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RESTRICTED

EXPERIMENTAL DETERMINATION OF THE HYDRODYNAMIC INCREASE

IN MASS IN OSCILLATING BODIES

ABSTRACT

The methods for determining virtual mass under conditions of linear

and vibratory motion known up to the present are briefly described. For the

study and numerical representation of purely hydrodynamic inertia effects on

oscillating bodies, a simple test method for forced vibrations is reported

and illustrated by tests on vibrating disks. In converting the results of

model tests to full scale, principles of similitude must be considered. These

are given for the simplified case of a ship's propeller vibrating harmonical-

ly parallel to the free surface in an undisturbed fluid.

Due to streamline flow, a body moved in an inert medium undergoes

an apparent increase in its "mechanical" mass by the amount of the "hydrody-

namic" component of the total mass.* For an exact understanding of the

forces or loads acting on the body, a knowledge of hydrodynamic inertia ef-

fects, and, in individual cases, their numerical magnitudes, is indispensable.

In oscillatory phenomena in particular, the effect of the size of the oscil-

lating mass on both the frequency and amplitude is worthy of note.

Numerous studies exist for the determination of the virtual mass as

the sum of its components, the mechanical mass, and the hydrodynamic mass.

This problem, which is highly important in many branches of engineering, is

the main object of many of these studies. In numerous other papers it is

treated as a subsidiary part of the main theme. On the basis of the method

used to determine the hydrodynamic increase in mass, this specialized re-

search can be subdivided as indicated in Table 1. Since the object of the

present study is a more detailed treatment of test method IIb, the methods

given under I. will be given only cursory attention.

In hydrodynamics the virtual mass, or the hydrodynamic increase in

mass, can be determined by purely analytical methods if certain assumptions

hold and if the bodies are of certain shapes. A body moving at constant ve-

locity in an ideal medium, assumed to be infinite and at rest in infinity,

encounters no resistance. The streamline flow about the body then corre-

sponds to a steady potential flow with a distribution of pressure which pro-

duces no drag (d'Alembert's Paradox). In contrast, a body moving at a

variable velocity, even in a condition of potential flow, meets with resist-

ance which exceeds the pure mechanical mass resistance by the amount of the

* Bessel, in the year 1828, was probably the first to call attention to this effect of the medium

surrounding the moving body.
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2TABLE

TABLE 1

Method Used to Determine the
Type of Motion Hydrodynamic Increase in Mass

I. No change in the direction of the 1. Analytical
moving body

2. Experimental

a) using the basic law of
motion: force = mass x
acceleration

b) by oscillating tests

II. Periodic change in the direction of 1. Experimental
the moving body (oscillations) a) from the natural frequency

or the resonance frequency
of a freely oscillating
system

b) at an arbitrary frequency
by forced oscillations

inertia of the entrained mass of the medium. This hydrodynamic component of

the mass can be calculated whenever the kinetic energy of flow or the change

in momentum of flow, which can be determined for some simple geometric bod-

ies by the theory of potential flow, is given. Various methods of calcula-

tion and their results are given in Lamb's (1)* basic work, supplemented by

the studies of Lewis (2), Taylor (3), Tollmien (4), and others. For example,

by using Rankine's source-sink method, which is valid only for axially sym-

metrical bodies, the coefficient of hydrodynamic inertia can be calculated

from the product of the static moment of the respective sources and sinks

and the density of the medium, as set forth by Munk (5).

The analytically determined values of the hydrodynamic increase in

mass which, strictly speaking, are valid only for bodies in translational mo-

tion through an ideal medium, are used almost without exception as a basis

for the calculation of both the elastic and inelastic vibrations of ship

forms (2) (6) (7) (8) (9). In aerodynamics the concept of the "reduced wing

mass" has been introduced into the study of the vibrations of airplane wings.

In this there is likewise contained the value of the hydrodynamic increase

in mass per unit length for an infinitely long plate of finite breadth in

translational motion as calculated from potential theory (10) (11).

Whereas the calculated hydrodynamic mass depends only on shape, its

values may vary with flow conditions in a real, eddying medium. A satisfac-

tory agreement of the calculated result with the mass increase in the actual

* Numbers in parentheses indicate references on page 19 of this translation.
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flow is therefore possible only when the flow patterns of the two differing

phenomena are identical.

The virtual mass of completely submerged or floating bodies in

translational motion is determined experimentally by measuring the force of

acceleration and the acceleration itself. As examples, the experiments by

Abell (12), Baumann (13), and von den Steinen (14) are mentioned. It is a

disadvantage that the data thus obtained combine resistance due to inertia

and that due to friction. Since frictional resistance varies with time in

accelerated motion, it is impossible to separate the two components. Hence,

it is not possible to prove that the pure hydrodynamic inertial resistance

is a function of the acceleration as it is suspected to be.

