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NOTATION

A, A 0 Capacity of gas globe for performing work or the energy of the gas
globe

B Work of displacement

C , C, Charge constants, see Equation [18]

CT CT?7T, impact-time constant

CT See Equation [22]

D Velocity of detonation

e See Equation [38]

E Kinetic energy

Emnax  Maximum kinetic energy

E s  Thrust energy

H0, J Functions of 1 , see Equation [20]

L Weight of charge

m rm7" , the expansion factor of gas globe from the initial state to
th8 state of maximum expansion

p, Po Pressure in the gas globe

Pa Hydrostatic pressure

P, Q See Equation [25]

Q Heat of reaction

r Radius of gas globe

ra Radius of gas globe with internal pressure pa
rmax Maximum radius of gas globe

ro Charge, radius

R =-

R Gas constant

a Radius of an imaginary hollow sphere surrounding a gas globe

S Density of an explosive in kg/cm3

s' Density of an explosive in gm/cm3

t Time

T, T' Period of oscillation

T, Sonic oscillation period

v Specific quantity of gas

V, Vo Volume of gas globe

x = r/ro
a See Equation [7]

See Equation [7]

Y' Density of liquid

1 = ro/rmax
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77 Correction factor, see Equation [151

nT Correction factor, see Equation [30]

p Specific mass of the liquid

K Ratio of specific heats of gases, i.e., c,/c,

0 See page 17

S See page 19

7 Absolute temperature of a gas

-o Initial temperature of a gas
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OSCILLATION OF GAS GLOBES IN UNDERWATER EXPLOSIONS

FOREWORD

Many attempts have been made to find suitable units of measurement

for the correct evaluation of underwater explosions. It would lead entirely

too far afield to-outline the development of this problem in all its details;

therefore, only the main points of the problem will be emphasized.

Until recently, for example, the velocity of detonation D and the

specific quantity VG of gas of the explosive were regarded as basic character-

istics for the effect of underwater explosions, wherein the product VGD was

accorded special consideration. The German Navy, on the other hand, has long

considered the energy content of the explosive, determined as the heat of re-

action during the reaction in the calorimeter, far more essential to the ef-

fectiveness of underwater explosives. Aside from these pure measured values,

some additional data on effectiveness were found, such as the expansion of

lead blocks, i.e., the expansion produced by the explosion of a given quanti-

ty of explosive inside a lead block of given quality and shape, or earth

displacement, i.e., the size of the crater produced in the ground by a given

charge under certain given conditions. Both of these criteria are often used

also for the characterization of the underwater effect of explosives.

The evaluation and analysis of these measured data on the effective-

ness of explosives under water are not at all uniform. It is clear from the

outset that lead-block expansion and earth displacement give only empirical

values, since both these test methods are fundamentally based on unjustifi-

able or only partially justifiable analogies. The effect of the velocity of

detonation and the specific quantity of gas on the underwater effect are

likewise surmises based on certain assumptions. Neither, however, does the

only energy value, i.e., the heat of reaction Q, determined by reaction of

the explosive as measured in a calorimeter, correspond entirely to conditions

underwater; as shown by tests, the gases expand more rapidly under water than

in the calorimeter, and, moreover, portions of the gases react with the ambi-

ent water. It is obvious, therefore, that the methods mentioned in the fore-

going as being in general use do not afford a reliable means of evaluating

the effectiveness of explosives under water.

'A suitable and logical index for underwater explosives can be found

only by a systematic treatment of the physical phenomena which occur in under-

water explosions. As experience has shown, neither a description nor an ex-

perimental investigation of these phenomena can supply such an index; only a

clear, comprehensive, theoretical investigation of the problem can do so. A

mathematical treatment which clearly describes the phenomena of underwater
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explosions by use of the most simplifying assumptions, and which at the same

time gives their development with time in surprisingly good agreement with

experimental data, is developed herein.

As will be shown, by thus avoiding the dilemma of test data, an

easily determined index for each underwater explosive is attained. This in-

dex is the so-called gas globe energy. The particular value of this datum

lies in the fact that by its use one of the effects of underwater explosions

which is most essential for the sinking or damaging of ships is definitively

characterized.

The general necessity and the practical importance of a correct

theoretical treatment of the phenomena involved in underwater explosions

having been brought out, the theory will now be presented.

1. BASIC ASSUMPTIONS

For every theoretical investigation of the problem of underwater

explosions, a large number of basic assumptions is necessary. The more these

assumptions are simplified, the easier the mathematical treatment becomes in

general, but the less valuable are the results. In this case, a proper sense

of values must be maintained. Therefore, the basic assumptions used must be

such as to correctly typify the characteristics of the phenomenon while re-

ducing mathematical difficulties to a minimum.

Before these assumptions for the mathematical treatment of this

problem are established, the actual conditions in an underwater explosion at

considerable depths will be briefly and clearly presented.

The gases formed in the total detonation of the explosive which

proceeds at a velocity of 5000 to 8000 m/sec are subject to high pressure as

they practically occupy the space originally taken by the explosive and also

carry the energy released by the detonation. Therefore they represent an

underwater gas globe which generally is not initially spherical, but which

in the course of expansion rapidly becomes a nearly perfect sphere as photo-

graphs show; see Figure 1.

The water surrounding the gas globe is compressed and pushed back

by the highly compressed gases. As a result of the compression of the water,

a pressure wave propagates from the point of detonation while simultaneously

the mass of water absorbs kinetic energy at the cost of the potential energy

contained in the gases, with resulting pressure drop in the gas globe. The

acceleration of the water is stopped until the pressure in the gas globe at-

tains the external pressure which prevailed at the point of detonation before

detonation. Whereas up to this stage, therefore, the surrounding water was

pushed back by the gas globe, the globe is now distended further by the surge
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Figure 1 - Gas Globe from 5-Gram Charge of TNT at Maximum Expansion
The inside diameter of the gas globe is 52 cm. The charge depth was 1 m.

of the water masses. This motion is retarded by the negative pressure now
arising in the gas globe, until the motion of the water finally ceases and
even reverses, The water masses now surge back toward the point of detona-
tion, the pressure in the gas globe intcreasing steadily during the process.
If there were no energy losses, the gas globe would necessarily revert to
its initial state which preva'iled after the total detonation of the explosive.
However, this is not the case as, owing to compressibility of the water, a
pressure wave was propagated at the very beginning and a new pressure wave
results from the insurge of the water. In addition, further energy losses
result from thermal conduction, viscosity, and so on. Therefore, the con-
tracting gas globe does not quite reach its initial state but does reach a
minimum at which the gases are again highly compressed so that they must once

Sagain expand. The phenomenon of oscillation of the gas globe just described
therefore repeats itself in a similar way. Thus a number of constantly
damped oscillations and various pressure waves, briefly termed "impacts,"
result; see Figure 2.

t-
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Figure 2 - Schematic Diagram of Gas Globe Oscillation
and Radiation of Pressure Impacts

Following this broad description of the phenomena in an underwater

explosion, the basic assumptions for the theoretical treatment of the prob-

lem can be set up. A stationary, infinite, incompressible liquid is assumed.

