 441.2

1 1 1 1 4 12 28 60 124 252 508
8 -8.5 -5.5 -2.5 .5 L 4.4 11.5 25.3 52.9 108.2 219.1 441.2

1. 1 1 1 3 9 24 56 120 248 504
16 -19.9 -14.5 -9.1 -3.7 2.0 10.2 24.6 52.6 108.1 219.0 441.2

1 1 1 1 1 6 19 49 112 240 496
32 -47.1 -36.9 -26.7 -16.4 -6.2 L 5.4 22.1 51.3 107.4 218.7 441.0

I
1 1 1 1 1 3 13 39 99 225 480

64 -110.7 -90.9 -71.0 -51.1 -31.3 -11.0 12.5 46.2 104.8 217.4 440.3

1 1 1 1 1 1 7 26 79 199 451
128 -256.8 -217.7 -178.5 -139.4 -100.3 -61.1 -20.4 27.0 94.6 212.2 437.7

1 1 1 1 1 1 3 15 53 158 399
256 -587.0 -509.3 -431.6 -354.0 -276.3 -198.6 -120.6 -38.8 56.3 191.9 427.4

1 1 1 1 1 1 1 7 30 106 316
512 -1323.9 -1169.2 -1014.5 -859.8 -705.0 -550.3 -395.6 -239.2 -75.3 115.3 386.7

1 1 1 1 1 1 1 3 15 60 212
1024 -2951.6 -2642.7 -2333.9 -2025.0 -1716.1 -1407.3 -1098.4 -789.2 -476.1 -148.0 1233.5

I
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APPENDIX C

ASYMPTOTIC SERIES TABLES



TABLE 5-ASYMPTOTIC SERIES MAXIMUM TERM AND COMMON LOGARITHM OF ITS MAGNITUDE

(Dashed line indicates boundary at which loss of accuracy may be
algorithm chooses asymptotic series if X is greater than L2/4)

2 decimals;

X 1 2 4 8 16 32 64 128 256 512 1024

L 1 1 1 1 1 1 1 1 1 1 1
1 -.5 -.8 -1.1 -1.4 -1.7 -2.0 -2.3 -2.6 -2.9 -3.2 -3.5

1 1 1 1 1 1 1 1 1 1 1
2 .3 -.0 -.3 -.6 -.9 -1.2 -1.5 -1.8 -2.1 -2.4 -2.7

3 2 1 1 1 1 1 1 1 1 1
4 1.6 .8 .3 .0 -.3 -.6 -.9 -1.2 -1.5 -1.8 -2.1

7 6 5 3 1 1 1 1 1 1 1
8 5.8 3.8 2.1 1.0 .3 .0 -.3 -.6 -. 9 -1.2 -1.5

15 14 12 10 6 3 1 1 1 1 1
16 16.6 12.2 8.2 4.8 2.4 1.0 .3 .0 -.3 -.6 -.9

31 30 28 25 20 13 7 3 1 1 1
32 43.2 34.0 25.2 17.2 10.4 5.5 2.6 1.0 .3 .0 -.3

63 62 60 56 50 39 26 15 7 ' 3 1
64 106.2 87.4 69.0 51.4 35.3 21.7 11.9 5.8 2.6 1.0 .3

127 126 124 120 113 100 79 53 30 15 7
128 251.6 213.5 175.9 139.0 103.8 71.6 44.5 24.7 12.5 5.9 2.6

255 254 252 248 240 226 200 158 106 60 31
256 581.2 504.6 428.4 353.1 279.4 209.0 144.5 90.3 50.5 26.0 12.7

511 510 508 504 494 481 452 400 316 212 120
512 1317.6 1163.9 1010.6 858.2 707.6 560.2 419.4 290.5 181.9 102.3 53.1

1023 1022 1020 1016 1008 992 962 904 799 633 424
1024 2944.6 2636.8 2329.4 2022.9 1718.1 1416.7 1122.0 840.3 582.5 365.4 206.0



TABLE 6-ASYMPTOTIC SERIES MINIMUM TERM AND COMMON LOGARITHM OF ITS MAGNITUDE

(Dashed lines indicate boundaries at which magnitude attains single machine precision (10-14)

and double machine precision (10-29); algorithm chooses asymptotic series if X is greater

than 30--single precision--or if X is greater than 50--double precision)