The method of determining the hydrodynamic increase in mass of a

full-scale original in translational motion by comparative vibration tests

with a geometrically similar model is based on the fact that the streamline

flow about the oscillating body approaches potential flow, provided that

motion is assumed to be translational. According to Fittinger (15) (16),

this is true of oscillations of small amplitude and high frequency. If the

virtual mass of the test form can be analytically determined, test results

can be compared with calculated values for the inertia. Thus, for instance,

the effect of finite size, rounded edges, and the like, which in general can-

not be calculated for simple body shapes, can be checked. Tests on the vi-

bration of rectangular plates which were made by Pabst (17) are an example

of this.

The hydrodynamic mass increase of a vibrating body can be deter-

mined in terms of the free vibrations of the model. By this method the

virtual mass of the model is determined from the difference between the nat-

ural frequency of the system in the test medium and the frequency for a mo-

tion completely devoid of losses.

mh = (TD2 T02)

where m is the hydrodynamic increase in mass in kg x sec2 x cm"',

c is the spring constant in kg/cm,

TD is the period of the natural vibration of the freely vibrating

damped test system, in seconds, and

To is the period of the oscillating undamped system, in seconds.

The equation which is also valid for flexural and torsional vibrations can be

used for oscillations in liquid and gaseous media. Two arrangements are pos-

sible in liquids, i.e., the body may be submerged or floating. If the force

of buoyancy acts in the direction of oscillation, it must be also taken into

account in the case of floating bodies; see Reference (18).



The literature subsequently quoted represents only a modest selec-

tion from the large number of experiments which deal with the hydrodynamic

mass increase of bodies in natural modes of vibration. For example, Bessel

(19) determined the effect on the period of the internal friction and the
inertia of the entrained medium by pendulum tests. Stokes (20) derived a

theory for the oscillations of a sphere in a viscous medium whose validity

he checked by Bessel's pendulum test. The oscillations of a sphere in a
fluid, as well as the damping and the entrained mass of the medium, are the

subject of numerous studies. To mention only the more recent studies there

are those by Subrahmanyam (21), who summarizes the tests on spheres reported

up to about 1937, and similar tests in Germany by Erbach, which Weinblum (7)
quotes extensively. In the field ,of aerodynamics, studies by Pabst (17),

Boccius (22), and Pleines (23), .which contain further bibliographical materi-
al and references, are worthy of mention.

With reference to the investigations on the hydrodynamic coeffi-

cient of freely-oscillating bodies, which are evaluated according to the

foregoing equation or its derivatives, it must be remarked that these formu-

las are based on the assumption of constant damping. In a strict sense they

are valid for only this case. Often, however, the damping force does not

increase linearly with the frequency, or it may be that the law of damping

is not known. Even if damping has small effect on the observed quantity of

the formula, the period T, the damping still exerts a considerable effect on
the amplitude, for the decay of the free oscillations is governed by the at-

tendant damping alone. Since, however, the flow pattern about an oscillat-
ing body and concurrently the magnitude of the entrained mass of the medium

change not only with respect to frequency but also with respect to amplitude,

the determination of the apparent mass by the method of free vibrations is

inherently unreliable.

To what extent pure hydrodynamic forces of inertia affect an oscil-
latory phenomenon cannot be ascertained successfully in free damped oscilla-
tions, since the measured data contain both the damping resistance and the

total (mechanical plus hydrodynamical) mass resistance. For example, the

tests by Erbach (7) which have already been mentioned, and also those by

Dimpker (18) and Holstein (24), must be evaluated in terms of this observa-

tion. Dimpker and Holstein studied the free-damped vibrations of a wedge,

a cylinder, and a cube on the surface of water with respect to damping and

entrained mass of water. They found that the apparent mass is a function of

frequency, while Erbach's tests on the vibration of a sphere and an ellipsoid

established that the hydrodynamic mass varies with maximum amplitude, although

the variation is small. An answer to this problem would be welcome. The
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method frequently used of determining the natural frequency of the vibratory

system from the impulse number of the system at resonance under periodic ex-

citation instead of by free vibration tests (variable amplitude) seems suited

to this purpose. The frequency (resonance frequency) which produces the max-

imum amplitude is then the natural frequency of the system. The hydrodynamic

increase in mass is then determined by the equation previously stated. In

this way, for example, Moullin and Browne (25) investigated the shifts of the

natural frequencies of prismatic bars caused by entrained water, when the

bars were completely immersed and the vibrations (2-node vibrations) took

place parallel to the surface.* Hayes and Klein (27) performed vibration

tests on the blades of full-scale marine propellers in the same way. In a

manner similar to Moullin's tests, Schadlofsky (28) used periodic excitation

to determine the natural frequencies of immersed steel vanes vibrating normal

to the surface, in order to find the magnitude of the entrained mass of water.