In this liquid, at a point where the hydrostatic pressure Pa prevails, let

there be a spherical gas globe whose volume is Vo and in which the pressure

Po > Pa. Owing to positive pressure, the gas globe begins to expand, retaining

its spherical shape. If the buoyancy is disregarded, the flow of the liquid

being displaced is then purely radial. Therefore, it is assumed in the fol-

lowing that before detonation a uniform pressure p, prevails everywhere in

the liquid. The content of the gas globe is assumed to be an ideal gas whose

change of state proceeds adiabatically. The curve of motion of the front of

the gas, determined by this assumption, is to be investigated.

These assumptions naturally represent considerable simplifications.

Even if the gas globe is almost perfectly spherical and the water surrounding

the charge before the first oscillation can be considered stationary, the wa-

ter actually is neither of infinite extent nor incompressible. However, as

the displacement flow at a greater distance from the point of explosion is

very small, being inversely proportional to the square of the distance, the

assumption of infinite extent of the liquid is practically satisfied at

a Mi ll ii lY 1 6 il 1 1 10l11" 111 l d'



sufficient charge depth. The pressure drop as a function of gravity over the
gas globe imparts buoyancy to it and causes it to rise to the surface. This
effect cannot be considered at the moment but is, as experience has shown, of
secondary importance for small charges up to 1 kg. The compressibility of
the water is small in itself but plays a part which cannot be disregarded at
the high explosive pressures which occur at the beginning of the motion and
in the vicinity of the minima. A considerable amount of energy is therefore
expended as a pressure wave. However, once the pressure wave is released,
which takes place within a very short time as the internal pressure of the
gas globe drops rapidly, the remaining and preponderant part of the oscilla-
tion occurs as in an incompressible liquid. By treating the composite mix-
ture of the products of combustion as an ideal gas, van der Waals' forces are
neglected, although they should very probably be considered because of the
high compression at the start. The assumption that the change of state is
adiabatic can be considered as justified in view of the poor thermal conduc-
tion and the velocity of the oscillation. Otherwise, the problem of a thermal
exchange in both directions would arise, as the products of combustion are
initially very hot but soon cool to far below the temperature of the sur-
roundings. A special place is occupied by explosive mixtures containing alu.
minum. With these it must be assumed that the products of combustion undergo
a secondary reaction which produces an additional output of energy during the
oscillation of the gas globe.

In summarizing, it can be expected that the investigation of oscil-
lation of gas globes under the conditions mentioned in the beginning will at
least describe well the first oscillation for underwater detonation at suffi-
cient charge depth.

Naturally, it is possible to simplify the basic assumptions even
more. H. Lamb (1),* for example, treated the problem with the foregoing
basic assumptions neglecting in addition only the pressure p,; i.e., he as-
sumed p. = 0. However, the most essential part of the expansion of the
products of combustion, namely the course of the oscillation, is lost. M.
Minnaert (2) on the other hand, on the basis of the foregoing assumptions,
postulated the pressure fluctuations as very small with respect to external

pressure (po - Pa << Pa). He thus obtained the "sonic" oscillation of gas
globes. With these additional simplifications, the oscillation of gas globes

occurring in underwater explosions cannot be obtained.

On the other hand, less limiting basic assumptions can naturally be

.chosen. If, in contrast to the foregoing assumptions, the water is assumed

* Numbers in parentheses indicate references on page 50 of this translation.
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as not absolutely incompressible but compressible, as was done by Zoller (3),

Daring (4), and Gerhartz (5), the pressure wave and damping of the gas globe

oscillation are found theoretically, but the problem can no longer be solved

generally but only approximately and numerically. Moreover the actual condi-

tions, especially those pertaining to the pressure wave, are not approached

either since the pressure wave would have to be treated as a shock wave of

variable velocity, because of its high amplitude.

It will be shown that precisely with the aforementioned basic as-

sumptions an accurate, complete integration of the equation for motion of the

phenomenon is possible without undue mathematical difficulties; moreover, it

will be shown also that the individual oscillation is reproduced by this theo-

ry with astonishing exactitude and that quite definitive applications of this

theory are possible.

The investigations herein described were made some time ago by the

CPVA.* Shortly thereafter, a treatment of the same problem for incompressi-

ble water was published by Zoller (6) which, however, was not as extensive.

The results obtained are summarized here once more because the impression

might arise that, owing to the numerous investigations of the problem of deto-

nation under water which have appeared meanwhile, treatment of this problem

on the assumption of incompressible water is no longer important.

2. BASIC THEOREM

The clearest and simplest approach to the mathematical treatment of

the motion of gas globes can be made by establishing the balance of energy,

as done by C. Ramsauer (7). If the gas globe has expanded from the condition

of p0,Vo to the condition p,V its capacity for performing work (internal ener-

gy) has decreased from

Ao to A = [1V
K - 1 K -

where p is measured in atmospheres or kilograms per centimeter
2, V in centi-

meters, and A in kilogram-centimeters. Therefore, A0 will always be desig-

nated as the energy of the gas globe in this report. Moreover, K = CP/C, is

the (constant) ratio of the specific heats of the gas. The value of K can be

assumed to lie in the range from 1.2 to 1.4. As the change of state occurs

adiabatically and is controlled by Poisson's law

pVK = constant = poVo" [2]

the difference A 0 - A has been converted merely into mechanical work. The

* Translator's Note: CPVA signifies "Chemisch-Physikalische Versucheanstalt der Marine" (Chemical-

Physical Research Institute of the German Navy).
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latter consists of two types: First, the external pressure p., which is con-

stant by assumption, was overcome over the surface of a sphere of volume

V- Vo, which corresponds to the work performed of

B = Pa(V - Vo) [3]

Second, kinetic energy E was imparted to the surrounding water. To compute

E, the surrounding medium will be assumed as divided into a series of hollow

spheres. If the radius r of the gas globe increases by dr, the radius of the

hollow sphere a simultaneously changes by ds. From the equality of the dis-

placed quantities of liquid (continuity in incompressible media) it follows

first that

47rr2 dr = 47rs 2 ds

and, dividing by the time differential dt for the velocities t = dr/dt and

i = de/dt

: =r 2 : 82 [J4

The local decrease of the velocity of flow i at a given time t is therefore

found to be inversely proportional to the square of the distance a from the

point of detonation.

If the specific mass of the liquid is designated by p, where p is

in kilogram-secondsa per centimeter', the.portion of the kinetic energy im-

parted to the hollow sphere with a radius of a and a thickness of da is

dE = 27rps 2 ds g2 = 2nrpr4i ds
8

By integration from the edge of the globe to infinity, the total kinetic ener-

gy is found to be

E = 27rpr42- = 27rpr i"2  [51

If, in Equations [1], [2], and [3], the spherical volume V or Vo is expressed

in terms of the radius r or ro, the equation for energy

Ao - A = B + E

leads to the differential equation of the oscillation of gas globes

3p2= r _ ) _ + P - 1] [6]
2 ' - 1K - 1 r r r

The introduction of the nondimensional coordinate z = r/ro (gas globe radii

in "charge radii") is obvious:
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3(K - 1)pr 2  2 1 1 (K - 1)po

f 2  a3

By use of the abbreviations

3_ K - 1)p, 23 (K - 1)p( 1)a and = ro [7
Po 2po

the differential equation becomes

= -Vz - x'- + a(x - X) [8]

It can then be solved directly by squaring:

f xldx [91f X X4- 8
K + oCS(x - Z4 )

An elementary evaluation of the integral is not possible.