X 1 2 4 8 16 32 64 128 256 512 1024

10 13
2.2 -1.3

L
1

2

4

8

16

32

64

128

256

512

1024

33
-14.7

33
-14.7

17 33
-7.2 -14.5

20 34

65
-28.8 I

65
-28.8

65
-28.7

65

129
-56.7

257
-112.5

129 257
-56.7 -112.5

129
-56.7

129

257
-112.5

513
-223.8

513
-223.8

1025 2049
-446.3 -891.2

1025 2049
-445.3 -891.2

513 1025 2049
-223.8 -445.3 -891.2

257 513

3
-1.0

3
-.5

5
1.0

9
5.1

17
16.0

33
42.6

65
105.6

129
251.1

257
580.7

513
1317.0

-223.8

513
-223.6

1025 2049
-446.3 -891.2

1025 2049
-446.2 -891.2

514 1025 2049
-222.9 -445.9 -891.0

520
-220.4

543
-210.2

1028 2050
-444.6 -890.3

1040 2056
-439.4 -887.7

273 290 3281 414 618 1085
265.8 181.4 89.1 -20.8 1-171.9 -419.1

528 545 580 656 829 1236
693.9 532.7 364.0 179.5 L40.3 -342.5

1040 1057 1090 1160 131211 1657
1704.5 1389.2 1066.7 729.3 360.311 -79.3

2080
-877.4

2169
-836.7

2473
-683.5

5
-2.0

5
-1.8

7
-.8

17
-7.6 I

17
-7.5 I

9
-4.0

9
-3.8

10
-3.3

-6.1

1025 1026 1028
2944.0 2635.4 2326.2

-13.9 -28.4 -56.5 -112.4

39 68 130 257
-11.5 -27.1 -55.9 -112.0

52 78 136 260
-3.4 L-22. 3  -53.3 -110.8

82 104 155 272
21.6 -6.0 L- 4 3 . 8 -105.7

145 164 2071 309
90.2 44.0 -11.0 -86.6

I -1

18
10.7

34
32.5

66
85.9

130
212.1

258
503.2

514
1162.5

21
4.9

36
22.0

68
65.8

132
172.7

260
425.2

516
1007.5

26
-2.0

41
10.4

73
44.7

136
132.4

264
346.4

520
851.6

1032
2016.2
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TABLE 7-ASYMPTOTIC SERIES FINAL TERM AND COMMON LOGARITHM OF ITS MAGNITUDE FOR MACHINE PRECISION 10-14

(Algorithm continues for 60 terms or until required precision is reached)

X 1 2 4 8 16 32 64 128 256 512 1024

L 31 12 9 7 6 5 5
1 -14.7 -14.5 -14.8 -14.4 -14.6 -14.1 -15.6

31 12 9 7 6 6 5
2 -14.7 -14.4 -14.7 -14.3 -14.4 -16.2 -15.3

31 13 9 8 7 6 6
4 -14.5 -14.8 -14.1 -15.2 -15.6 -15.2 -17.0

32 15 11 10 8 8 7
8 -13.9 -14.7 -14.3 -15.8 -14.0 -16.4 -15.3

22 18 15 13 11 10
16 -14.9 -16.4 -15.0 -15.3 -15.1 -16.2

39 32 27 21 17 14
32 -13.0 -15.0 -15.5 -14.9 -15.3 -15.6

67 55 40 29 22
64 -14.8 -14.9 -14.4 -14.4 -14.8

227 127 96 65 43
128 -10.1 -16.0 -15.2 -15.3 -14.7

338 244 174 109
256 -12.4 -14.6 -15.3 -15.1

639 478 327
512 -12.5 -15.4 -15.1

1249 943
1024 -12.8 -14.6

-L ,. ~-. --- ~ ..



TABLE 8-ASYMPTOTIC SERIES FINAL TERM AND COMMON LOGARITHM OF ITS MAGNITUDE FOR MACHINE PRECISION 10
-29

(Algorithm continues for 60 terms or until required precision is reached)

X 1 2 4 8 16 32 64 128 256 512 1024

L 45 25 18 15 13 11
1 -27.3 -29.4 -29.3 -30.2 -30.9 -30.3

45 26 18 15 13 11
2 -27.3 -30.0 -29.2 -30.1 -30.8 -30.2

46 26 19 15 13 11
4 -27.4 -29.8 -30.1 -29.7 -30.4 -29.7

48 27 20 16 14 12
8 -27.2 -29.7 -30.1 -29.9 -30.7 -30.1

66 31 23 19 18 16
16 -27.1 -29.6 -29.5 -29.3 -32.7 -32.0

43 35 31 26 22
32 -28.4 -30.6 -31.5 -29.8 -29.5

82 64 54 43 34
64 -27.8 -29.1 -30.1 -30.2 -29.8

134 111 82 60
128 -28.8 -29.9 -29.6 -29.8

254 193 131
256 -30.6 -30.0 -30.2

693 490 349
512 -27.4 -30.5 -29.9

1290 957
1024 -27.7 -30.4



APPENDIX D

RECURRENCE RELATION TABLE

TABLE 9-BESSEL FUNCTIONS WHOSE MAGNITUDE APPROXIMATELY EQUALS
MACHINE PRECISION

(Fast rule: L P 1.4X + 25, mach. prec. 10-i4 ; L E 1.6X + 40,
mach. prec. 10- 29)

X L Log JL(X) X L Log JL(X)

1

10

20

30

40

50

60

70

80

90

100

200

400

13

34

51

66

81

95

109

123

137

151

165

302

575

-12.7

-13.5

-13.9

-13.8

-14.0

-13.8

-13.7

-13.7

-13.8

-13.8

-13.9

-13.8

-14.0

1

10

20

30

40

50

60

70

80

90

100

200

400

23

50

70

87

103

119

134

149

163

178

192

332

607

-28.3

-28.3

-28.8

-28.6

-28.6

-29.0

-28.9

-29.0

-28.7

-29.0

-28.8

-28.8

-29.1

4 I I I I I I LI
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