The advantage of this method compared to the free vibration test is that both

the amplitude and the flow about the vibrating body remain constant. In this

way the natural frequency of an immersed body as a function of the amplitude

could still be studied, although it must be remembered that the effect of

pure damping on the test result is not thus eliminated.

Free vibration tests have the disadvantage that they restrict the

frequencies to a narrow range. The frequency in free vibrations is always

the natural frequency of the vibrating system which is determined mainly by

the vibrating mass and the spring constant. Hence, low test frequencies can

only be achieved by relatively large oscillating masses in which case the ef-

fects of hydrodynamic inertia may become barely noticeable. Similarly, the

production of high frequencies has limitations, since that restricts the ini-

tial amplitudes to very small values.

The result of this compulsory limitation of the test range in free

vibrations is that the coefficients of hydrodynamic inertia determined by vi-

bration tests on models at one or more frequencies were transferred to the

prototype without considering the actual frequencies of its vibrations, i.e.,

without attention to the conditions of dynamic similitude of the two phenom-

ena compared. It is to be emphasized that the model tests must correspond as

closely as possible to the full-scale working conditions. Only then can re-

liable results be expected.

It has been shown in the foregoing that it is impossible to study

the forces of hydrodynamic inertia acting on vibrating bodies separately from

* Similar tests have been made by Browne, Moullin, and Perkins on prismatic bars immersed in water and
considered as rigid bodies vibrating vertically with respect to the surface. See Reference (26).



the effect of damping. For this purpose the attempt

must be made to produce stationary streamlines about

the oscillating body by forced vibrations.* Moreover,

the test setup should be planned to permit determina-

tion of the entrained mass of the medium at any given

amplitude and frequency of any given system, neglect-

ing the damping force.

In the following a simple comprehensive

method is given which satisfies these requirements to

a large extent.

FUNDAMENTALS OF THE METHOD OF FORCED VIBRATIONS

x Position For a system designed to produce damped

Swhen at rest forced vibrations, see Figure 1, the differential

equatrion of vibrations can be solved exactly only for

- the special case of a linear differential equation

with constant coefficients. Beyond this, approxima-

tions must be employed. These, however, are suffi-
Figure 1 - System ciently accurate for many practical cases. In such

Designed to
Produce Damped, calculations the damping force of the vibratory system

Forced Vibrations is assumed to be replaced by an equivalent linear re-

sistive force which during the period T consumes the

same amount of energy as the true damping force (29) (30) (31). In these

considerations the damping forces are usually assumed in the form kn (dx/dt) .

The differential equation of such a damped forced vibration is

d2 X + k, (d- )+ cx = Psinwt

the

the

the

the

the

the

the

the

[1]

vibrating mechanical mass,**

instantaneous displacement,

peak value of the amplitude,

angle of phase,

time,

damping factor, or resistance for unit velocity,

spring constant,

crank radius of the exciting mechanism

Owing to the constant maximum amplitude in this type of vibration, the maximum acceleration, which is
the determining factor for continuous "inflow," is also constant and the flow pattern remains unchanged
with respect to time.

Including the entrained component of the spring mass.

w

where m

x

a

t

k

c

r
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P is the peak value of the exciting force,

w is the frequency of vibration, or the frequency of excitation, and

o is the natural frequency of the undamped vibratory system.

The linear resistance term k, (dx/dt)' is equivalent to the true

damping force k, (dz/dt)n if it leads to the same dissipation loss per cycle;

T 21 T = 21
7-4-

4k f (d)z()dt = 4k f (d. dt
t JdTO t dt [2]

The assumption

soidal form of

and thereby an

the equivalent

that a small damping force has negligible effect on
the vibration permits the statement

x = asin(wt - 0)

integration of Equation [2]. From this the damping

linear damped vibration is

n-1 n-1
kl = ky, a t

Substitution into Equation [1] gives

dx n-l n-l dn
m dX + kn n a -dt + cx = Psinwt

1 r(n + 2)
n 2" (n + 3 12

is a numerical function depend-

ing only on the exponent n. Its

values may be obtained from

Figure 2.

The amplitude a and

frequency w are constant for

the steady forced vibration.