3. MAXIMUM GLOBE RADIUS

The maximum state of expansion of the gas globe is connected with a

reversal of motion and therefore is characterized by vanishing velocity,

i = 0. For the determination of the corresponding globe radius tm,, Equation

[6] whose left side is set equal to zero therefore suffices. If we introduce

ro = [10]
rmax

the equation

A S_ K + aS(1 - 1) = 0 [11]

will have to be solved. The reciprocal of p

1 rmaxm == = r- = zmax [12]

will be called the "expansion factor" and is important for clarity: m repre-

sents the linear expansion factor of the gas globe from the initial state to

the state of maximum expansion. For the first oscillation of the gas globe

in underwater explosions, m is approximately of the order of 30; p is hence

small. Under these conditions, p m a in the first approximation, as can be

recognized by restating Equation [11] as

i l liwI U1 rlIIIlllMllia



a 3  3 1- 3 1
=3 [13

It is therefore advisable to determine the particular correction factor Ur to

be applied to a to get p. From the condition that

?7 r 17r3 /(K - 1)14

it follows that

77r = I- 3 ; a = r[15]

Thus n, and a appear as functions of the parameter p. If p is carried through

from 0 to 1 and if values of rl and a which belong together are plotted on

rectangular coordinates, a curve is obtained which permits reading the correc-

tion j, for each value of a. Figure 3 gives these curves for K = 1.2, 1.3,

4/3, and 1.4. From these and with Equations [10] and [14], determination of

the maximum radius of the globe is possible with satisfactory accuracy, as

o = ro = r0  Po [16
rmax 7rra 7r (K - 1)Pa

If the charge radius ro is expressed in terms of the weight of the

charge L and the density of the explosive s to which it is related by

or - /TL- [17]L = ros or r o = [171

where L is in kilograms and 8 is in kilograms per centimeter3 , we find that

rmax = Cr with , and C =[18]
Pa 7r 47r(K- 1)8

This is the familiar formula for the radius of the gas globe (7). The "con-

stant" c, is to some extent also a function of the external pressure Pa, con-

tained in the correction factor n,. The true charge constant is Cr; for TNT

it is about 160 (in the German system of units). The effect of the correction

factor n~ increases with the depth because a and therefore n~ increase with

p,. However, the difference amounts to only a few per cent, as can be. seen

in Figure 3.

It should be emphasized that the maximum radius of the globe is not

a function of the surrounding liquid, as could be concluded by the disappear-

ance of the single term containing p in Equation [6].
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The particular case where K = 4/3 deserves special mention; here

the fraction under the radical sign in Equation [15] can be reduced by 1 - p,

giving
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3/ 3 9

and by inversion

1 1 * 1 1
p a + 2 + +; 3 1 + a+ +

3 3 3 3

[15']

The terms set down in the development of the exponential series are entirely

sufficient over the principal range involved where 0 5 a 5 0.1. The recip-

rocal 1/n, appearing in Equation [18] starts with 1 - ja.

Generally K can only be computed by a development with fractional

exponents; therefore this development is not very valuable, that is

K8 2 6K-6 +77 1+ AK +3K - 1 a 6 K_6 +., 1 + - 3- 9

4. PERIOD OF THE OSCILLATION (FIRST APPROXIMATION)

To calculate the period of the oscillation T, the integral of Equa-

tion [9] must be extended to the upper limit x mx = m and doubled. It is

recommended, therefore, to introduce the variable of integration

r

rmax

Then

T3: = 22. dy
T = 6 py - #y4-BK + as(py

A pf - - yd'

If a s is also expressed in terms of the parameter p according to Equation

[13], ps can be removed from under the radical sign, so that

1

T 2  f / y Kdy

( 
y 4

+ 1 - p)
[19]

The integral is a function of the parameter p and therefore will be designated

hereafter by J,. As the value p = ro/rmx for the first oscillation of the

gas globe in underwater explosions is small, that is, p 1/30, a first ap-

proximation is obtained by setting p = 0, as follows:

1 1

SJ = - = 1-y 3 dy
JIU 6_: ,7 Y

[20]
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By substituting y' = u, Jo can be traced to Euler's #-function and can be ex-

pressed by r-functions as

1 i U1 /6(1 - u)- 1/2du =1 5 1 1
o 3 0 3 &6 2 3_ 4

* 3
[21]

- ) -= 0.746-83
9F 4 1/37 Y'r 1

Therefore, in the first approximation, with consideration for Equations [7]

and [17],

2Jo 8 2Jo  2 .3 3(L 23K- p 6 Po
T S/2 a/2 2 0  47rs 2 po (K- 1) 5pa5

If the density 8' of the charge and the density y' of the liquid, expressed

in the usual unit, grams per centimeters, are substituted in the collection

of the radicals, the result is s = s'/1000, p = y'/9 8 1,000, and, written as

usual,

T C L y7 with CT = 0.03Jo _ Po- [22]

The excellence of this approximation becomes clearly apparent in the follow-

ing section.

5. PERIOD OF THE OSCILLATION (SECOND AND
THIRD APPROXIMATIONS FOR K = 4/3)

To get a closer estimate of the oscillation period T, the integral

J, in Equation [19] will be conceived as developed in a potential series with

respect to p. As only a progressive development by exponents which are whole

numbers is of interest, only the special case K = 4/3 will be considered from

the outset. Then the fraction under the radical sign can be reduced by 1 - p
and we have

2ftV1 + -+ /1 y2 dy

T i/2 /V(1 + p + p2 )(y - ) - (3 3) [23]

The integral, which will be designated by H,, must be treated with some cau-

tion, as it is singular, the radicand in the denominator vanishing at both

limits. For this reason, the two root factors (y - i) and (1 - y) are first

split off and we have

11 -1 1 - 1 -, , H'Nqtwj"N + 194* +414 O -- '- -"r ,
4

- 11 -1--, f -ftI- 11 1 - --
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H f y2 dy24]
- V(y - )(1 - y) Vy2 + (1 + )y + (1 + a + 2) [24

The second root hence no longer possesses any null points over the interval
of integration and therefore represents a regular component of the integral.
To establish fixed limits, the integral is transformed by I = z + ju(1 - z)
and thus we get

I Pdz
H/i Vz(1 - z) V-

0

with

P = + pz(1 - z) + p21- )2

Po Po 1 ,, [251
Po

and

Q (1 + z +. z2) + #2(1 + z - z2) + p2(3 - 3z + z 2 )
V__ I I ,

Qo Qo' Qo

The expression Z = P/V is a regular function for all values of z in = 0,
and can therefore be developed in an exponential series.