Therefore Equation [4] becomes

a linear differential equation

of familiar type whose solution

is

z =

4

1.2

1.0

0.8 A

0.6

0.4

0.2

0 2 3 4
n

Figure 2 - The factor y, as a Function
of the Damping Exponent n

Psin(wt - €)

(c -- m2) 2 + k 2 2 a 2 n -2 W 2 n [51

After equating Equations [2a] and [5]

the sinu-

[2a]

factor of

where

[3]

[ 4]
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acY - m2 2 + k2 2 2n-2 2n 15a]

or

(c - m 2)2 a2 + k,2 .n2 a2nw 2n 2  [6]

When n = 1, Equation [6] reduces to the exact solution of the forced vibration
with a damping force proportional to the first power of the frequency,

(c - mW2)2 2 + k2 a2 2 = P 2  (Figure 3) [6a]

For values of n other than 1, the
agreement of the approximate and rig-

a orous solutions is best when n is

close to 1. When n = 0, i.e., for a

Sa damping force which does not depend

/0 0 on frequency (Coulomb's friction),

- *, 3 the equivalent damping factor which

must be substituted into the differ-

ential equation for vibration, Equa-

tion [1], is

k -1,-10ya = ko_4 a-l&-i [7]
k0 o k y n a -oW _ ka

' ) When n = 2, (quadratic or hydraulic

damping)

k2 2a(w'11 - k2 a 17a]

Figure 3 - Vectorial Analysis of If several damping forces act on the
Equation [6a] vibratory system, each of which is an

rwe2a = Peak value of inertia

co = Peak value of elastic force arbitrary rational function of the
kwa = Peak value of damping force frequency
P = Peak value of exciting force k I d k /X "2

kn dt I kn2aJ

then a superposition of the dissipation losses leads to an equivalent damping

factor and the corresponding differential equation can again be solved.

One can derive from the approximate solution, Equation [6], which

holds for an arbitrary law of damping, and which contains the amplitude a, an

equation for the hydrodynamic increase in mass if certain conditions are ob-

served in the vibration tests.

If two such tests using different values of c, m, w, a, and P are

made on a given vibratory system, Figure 1, the following equation is valid

for Test 1
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(C 1 - m;>1 2)2 al2 + kn2 y, 2 a 2 nI 12n = p12  [8a]

and for Test 2 the equation

(C2 - m2' 2 )2 a22 + kn2 Yn 2  2n2 2n2 = P22 [8b]
2 2

holds, where m' and m 2' respectively denote the total (virtual) masses par-

ticipating in the vibration, i.e.,

mI' = m 1 + mJh [9a]

m2 = 2+ 2  [9b]

where mi, 'm 2 are the mechanical masses of the vibratory system, and

ml, n h2 are the hydrodynamic increases in mass due to entrained fluid.

The damping force differs for each of the two tests, since it is a function

of amplitude and frequency. However, identical damping conditions can be

achieved, if the amplitude of the mass m and the frequency are the same in

both tests. This condition can be met by an adjustment of the remaining pa-

rameters which do not affect the damping. Therefore

a1 = a 2 = a = constant

G1 = C2 = C = constant

and

n1 = n2 = n

Thus

2 2 2n, W1 2 kn2 n 2 2 2n 2n
k 1 y I2 -12nl - k 7 a22 22n 2

Then, by equating Equations [8a] and [8b], it follows that

2 2

(C - m, -2 2 2 MIa 2 2 [2 10]

Observing P = cr and Equations [ga] and [9b], the expression

2 2 22

ac r2a2 1 + (C2 - c22) + 2w 2 (c 2 m2 - c 1m 1 ) + W4 (m, 2 
- m2

2 )

2W 2 [(c , - C2 ) + W (m 2 -- m 1 )]

is obtained for the hydrodynamic increase in mass. Therefore, Equation [11]

is valid in general for all laws of damping for which there is a solution of

the vibration equation in the form of Equation [6] such that the factors

which appear in the damping term can be retained unchanged in each pair of

tests. Hence, no test variables may appear in this term. Thus Equation [11]

ili l hi i llll l , IN', I 1 1 11 ' lllI ' 0
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which determines m also remains unchanged when the vibratory system is sub-

jected to a "mixed damping," for instance to a constant damping force (Cou-

lomb's friction) and lto a damping* proportional to the first power of the

frequency. This case is important from the standpoint of testing technique

insofar as a supplementary control of the free end of the vibrating spring

may become necessary under certain conditions to prevent disturbing secondary

movements.

Let it be further mentioned that the method given herein for the

calculation of m permits use of the implicit form of the solution, Equation

[6], of the differential equation for vibration. Hence, the absolute magni-

tude of the amplitude a does not have to be known. This constitutes a con-

siderable advantage, since the solution of the explicit form, which is simple

for linear damping, i.e., when n = 1, becomes quite involved for quadratic

damping, i.e., when n = 2. Equation [6] can be solved only by approximations

for n exponentt, that is, for exponents other than 1 and 2.

The vibratory condition required by parallel tests (a, = a2 = a
constant, when w = constant) can also be more simply achieved experimentally

by varying only one of the quantities r,.m, or c. From Equation [11] it is

immediately apparent that when

r i = r 2 = r = constant..... mh= f(c 1 , c, m2 , 1 2),

m 1 = m2 = m = constant.... mh= f(Cl, c 2, rl, r 2 ),

C, = C2 = C = constant.....m h= f(r 1 , r 2, m 1, m 2).

In the method frequently used of exciting vibrations by a crank drive, the

variation of the crank throw r, and the variation of the vibrating mass m,

while the vibrating spring is kept constant, is probably the most convenient.

For this case Equation [11] assumes the simpler form

2 2
c [c r2 - rl 1 m + m 2mh =-2 2ar 2 -1 + 1 - 2  [12]w L2a n2 me - m J 2

VIBRATION TESTS ON DISKS

Tests by the method developed for the system shown in Figure 1 were

performed on a longitudinal vibrating system with disks as vibrating bodies.

* The equivalent damping factor for mixed damping is

k 4 k a-1' +k 4 Ra-w- +k

where R is a constant force of friction. Equation [6] must now be modified to

(c - mw 2 + (T Ra-1 w-1 + k) 2a2 = P2

, 1 li4 IMMIIIIMM iiil_ _.il YIIIIYII h 11111W , il u il,,



The hydrodynamic increase in Vibrating Diophrcgms

mass mh can here be calculated

and a comparison of test re- t

suits and calculated results Drive
is possible. The test setup 3 -

is shown in Figure 4. A cy- E Gloss Plate
coated with

lindrical spring F carries the - Lampblack

oscillating mass at its lower

extremity. This mass consists Flywheel 727

of the vibrating body S, its

support and the variable sup- * Guide Rod
plementary masses Z. The disks

are cut from plating of a Horn's Tachograph
thickness of 3 mm (0.12 inch) F

with sharp edges. Their diam- Geiger Recorder
eter is 144, 176, and 205 mm

(5.67, 6.93, and 8.07 inches). 20

The vibrating disks are im-

mersed in a vessel 520 mm z

(20.47 inches) in diameter tw

filled with water. A constant -  -
DG

mean depth of immersion hAm of Contact t-
200 mm (7.87 inches) is main- Timer hm

(seconds) , ,,, ,
tained in all tests and the

mean distance hm'from the bot-

tom of the vessel is 160 mm Figure 4 - Diagram of the Test Apparatus to
Determine the Hydrodynamic Increase

(6.30 inches). The upper end in Mass of Vibrating Disks
of the spring F is secured to

a flat steel bar which is supported and guided by ball bearings on all faces.
This steel bar in turn is joined to the crank-drive exciter E by a short con-
necting rod and the crank pin K. The crank throw or radius r of the exciter

can be varied from 0 to 25 mm (0 to 0.98 inch) by shifting the adjustable

crank pin K. The RPM of the drive and hence the exciting frequency can also

be varied widely.

The vibrations were recorded by a Geiger Universal-Registriergert

(Geiger Universal-Recorder)* and the exact measurement of the amplitude a was

effected with a microscope. The crank radius r of the exciter was microscop-

ically determined from the records scratched on a glass plate covered with

* Manufactured by Lehmann and Michels, Altona, Germany.



S/ m2 / 3 7E

E 0.8 -,m
0.4

0 5 10 15 20 25 30
Crank Radius r of the Exciter in mm

Figure 5 - Amplitude a as a Function of the
Crank Radius r of the Exciter at Constant

Frequency of Excitation for a Disk
205 mm (8.07 inches) Diameter

Frequency of excitation w = 65.24 sec -1 = constant
Spring constant c = 1.792 kg/cm (14.45 lb/in)
Mean temperature of water twi = 14.8 degrees Centigrade

(27.4 degrees Fahrenheit)
Kinematic viscosity v = 1.1472 _ 10

-2 
cm

2
/sec

Mechanical vibrating masses m = 2.1011 . 10 - 
kg . sec

2
/cm

ma = 4.3662 10-3 kg- sec2
/cm

m a = 6.6730 * 10 - 
kg. sec 2

/cm
Diameter of vessel Dg = 520 mm (20.47 inches)
Mean depth of immersion h m  = 200 mm (7.87 inches)
Mean distance from bottom hm' = 160 mm (6.30 inches)

lamp black by the revolving,

pointed crank pin. The mean

exciting frequency was de-

rived from the RPM's of the

driving gear which were re-

corded with a tachometer.