Z = PQ-1/2 = Zo + Zo, + Zo" + "

with Zo " PoQ0 -1/2

Zo' = (PQ- 112)o = Po'Qo 1/ - p 00 0'-/2 [26]

Zo" = (PQ-1/2)0" P0o" Qo-1/2 - Po'Qo' Q 3- /2 poQoo -3/2 + 3 ..p Q0 2 Q 0-5/2

The values of Po, Qo, etc., are found by Equation [25]; substitut-

ing them gives

P z z(2 - z - z 2 - 3) 1 - 2z - 2 2 + 3z'

Q 1 + z + (1 + z + z) V(1 + z + z2) +... [27

Then dividing by Vz(1 - z) according to Equation [25] and integrat-

ing by terms from 0 to 1 (all integrals appearing are singular but do exist)
the desired development
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H, = Ho + pHo' + P-Ho" + '"

is found. As it must be, Ho is identical with Jo and therefore can be taken
from Equation [21]. By letting z8 = u, the remaining integrals can be re-
lated also to F-functions

H°' (2 - z z 2 -z - '3 d - 1- Z dz
0 0 0

= (u - 1/2 - u 6 )(1 -u) 3- / 2 du - Jo

0

- - J ° = = Jo
3 2' 2 3 6' 2 o

0

The justification of the formal division into two nonexistent uniform inte-

grals should be proved first, but this problem will not be taken up. Simi-

larly, it is found that

4 47rV3
Ho" = Jo +27J

9 27Jo

Consequently,

H,= Jo 1 + + (2 + ) .2 [28]

is found provisionally. Considering Equation [14] or respectively [15'], the
factor directly preceding the integral in Equation [23] gives

28YV1 + p + g
2  28 1/3 2 1 1 2

... 12 (1+ + g( 1 +#2P -***)
a5/2(1 + p + p2)5/6  5/2 15/2 9

The linear terms cancel after combination with H, from Equation

[27] and there remains

T 2Jo a (1 + 27 2 - + ) 29]

Here, on the basis of Equation [15'], a can be substituted for p

and in comparison with Equation [22], it can be established that the right
side of the formula for the period of the oscillation of the gas globe must

be provided with a correction factor 4T whose initial development has just

been outlined.
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T =2 C5 L with aT = 1 + 2 2 [30]27Jo . [30]
a13

0.72267 --

For the definition of CT see Equation [22].

The contribution of nT for small values of a is but slight, as the

linear term is lacking. The approximation, Equation [22], is therefore bet-

ter than was to be expected, as it simultaneously reprepents the second ap-

proximation, at least for K = 4/3. The agreement with the actual curve for

77, as determined in the following section, is shown in Figure 4. A satisfac-

tory approximation over the entire range from 0 5 a : 0.1, which is the inter-

val of principal interest, is attained by means of r, 1 + a2.

The increase of the impact-time constant CT = CTnT with the charge

depth is therefore barely noticeable. Hence, if variations have been deter-

mined despite this, they cannot be explained thus but must be traced to

surface and bottom effects.

6. COURSE OF THE OSCILLATION OF THE GAS GLOBE

Determination of the oscillation period is accomplished satisfac-

torily by Equations [22] and [30] for small values of a or p. For larger

values apparent at later oscillations of gas globes, already weakened by

damping, these equations do not suffice. Moreover, nothing has been stated

as yet respecting the course of the oscillation. Both of these omissions

will now be rectified.

Beginning with the integral expression, Equation [29], whose upper

limit will now remain indeterminate, the roots y - p and 1 - y are extracted

from the denominator in a manner similar to that used in Equation [24] and

t y/2j 2dy
P 5 / - - y)

with [31]

(1 - )(Y - y4 -3K A
3K-3) + (1 - Lp

3)(p1y - y 4 )

(1- p )(y - p)(1- y)

The first square root in the denominator is represented graphically

as a semicircle on page 17. This suggests the following trigonometric sub-

stitution, which eliminates the singular component:

.WN 2111'
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V 1 + + 1 cos
2 2

'1

dy 2 P sin do 2

(y - )(1 - y) 1- sin 1
2 0 I

p y 1+1 1 y
2

The remainder of the basic concept is devoted to the attempt to approximate

the absolutely finite function 1/J'Z by a cosine polynomial, that is, to under-

take development of a type of Fourier series by which the integral can be

evaluated with any desired accuracy. The rather extensive numerical computa-

tions required could be made only for the relatively simple case where K= 4/3,

due to shortage of time and because no calculating machine was available.

Here Q can be simplified by the root factors and by 1 - p (compare Equation

[24]) and it is found that

€rPdk

with

p 3 + 2p + 3p2 2 (- p) 2

P = y = cos € + cos 248 2 8
[32]

and

y2 + (1 + p)y + (1 + p + /2)
Q =

1 + P + P2

(15 + 18/p + 15p 2) - 8(1 - p 2 )Cosj + (1 - p2 )cos20
8(1 + p + p12 )

For reasons of symmetry, it suffices to extend the integration interval to

= n, corresponding to the globe maximum.

The course of calculation will be explained and illustrated with an

important example where p = 0. The calculation procedure for any given value

of p is evident. For the functions P and 1 - V0, the values were calculated

at 15-degree intervals; see Figure 5. The function P increases monotonically

from P(0) = A2 to P(7r) = 1, whereas the function 1/V decreases monotonically

The curves for both functions are horizontal at the beginning and at the end

of the interval.



= 3 1 1
Po 2 cos + 1cos 24
8 2 8 1

15 1
Qo -- 8  cos + -cos 2€

E = E + Fos
9= E + Feoso + Geos 20 with F

= 9 + R 9

= 0.771928
= 0.211325
= 0.016747

0.9 -- 4P----------------0.9

0.8 ___

0.6

0o.
100 R

0.1

0.2-

Figure 5 - Calculation of the Basic Integral Jo f d
-0.1 I

A _ o

0

0 Y Od

P0  1/ £ R Po R fPo0 d4 PoRd Jodegrees
0 0.00000 1.00000 1.0o00 o.oooo0 O.oooooo 0.00000 0.00000 o.0ooo0

15 0.00029 0.94145 0.99055 0.00090 0.000000 0.00002 0.00000 0.00002
30 0.00449 0.96608 0.96331 0.00277 0.000013 0.00046 0.00000 0.00046

5 0.02145 0.92534 0.92136 0.00398 0.000085 0.00328 0.00001 0.00329
60 0.06250 0.87288 0.86922 0.00366 0.000229 0.01251 0.00005 0.01256
75 0.13734 0.81435 0.81212 0.00223 0.000306 0.03377 0.00013 0.03390
90 0.25000 0.75593 0.75518 0.00075 0.000187 0.07265 0.00020 0.07285

105 0.39616 0.70262 0.70273 -0.00011 -0.000044 0.13370 0.00021 0.13391
120 0.56250 0.65758 0.65789 -0.00031 -0.000174 0.21822 0.00018 0.21840
135 0.72855 0.62231 0.62250 -0.00019 -0.000139 0.32670 0.00014 0.32684
150 0.87051 0.59724 0.59729 -0.00005 -0.000044oooo 0.5557 0.00012 0.45569
165 0.96621 0.58230 0.58231 -0.00001 0.000010 0.60486 0.0oo11 0.60497
180 1.00000 0.57735 0.57735 0.00000 0.000000 0.74672 0.00011 0.74683
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Now, it will be attempted to approximate 1/M as closely as possible

by a function

9 = E + Fcoso + Gecos 20

Naturally, agreement at the ends of the interval is first requisite. Then,

for reasons of symmetry, the first derivatives agree also. Since P attains

only small values in the beginning, the chief requirement is a good approxi-

mation towards the end of the range, and therefore agreement of the second

differential quotients for 0 = r is also essential. This gives the three

definitive equations for E, F, and G.