Records made with a Horn

Tachograph and the time-

calibrated scriber recordings

of the Geiger Recorder of the

RPM controller, as well as a

check of the random fluctu-

ation of the RPM's, also as-

sisted in determining the

mean frequency of excitation.

The spring constant c of the

vibrating spring was deter-

mined not only by static load-

ing, but by special vibration

tests as well. The same was

true of the mechanical vibrat-

ing masses affecting the cal-

culation because of the

vibrating spring mass component contained in them.

Figures 5 and 6 show the results of vibration tests on the disk
whose diameter D was 205 mm (8.07 inches).

As previously stated, the vibration tests at constant frequency

must be made in groups, with the amplitude kept constant. In test procedure,
it is naturally more convenient to record the function of the variable crank
radius r of the exciter at constant mechanical masses m and to read off the
values of r for the various vibrating masses at a given value of a; see

Figure 5.

The functional relationship a = f(r), when m is constant, results

directly from the tests. Using the notation (rmax - rmin ) = A(r ) and

mna - mmin = Am, the equation for mh, i.e., Equation [12] can be written as

C2 A(r2) C max +mmin]
= +- + < 2 [1 3

This is an equation of a straight line: y = px + q with p = c2/2w' as slope.
The graph of the equation permits a simple control of the m h value, if the

function a = f(r) is determined for more than two mechanical vibrating masses

riuta ~~~9~~



a=.3mm a=.3mm o=i< .5mm

/0 4 0.4 _ .4

. h 0.6 /0.6 0.6

Ss- 4 0.9 jo0.9 .9

1.2 1.2 . 22
E 0 0.4 0.8 1.2 1.6 e/ .9
a Amplitude a inm " / -

i.2n 2 3 2  3

. 1.0 1 - I

> o.8
0.6
0.4 -

0

3 4 5 5.28 6 7 8 9 10

S(r)  4 inkgsec "

a2am cm

Figure 6 - Determination of the Virtual Mass m. as a Function of the

Amplitude a for a Disk 205 mm (8.07 inches) Diameter

Frequency of excitation w = 65.24 sec -1 = constant
Spring constant c = 1.792 kg/cm (14.45 lb/in)
Mean temperature of water t, = 14.8 degrees Centigrade

(27.4 degrees Fahrenheit)
Kinematic viscosity v = 1.1472 x 10- 2 cm2/sec
Mechanical vibrating masses m1 = 2.1011 x 10-3 kg. sec 2/cm

m2 = 4.3662 x 10- 3 kg. sec
2/cm

t3 = 6.6730 x 10- kg. sec 2/cm

c2 A(r 2 ) +c mIa+ min

C2

in conformity with Figure 5. It is then merely necessary to plot the value

of the abscissa x = A(r2 )/a2Amto be able to furnish the desired values of m.

for any given amplitude a, see Figure 6.

The test results for the disks studied are given for an individual

case in Figure 6 and summarized in Figure 7.

The strong functional relationship of the virtual mass to the am-

plitude and naturally to the diameter of the disk also, is noteworthy. The

results uniformly give a survey of the behavior of a vibrating body immersed

in a fluid. In an ideal fluid, the kinetic energy transferred to the vibrat-

ing body as a result of its streamline flow achieves its full-scale effective-

ness, i.e., the virtual increase in mass reaches its maximum value. The true,

viscous fluid is characterized by the formation of a boundary layer about the
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Figure 7 - Virtual Mass mho or mh for Di:

as a Function of the Diameter in Water
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where p = 1.02 x 10 - 6 kg - sec2/cm4 for water. This equ
is valid for translational motion of an infinitely thin
in an ideal fluid of infinite extent. mh is obtained
test results with sharp-edged disks 3 mm (0.12 inch) t1
vibrating in water. The exciting system is shown in Figu3
Test conditions conform to Figure 5.

Exhaustive tests were only made

body surrounded by flow, and

its separation, accompanied

by the formation of eddies.

A part of the total kinetic

energy is destroyed owing to

the formation of eddies (damp-

ing). Hence, the hydrodynam-

ic increase in mass must be

smaller compared to that in

the ideal fluid. At vibra-

225 tions of small amplitude and

high frequency, the dissipa-

sks tion of the boundary layer is

extensively hindered. The

flow about the vibrating body

then approximately corresponds

to the ideal case, i.e., it
ation corresponds to potential flow
disk
from about the body.* The kinetic
hick, energy, which the entrained
re 4.

fluid makes thus available,

is then almost equal to its

maximum value.

at a frequency of w = 65 .24 sec-.

Individual tests at higher or lower values of w confirmed the suspected ef-

fect of frequency on the magnitude of the hydrodynamic increase in mass.

In comparing test results with mathematical calculation, it must be

considered that the latter are only valid for an infinitely thin disk in

translational motion in an ideal fluid of infinite extent, whereas test re-

sults contain the effects of the proximity of the walls, the finite thickness

of the disk, the possibility of elastic natural vibrations of the disks, the

properties of viscous fluids, and other factors.

The foregoing method of determining the hydrodynamic increase in

mass of vibrating bodies has proved easy and practicable and seems suited for

use when testing ship's propellers which are familiarly known to be affected

by hydrodynamic inertia forces.**

* See the footnote on page 6.

Studies by Guntzberger (32) and Baumann (33) represent the first attempts to find an explanation of
hydrodynamic effects on ship propellers.

~IYII l-- 1 111111111



LAWS OF SIMILITUDE IN VIBRATION TESTS ON MODEL SHIP PROPELLERS

For the basically simplest case of a ship propeller in torsional

vibrations, shown in Figure 8, where the plane of vibration is parallel to

the surface of the fluid, Equation [11] is replaced by

where

2* 2 2 2
c~2 (c 1

2 
- C2

2 ) + 2W2 (C 2 2  - C18) + w4 (8 1
2 - 82)

e2 2w2 [(c1 - c2) ± w2 (e 2 - e1)] [14]

8 A is the hydrodynamic mass moment of inertia of the propeller

with respect to its axis of vibration,

81, 82 are the mechanical mass moments of inertia with respect to the

axis of vibration of the propeller,

cI, c2 are the spring constants for torsional vibrations,

10, 2 are the torque amplitudes of the excitation, in radians,
is the amplitude of the vibration of the propeller, in

radians, and

w is the frequency of the vibration or frequency of the exciter.

In the simpler form used for purposes of test procedur.e,

going equation reads

9 C2 A(02) + "[ Omx+ min]
9h = + -- 2

where- 02 2_ 02 = A(b2) and 92 81 = Ad. Hence,

this equation corresponds to Equation [13] which is

valid for a longitudinal vibrating system. It is

evident from previous discussion and also from Equa-

tion [15] that the determination of 8, requires at

least two series of tests. Different mechanical mass

moments of inertia must be used in each test. More-

over, still another simplification of test procedure

can be achieved. Equation [15] contains the squares

of the 0-values. Therefore, the mechanical moments

of inertia should be chosen for each test series so

that the curves 4 = f(o) which must be experimentally

determined diverge as strongly as possible. If one

of the two mechanical mass moments of inertia of the Figure 8 -
Vibrating

vibrating body is made so large that neither 89 nor a Ship Pra Ship Pr
the damping resistance affect the amplitude any long- Vibratir

er, then 0 = f(ik) can be calculated for this test

series from the familiar equation for the amplitude of torsional vJ

the undamped forced vibration; this is the equation of a straight

the fore-

[15]

Torsional
3ystem with
opeller as
ng Body

Lbration of

line when
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e, w, and c are constants.

C2 2 g == constant x 2 [16]1 c
If the value of e 2 , which makes the test curve 2, = f(r2) coincident with the
straight line of Equation [16], has been determined by preliminary tests,
further vibration tests need to be made only with the smallest possible mass
moment of inertia el, and the unknown eh is then determined.

In transferring the numerical values of eh obtained from tests on a
model ship propeller to the prototype, certain conditions of similitude must
be observed. For a propeller harmonically vibrating about its axis in still

water, Figure 8, the following functional relationship of the variables ex-
ists in accordance with the laws of mechanical similitude established by
Weber (34).

F(D, t, p, Oh, l, y, a,H. . ., T, )*= 0 [17]

where D is the diameter of the propeller in meters,
t is the period of a complete oscillation in seconds,

p is the density of the fluid in m-4 . sec 2 . kg,

y is the specific gravity of the fluid in m- s3 kg,
n is the physical viscosity of the fluid in m-2 . sec kg,
8 h is the hydrodynamic mass moment of inertia in m -sec 2 - kg,

a is the maximum amplitude of vibration of the propeller blade tips

in meters,

H is the pitch of the pressure surface of the propeller in meters,

T is the depth of immersion of the tips of the propeller blades in

meters, and

6 is the absolute size of grain (texture, coefficient of roughness)

on the propeller blade surface in meters.