1 /1 -+ _ + e
E + F + G = Q( + 2 + 3/ 2

1 1+p [33]
E-F+G= = 3 + 2 + 2[33

F-4 =" 3 - 21 - 2 1+A+i
F - 4G 4(3 + 2# + 2) 3+ 2p + #2

For the present example where p = 0, the right sides are 1, 1/V5, and 1/4V5;

hence we find that

E = 0.771928; F= 0.211325; G= 0.016747

The approximation thus attained is very good; the maximum value of the differ-

ence

R 1

is only about 0.004 as Figure 5 shows. Approximation is even better after

multiplying by P. The maximum value of PR is 0.0003. The integral in Equa-
tion [32) is now found to be

J d + fP9d + PRdo
0 0

- (A + Bcoso + Ccos 2) (E + Fcos + Gcos 20)do + PR d

(AE + 1 BF + 1 'G) + (AF + BE + 1BG + 1CF)sin

+ AG + 2BF + CE) sin20 + (BG + CF)sinS + !CGsin4o + fPRd
0



The remainder of the integral can be evaluated graphically. For lower re-

quirements of accuracy, a graphic integration of the function P/YQ is entire-

ly sufficient. Such treatment of the foregoing function no longer presents

any difficulties, as the singular characteristics in this trigonometric con-

figuration have vanished.

In this example, Jo = 0.74683 was found for € = 7r. This was found

to agree fully with the finite value determined according to a different

method by Equation [21]. The functional values calculated at 15-degree in-

tervals are shown in the table, [37].

To get the curve for the oscillation, the magnitudes calculated for

the various values of 4,

t =- J(O) and r - rmax + ro _ rmax - ro Cos0  [35
5/ '2 2

must be plotted along a longitudinal or, respectively, a time axis according

to Equation [32] and considering the significance of the variable y = r/rmax

and with respect to the parameter p = ro/rmax. A series of half periods thus

obtained for various values of p are plotted in Figure 6. Even for mean val-

ues of p, the oscillation differs strikingly from a harmonic vibration. The

essential characteristic is the exceptionally sharply defined minimum in con-

trast to the flat maximum. Solution of the curvature of the minimum becomes

almost impossible over the principal range where 0 ! p ! 0.1. Furthermore,

the limiting case p = 0 has a cusp at this point. Practically, the limiting

case does not occur, as the latter would correspond to a point explosive

charge. However, it deviates but little from the contours of the oscillations

concerned. The other limiting case where p = 1 corresponds to the "sonic os-

cillation," owing to the fact that r max = ro, and is a harmonic curve; see

Section 8.

To comprehend the principal range where 0 5 p r 0.1 more conven-

iently, the integral J from Equation [32] can be developed again in an ex-

ponential series with respect to p as follows:

fPQ -12d = PoQo-1/2 d + pf(PQ-1/2) d + - f(pQ-12)" do + .. [36]
0 0 0 0

Jl Jo Jo' Jo"

The desired values of Po, Q0 , etc., can be read from Equation [32] as

3 1 1 15 1
Po cos + cos - - cos + -~cos 248 2 8 8 8

1 1 3 3
Po - 4 4 cos2 ; Q 8 + cos 8 cos 20

1 3 1 1 1 3 3
PFo - , cos + _ cos 2; 2Qo - 8 + cos + -cos 2q
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Figure 6 - Lamb's Approximation (p, = 0)
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The calculation of Jo has been outlined already. The integrands of Jo' and

Jo" have been tabulated and approximated by cosine polynomials (to cos 40);

the remainder was integrated

are

graphically; see Figure 7. The tabulated results

[37]

With the aid of this table and by Equation [36], the curve of the integral J
can be stated for any given (small) value of p, and with it the curve of the

oscillation can be described according to Equation (35].

7. INITIAL STAGE
The nature of the curve of motion immediately after detonation can

already be recognized basically (see upper portion of Figure 6), but the solu-

tion is not sufficiently clear. A satisfactory description of the phenomenon

in the initial stage can be obtained if it is considered that the work compo-

nent B (see Equation [3]), which represents the effort expended in surmounting

the external pressure pa, is not significant initially and can therefore be

stricken. Basically, this results in setting Pa = 0, as done by Lamb in the

reference cited, and, according to Equation [7], this requires that a vanish.

However, the time integral, Equation [9], is thereby simplified considerably,

that is,

xf x 3K/2
= - dx

1

and, if the radical term is set equal to #,

degrees

0 0.00000 0.00000 0.0000

15 0.00002 0.00302 0.2567
30 0.00046 0.02206 0.4840

45 0.00329 0.06661 0.6615
60 0.01256 0.13634 0.7840

75 0.03390 0.22237 0.8622

90 0.07285 0.31368 0.9129

105 0.13391 0.39643 0.9506

120 0.21840 0.46716 0.9836

135 0.32684 0.52275 1.0154

150 0.45568 0.56454 1.0471
165 0.60497 0.59613 1.0787
180 0.74683 0.62236 1.1102



2= l (1 + u2)du with e - 3K
Kt 3- 1 6(K - 1)

0

and

S= x = (1+ u2 )'1/ (K-) [38]

The integral was evaluated graphically for K = 1.2 and 1.4; the resulting

curves digress but very little from each other to r = 3r o . Hence it suffices

completely to consider the integrable special case where K = 4/3. Here we

find that e = 2 and therefore we get

t = 28( u + u28 + 15)

3391
r = ro(1 + u2)

Agreement with the exact curve is excellent, as a later example shows; see

Section 14. Graphical agreement for the first oscillation is complete to

about r.= 15r o and to around r = 5r0 for the second oscillation, as Figure

13 shows. Equations [39] therefore suffice completely for the study of the

initial motion.

The typical behavior can be seen in the lower part of Figure 6:

The distance-time curve begins horizontally, according to the initial veloc-

ity 0 = 0, continues then approximately parabolic, but soon reaches the

turning point

1 112 4u = t- 4 = 1.437fl; r = r
73=' 45 VT 3

which corresponds to the point of maximum expansion velocity. With r - t2/5

it then proceeds to infinity. Hence the periodicity of the oscillation is

lost, owing to the lack of external pressure.

The curve can be regarded somewhat as the infinitely magnified em-

bryo of the type of oscillation pertaining to = 0 and shown in the upper

portion of Figure 6.

8. SONIC OSCILLATION OF GAS GLOBES

The other limiting case is represented by p = 1 and, since ro = rmx,

can be designated as the sonic oscillation of gas globes. The integral ex-

pression, Equation [32], valid for the special case where K = 4/3, then be-

comes elementary as



0

because P = 1 and Q = 2. The oscillation proceeds simply as a harmonic with

respect to Equation [35] and its period is

T = P I7r = ro r/ [4011 [40]

The case for K, in general, can also be solved, if, after performing the trig-

onometric substitution, we traverse to the limit p - 1 in Equation [31]. The

calculation is somewhat difficult, as three differentiations (1'Hospital's

law) have to be made to eliminate the indeterminate character of Q.

Finally, the limiting value,

limQ = K(K - 1)
,U*1 2

is found, which is not a function of 0. Thereby t becomes linear in 4, and

the oscillation is again harmonic as Minnaert assumes from the outset; see

the reference cited. In agreement with him,

T, - ro KP [41]

is found for the oscillation period. This value is of importance for present

purposes insofar as it represents a natural reference magnitude for the fol-

lowing comparison of oscillation periods.

9. COMPARISON OF VARIOUS CONDITIONS OF
OSCILLATION OF THE SAME GAS GLOBE

A gas globe of radius ra with an internal pressure P = Pa in a state

of stable or stationary equilibrium is assumed. With K = 4/3, let the gas

globe be compressed adiabatically to the condition ro,Po and then released.

The intensity of the compression can be characterized by p or by the "expan-

sion factor" m = 1/p = r, : ro; see Equation [12]. According to the adia-

batic relationship, Equation [2],

p . PaLK=Pra) [42]rP ro

Now, however, according to Equations [7] and [13],

p- = 1(m + m2 + ml) ; 1 m3 (for largem) [43]
Pa 3aia 3 3
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Therefore,

ra M/ 1 3/4 [44]
-~ (m + m2 + m3) [ 3/4

r, 3

and

rmax m ml/4

ra 4 1 + 1451- (m + m2 + m3)

The oscillation period determined by Equation [19]

T 2 2p m5/2
T 5/2J = r o Jt

will now be compared with the sonic oscillation period found by Equation [40]

as

T, == r a

The result is found to be

T-T i= - ) J ", m 5/ 2 - _ m J 8 rn" 4  [46]
7r rIPMr (1+ m + m 2 )3  7r

By Equations [43] and [46], all magnitudes concerned which are of interest

are now expressed as parameters by the expansion factor m. They are plotted

in Figure 8 for m = 1 to 100 on double logarithmic coordinates. The asymp-

totes of the curves are represented by the equations of approximation included.

The equations have also been plotted in simple logarithmic coordinates for

greater clarity; see Figure 9. Here the required values of J, are found also,

which were determined by the trigonometric method, for larger values of m

with the aid of Equation [29]; see Section 6.

The range of the first oscillation of the gas globe coming into

consideration is around m = 30, as already mentioned. For the second oscil-

lation, the values can be considered to lie below 10.

It would be desirable to extend this useful presentation to other

values of K also; compare Section 14.

10. VELOCITY AND ACCELERATION CURVES

The velocity i of the gas globe front, when the nondimensional cO-

ordinate x = r/ro according to Equation [8] is used, is described by the

expression
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Figure 8 - Comparison of Various Conditions of Oscillation
for the Same Gas Globe (where 4 - 4/3)

M2X2 - (1 + a )x' - X8 - a8

with 2
a 8 - (K - 1)- and a = 3(K - 1) Pr

Po 2p o

By differentiating twice with respect to t, the following expressions

2~~2 = (-(1 + ,8)x'4 + Kx-8-N1

22i ' = 3 6 4(1 + aS)x - - K(3K + 1)3-8x-2}

are found successively. After multiplying by ro, the following equations for

kinematic magnitudes are thus found to be

Velocity i = V(1 + a)x 8 - x- - a8

Acceleration 3- (1 + as)x- + KX-31S 47

Jerk fs 4(1 + a ) -- K(3K + 1)Z~XB -U
ar fud ucesvey Atr utilin b otte oloig qatos o



.5

S/.raised 0 times mes)

According to assumptions, the initial velocity ro is equal to zero, as is
found by substituting , = 1 into Equation [47]. Now, the velocity rises rap-

3r0  )0 pro,0') \ 7.2 x 1 /sec 2  r about 2 x 106 g for 1 g of explosive charge, where g de-0

As the globe expands, the acceleration decreases at first. The
instant at which it vanparison corresponds to the point of Oscinfleclation on thefor the Same Gas Globe (where K = 4/3

found by substituting x = 1 into Equation [471. Now, the velocity rises rap-

idly, as the initial acceleration is very high; see Figure 6, that is,

instant at which it vanishes corresponds to the point of inflection on the

11111I



distance-time curve and is related to maximum velocity:

r = ro ) r0K/(88) = 3 -ro for K = 4

3491

max = o/( - 1)(1 K/(K-1) -p 0-)

The maximum velocity of expansion is not a function of the size of the charge

and is nearly independent of the charge depth. It is about 450 m/sec.

The acceleration decreases further and becomes negative; the veloc-

ity decreases accordingly. The maximum retardation is attained at vanishing

Jerk, that is

K(3K + 1)1/(K-1) K (3x-3) 5 4
r - r0  4 (1 + )a ) ro 4 + 11 3 ro for K =

[50]

- r -K(K - 1) W + _1) L 0 ) ro)
=I k(3K +1) 4pr 0 K(3K + 1) 5 pro 13

Quantitatively, this retardation or deceleration is approximately 1/13 the

initial acceleration.

From here on, the retardation again decreases and reaches its ex-

treme at the stage of the globe maximum at vanishing velocity. In analogy

to Equation [48] and with consideration for Equation [2],

SM m mln- Pa with Pmln = Po 8X  [51]
p rmax

Quantitatively, by order of magnitude, this deceleration is 1/200,000 of to;

i.e., for a charge of 1 kg it is 10 g.

The approximations indicated in Equations [19] and [50] for small

values of pa are found by neglecting a. They agree, therefore, with those

values which would be obtained within the scope of Lamb's approximation which

sufficed to satisfy conditions for the initial stage; see Section 7.

If m. is referred to the velocity term 'p,-~ which is a function

of the external pressure, a value, which is a function of a or in only, can be

found for a given value of K with the aid of Equation [49]. For i = 4/3, this

value is

i max 3 - ( + )' 2 3 m/2 [52]
12 3 8



and is plotted in Figures 8 and 9 as a function of m. The approximate value

again gives the asymptote. After computation of Vij7p, these curves permit

easy reading of the maximum velocity of any given globe oscillation. As can

be seen, the velocity for the sonic oscillation is zero and rises with in-

creasing amplitude to values of any desired magnitude.

11. TRANSFER OF ENERGY

As shown in the introduction, the capacity for work A of the gas

globe has its maximum value Ao in its initial stage, the so-called gas globe

energy. During expansion of the globe, the capacity for work decreases con-

tinuously, as it is converted into the work of displacement B and kinetic

energy E. The study of the curve as a function of the radius of the globe r

is already possible with the aid of Equations [1], [2], and [3] and the en-

ergy expression

A = A+B+E

If, for purposes of comparison, all factors are related to A0 and the non-

dimensional coordinate x = r/ro is used, then

A pV =Vo K
-

1 1

A0  0 V) X3K-3

B (K - 1)pa (V 1)53A0 = (o o )- 1 = a(x 3 - 1)

E A B
- = 1 = 1 - x ' ~S ,- a'(x3 - 1)

The curve for the first and second oscillations of a 5-gm explosive charge is

shown in Figure 14; see Section 14. The typical behavior can be recognized:
A decreases constantly according to a sort of equilateral hyperbola; B in-

creases according to a sort of cubical parabola, not noticeably at first,

then with greater and greater speed; and E rises rapidly from zero to a max-

imum, whereupon it drops in turn more slowly back to zero. At this instant,

at the maximum of the gas globe, the motion reverses and the energy curves

now run in the opposite direction, theoretically back to the initial value,

but practically, however, this is not quite true.