Since this is a dynamic problem, three reference terms, for example, D, t, p

(corresponding to the three basic units of dynamics) must be chosen, in terms

of which the equation in dimensional quantities F = 0 is converted into an
equation in non-dimensional exponential products, i.e., so-called character-

istic coefficients H. The material constants n and y lead to special model

laws, whereas a, H, T, and 6 become non-dimensional parameters in the char-

acteristic equation. The non-dimensional terms, which enter the equation

F = 0, are

Hi = Q = ' a form of Newton's number
DAdditional quantities w ships propeller are omitted.

Additional quantities which determine the shape of the ship's propeller are omitted.

i ~psL ~m~~------9 -- ~d*xr -x~
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H2 -1= = a form of Reynolds number*

H3 - = a form of Froude's number**

-a
H4 = D = Pa the amplitude parameter

6 = -D = H the pitch parameter
H- =T

H = D = 3T the immersion parameter
6 D

D = the roughness parameterH7 = D

The characteristic equation then becomes

p( , Dn ' , , ) =0 [18]

where n, = w/27r = t cycles per second. With or Ro as the desired un-

knowns, Equation [18] finally becomes

% = -h = 1  -1 !a' PH' PT Pd) [19]

In order to attain complete dynamic similitude, the two numbers 9V-

and 2F- depending on the properties of matter must be held constant for both

model and prototype. This requirement can generally not be fulfilled, since

the ratio of the kinematic viscosities of the mediums used is fixed as

wheret A = D'/D is the model scale, chosen at random. Hence, for a model

scale of X = 14, for example, a medium having a kinematic viscosity of about

one-fiftieth that of the prototype (full-scale medium) should be used in mod-

el tests. Simultaneous observation of both Reynolds and Froude's Laws must

be abandoned in favor of the latter in model tests, because of their mutually

contradictory requirements. However, neglecting Reynolds Law will have but

slight effect on the result, because the forces of inertia which satisfy

Newton's Law of Similitude occurring in the phenomenon and the gravitational

effects together far outweigh the frictional resistances.

For a model propeller of constant pitch H, geometrically similar to

the prototype, the pitch ratio H/D remains unchanged, therefore the pitch

* Kinematic viscosity v = /p (m2
. sec-1).

g = 9.81 m* sec - 2 .

t The prime factors represent the prototype.

--- IUI
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parameter % drops out of the characteristic equation. The immersion param-
eter r3, can also drop out, if the coefficients Ne obtained from model tests

are related to the same immersion ratio T/D of all prototypes geometrically

similar to the model propellers. In contrast, however, when studying the ef-

fect of the depth of immersion Re , 3r must be retained in the characteristic
equation. The requirement of geometric similitude with respect to surface

quality can be fulfilled approximately by fabricating model propellers with

the finest, smoothest surface finish possible. Even if the fineness of the

surface of the models cannot be scaled exactly to the value of the "relative

roughness" 8/D of the prototype; the ideal roughness parameter P, can be con-
sidered nevertheless the same for both model and prototype as a first approx-

imation, and hence may be omitted from the characteristic equation.

Complete dynamic similitude of the phenomenon of vibration cannot

be attained. Therefore, the simplified expression for the characteristic

function of hydrodynamic moment of mass inertia is

x h - IP PT)' [20]

In the comparative study of variously shaped models, Equation [20] should in-

clude additional supplementary parametric values characteristic of the pro-

peller shape.

Model tests based on Equation [20] permit a non-dimensional expres-

sion of the hydrodynamic moment of mass inertia for a definite type of pro-

peller as a function of the amplitude and frequency at various depths of

immersion. If O9 is desired for a prototype similar to the scale model, the

value ROh must be read from the curves for the model tests at a-' = .,
a '/D' and T'/D' of the prototype. From the latter it follows directly that

9,' = RAD' p' [21]

For completeness we shall add a few additional numerical values for

the characteristic vibration a-I and for the relative peak amplitude a'/D' of

propeller blades found for the propellers of full-scale marine engines.

Use of the - and a'/D' values given below require that the tests

on the model propellers which have, for example, a diameter D = 350 mm (13.78
inches mean diameter) be performed at vibrational velocities of about n, =

15 to 25 cycles per second and amplitudes of about a = 9 to 20 mm (0.35 to
0.79 inch) (arc length). The size of model propellers should be determined

by two factors: first, by the vibrational frequencies and amplitudes attain-

able with the experimental setup; and second, by the fact that the largest

possible propellers are advantageous for reasons of testing technique.



TABLE 2

The extension of model tests to include periodic vibrations super-

imposed on the rotating propeller, as it occurs with the full-scale prototype,

should offer no special difficulties. This will permit an investigation of

the effect of the propeller flow or wake on these vibrations.
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