The energy change with respect to time, due to the now familiar ex-

pansion curve of the gas globe having such sharply defined minima, is espe-

cially abrupt in the vicinity of the latter. The change of A and E occurs

with such lightning speed that it is scarcely possible to plot it by usual

methods; see Figure 13. The time scale must be extended considerably; see



Figure 14. Then, using this smaller time base, Lamb's development given in

Section 7 can be used.

The instant of the maximum kinetic energy, ordinarily designated as

"thrust energy" Er,= Es, is of interest. The latter is decisive for the

so-called close-range effect, that is, the destructive effect of an under-

water detonation in close proximity to the point of detonation. This moment

is characterized by the pressure balance p = P., as already explained at the

end of Section 2. The corresponding "balance radius" ra is found simply from

the adiabatic equation, Equation [2] or [42], as

r.- r3[54]
V Pa

Therefore, for the thrust energy and considering Equation [7] it follows from

the foregoing that

S1 P + (K - 1)Pa

1551

1.753

For small values of a, the quantity E s obviously will not be very much small-

er than A o. The exact curve for K = 1.2 to 1.4 as a function of # is.plotted

in Figure 10. The curve for K = 4/3 is also plotted as a function of m in

Figure 10. It can be seen that, as the expansion factor increases, a rising

proportion of the capacity for work of the explosive charge A 0 is converted

into kinetic energy. For the first oscillation resulting from the detonation

of a 5-gm charge of TNT (Section 14), which will be treated later, this por-

tion amounted to approximately 86 per cent, for example, assuming K = 4/3.

12. CHANGE OF TEMPERATURE

The absolute temperature 7 of a gas with known gas constant R, and

a given pressure p and volume V is determined by the general equation of state

pV = LR = constant [56]
7-

For the products of combustion of the explosive, R is given indirectly by the

"specific gas volume" VG which characterizes the space required by the pro-

ducts of combustion produced by the detonation of 1 kg of explosive charge at

a normal pressure of 760 mm of mercury (p _ 1 atm) and 0 degree C (7 = 273

degrees abs) R

273
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With the foregoing, the initial temperature is found to be

70 = = 273p° [571
LR svG

For the adiabatic change of state of the gas globe in Equation [2], the tem-
perature law

7VK- 1 = constant

., i nu *111i h iIu , inuIMEu



follows from Equation [56]. If Equation [56] is compared with Equation [1],

the ratio of the absolute temperature 7 to the capacity for work A, described

by the first expression under Equation [54.], can be recognized as

- = A -ro 3 3 [58]
TO A0  (r

For K = 4/3, it follows that the special absolute temperature and the capaci-

ty for work are inversely proportional to the radius of the globe. The tem-

perature range for the curve of one oscillation is accordingly very great.

The temperature changes initially and in the zone of the minima at lightning

speed dquivalent to A; see Sections 10 and 11. The temperature curve for the

example of the 5-gm explosive charge given in conclusion is shown in Figure

16.

13. COMPARISON WITH MEASUREMENTS

The validity of the laws required by theory for the maximum gas

globe radius, Equation [18], and the period of oscillation, Equation [30],

will be checked by measured data.

First, explosion tests were made with small chargespof TNT, S1,*

and PETN. They were made at a depth of 1 m in a tank and were photographed

with a high-speed camera at a rate of 1000 to 1500 frames per second. The

charges weighed 5, 10, 15, and 20 gm, to which the weight of the incandes-

cent igniter, 1/2 gm (0.9 gm tetryl + 0.3 gm lead azide), must be added. The

films show the repeated oscillation of the gas globe very nicely. Naturally,

however, in contrast to the theory developed herein, the oscillation is damp-

ed. The curve for a single oscillation is reproduced very well by the theory

until it reaches the vicinity of the minima where evaluation of the films is

hardly possible, as the water is obscured and soiled due to the sooty sludge

produced by the solid residual products of combustion resulting from detona-

tion. Therefore, the outline of the gas globe cannot be distinguished; com-

pare Section 14. The gas globe itself is almost perfectly spherical during

the first oscillation, as evident in Figure 1, but is deformed somewhat by

buoyancy toward the end of the second oscillation.

To check Equations [18] and [30], namely,

rmax = Cr , T = CT .5

* Translator's Note: S1 is an explosive developed by the CPVA. It consists of 60 per cent TNT, 24 per

cent HND, and 16 per cent powdered aluminum.
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which can be held valid for the first oscillation only, the maximum radii

rmax and the first oscillation periods T 12 were taken from earlier tests and

plotted as functions of the corresponding cube roots (with L = 6.2, 11.2,

16.2, and 21.2 gm, respectively, and p, = 1.1 atm); see Figure 11. For each

type of explosive, the respective points would have to lie on a linear curve

traversing the origin, whose slope corresponds to the value of the constants

C. or CT.

It is evident from the foregoing that the points scatter somewhat.

This can be attributed primarily to the proximity to the surface and the non-

homogeneity of the charges. Mean curves give the following tabulated values:

TNT S1 PETN

Cr 158 173 160
cT 0.280 0.295 0.295

If T12 and rma, are plotted in two perpendicular directions, that

is, in rectangular coordinates, the plotted points would have to lie on a

linear curve also whose slope is given by Equations [18] and [30] as

_[59]

rmgx r - - 541.44 p591
T 4r 0.00114577 .

With Pa = 1.1 atm, and after deduction of a correction of 1 per

cent as required by ,, this gives a value of about 560. As can be seen from

Figure 11, these small charges satisfy this condition more or less well,

whereas measured values for.larger charges are without exception above the

linear curve corresponding to the value of 560. In any case better agreement

with theory can be expected for smaller charges because, owing to smaller gas

globes and slower motion of the water, effects of free surface and wall ef-

fects are not as highly apparent in tank tests.

As the experimental relation between the gas globe and the period

of the first oscillation has been found to be in agreement with theoretical

values to this point, an independent test of both principal-relationships,

Equations [18] and [30], resulting from this theory can now be made. The

measurement of the gas globe radius is difficult for larger charges, and as

the special method based on soundings is required, such measurement ceases

to be accurate; see Reference (7).

Despite the foregoing, Ramsauer's values for wet guncotton (7) will

be given in Table 1. The calculated values were found by Equation [18] and

with a mean value of cr = 1.593. This table shows "how unexpectedly accurate

is the agreement of this formula with tests 1 to 10."
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TABLE 1

Maximum Gas Globe Radius (Observed and Calculated)

Observed Calculated

Number L Pa C Radius Radius
kg atm rob, reat r.l, - rob8

cm cm

1 1.910 -1.2 1.585 185 186.0 + 1.0
2 1.910 1.3 1.593 181 181.1 + 0.1

3 1.910 1.6 1.603 170 169.0 - 1.0

4 1.910 1.9 1.548 155 159.6 + 4.6

5 0.910 1.3 1.587 141 141.4 + 0.4
6 0.455 1.3 1.602 113 112.3 - 0.7

7 1.910 1.3 1.602 182 181.1 - 0.9
8 1.070 1.3 1.578 148 149.3 + 1.3

9 1.070 1.3 1.621 152 149.3 - 2.7
10 1.910 1.3 1.61o 183 181.1 - 1.9

The period of the oscillation of the gas globe can be measured far

more accurately than the radius of the gas globe. An underwater microphone

is used in this case, which responds to the pressure waves radiated from the

gas globe minima; the surges of electrical current induced are recorded with

an oscillograph; see Figure 17. By using sufficiently high film speeds, a

satisfactory deceleration of the phenomenon is attained, permitting maximum

measuring accuracy. It should be emphasized that under exactly identical

conditions, that is, by detonation of explosive charges of identical weight

and composition, periods of oscillation were found by precision measurements

which diverged from one another by approximately 0.3 per cent only. This

accuracy cannot usually be attained in explosion tests. Therefore, an espe-

cially accurate proof of the theory developed must be possible, by checking

or verifying the formula for the "impact time."

With a series of identical charges detonated in a lake 100 to 120 m

deep, the period of oscillation of the gas globe as a function of the charge

depth was measured. Charges were used consisting of 100 + 0.1 gm of a cast

mixture composed of 45 per cent TNT and 55 per cent RDX. This mixture guar-

anteed complete detonation, even without a special booster charge. The oscil-

lation periods measured appear in Table 2.

The mean oscillation periods derived from groups of four measure-

ments each were plotted on double logarithmic paper as shown in Figure 12.
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TABLE 2

Impact Time as a Function of the Charge Depth, Measured with 100-Gram

Charges, Composed of 45 Per Cent TNT Admixed with 55 Per Cent RDX

Explosive Air Pressure during p T,
Depth Measurement mbar millisMean Value
m mbr mbar millisec -

1 931 1029 120.1 121.0 120.9 12,18 121.,0

1.5 930 1077 124.0 123.7 124.8 122.9 123.9

2 935 1131 122.9 122.3 122'.2 122.6 122.5

2.5 934 1179 120.2 120.3 120.3 120.6 120.'3

3 925 1219 118.7 118.4 118.2 11'6.6 118.0

4 926 1318 112.6 112.2 112.2 112.2 112.3

5 930 1420 106.0 105.9 107.2 106.0 106.2

7 920 1606 96.1 97.9 95.2 96.1 96.3

10 925 1906 83.6 83,5 83.6 83.7 83.6

15 928 2399 69.3 68.8 68.9 69.2 69.1

20 939 2900 59.3 58.3 59.3 59.4 59.1
30 937 3879 46.0 46.0 46.0 46.0

40 937 4860 37.9 38.2 38.1 38.1 38.1

55 921 6315 30.4 30.5 30.5 30.4 30.4

70 931 7796 25.7 25.6 25.1 25.5

The measured values obtained for greater charge depths lie exactly on the

plotted linear curve whose slope is -5/6, corresponding to the theoretical

value. Equation [30] may therefore be regarded as absolutely confirmed. A

deviation from the linear curve does not occur until the surface is approach-

ed. In the present case, the disturbance can barely be perceived at around

10-m charge depth; the maximum radius of the gas globe is therefore in this

case approximately 0.75 m.

The second proof of Equation [30] still possible for the period of

oscillation of the gas globe consists in varying the quantity-.of explosive

charge at constant depth. Precautions must be taken to avoid the zone of

surface disturbance when detonating the charges. For the measurements shown

in Figure 12, using 0.1- to 10-kg charges at 50-m charge depth and approxi-

mately 100-m depth of water, undisturbed conditions prevailed. Excluding

measured data for charges of larger scale, where the casings constituted a

disturbing factor, the plottediresults lie on a linear curve having a slope

of 1/3. Therefore, the ratio of the impact time to the cube root of the
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These precision measurements were made with a mixture consisting of these per
cent TNT admixed with 55 per cent RDX.

quantity of explosive charge is valid for undisturbed cases. In summarizing,

it can therefore be stated that the equation for impact time, resulting from

the theory Just developed, is satisfied completely for undisturbed cases.

14. APPLICATION TO AN EXAMPLE

Now that the formulas derived from theory for the maximum radius of

the gas globe and the period of the oscillation have been checked in detail

on the basis of the test data at hand and have proved very reliable, these

theories will be applied to an individual example. The application of the

mathematics and curves given will be demonstrated at the same time. For this

purpose, the detonation of 5 gm of TNT plus a 1.2-gm incandescent igniter will

be used, which promises good agreement on the basis of earlier tests of the

ratio rm : T according to Equation [59] and Figure 11.

The given values to be considered are:

Weight of the Charge L = 6.2 gm = 0.0062 kg

Density of the Explosive s' = 1.58 gm/cm3 , 8 = 0.00158 kg/cms

External Pressure Pa = 1.1 atm

Furthermore, the value K = 4/3 will be used.
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a. FIRST OSCILLATION

From the measured maximum radii for four charges of TNT, the famil-

iar value of the "constant" c, = C,/, in Equation [18] is found to be 158

according to Figure 11. Thereby we find the initial pressure

P0 = 8700 r,'

If the correction factor r, is next set equal to 1 from Equation [7], we find

a w 0.0348 in the first approximation to which i, = 1.012 pertains according

to Figure 3. This permits the improved values

po = 9020 atm; a = 0.0344; # = 7.35-10-6

Repetition of this process gives no further changes. Thus the actual constant

of the explosive is found to be Cr = 160. From Equations [12] and [14] the

Expansion Factor m = 28.7 and its Reciprocal p = 0.0348

result, which could also be found directly by Equations [171 and [18] from the

Maximum Radius of the Globe ru = 28.1 cm

and from the

Radius of the Explosive ro = 0.978 cm

Equation [22] gives the impact-time constant CT = 0.295 and Figure 4 gives

the correction factor j, = 1.0008, which has to be neglected. When y = 1, it

follows that the

Period of Oscillation T = 0.0501 second

which is in complete agreement with the experiment.

The curve plotted in Figure 13 for the first oscillation was found

according to Equation [35] for which the integral J, was developed with the

aid of the tabulation (Equation [37]) and by Equation [36] for p = 0.0348. The

agreement of the measured points with the theoretical curve is very good with

the exception of the vicinity of the minimum, a fact mentioned on several oc-

casions. These points are inaccurate because the sooty products of combustion

prevent the globe outline from being distinguished. The initial stage of the

expansion of the globe was described according to Lamb, Equation [391, and

shows graphic agreement to about r = 15ro; see Figures 13 and 14,

Figures 14 and 15 show the relative velocity curve according to

Equation [471, first as a function of the radius of the globe, second as a

function of time. From Equations [48), [49), [501, and [511, the following

values are found:

Maximum Velocity jmax = 432 m/sec

Initial Acceleration Fo = 90.4 x 106 m/sec2 = 9.22 x 106 g
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Maximum Deceleration rmax = -7.03 x 106 m/sec2 = -0.717 x 106 g
Final Deceleration F = -379 m/sec2 = -38.6 g

In Figures 13, 14, and 15, the transfer of energy is shown accord-

ing to Equation [47]. The reference magnitude is, according to Equations [1]

or [60], the initial

Capacity for Work A 0 = 1062 kg-m = 2.487 kg-cal

As shown in Figure 15, approximately 86 per cent is converted into thrust en-

ergy Es. Based on the specific energy of detonation, which amounts to 840 kg-

cal/kg for TNT, a total energy of 5.21 kg-cal can be ascribed to the explosive

charge herein concerned. If this value is compared with Ao, it might be as-

sumed that 52.2 per cent of this energy was radiated with the first pressure

wave. However, this is not quite true, as on the basis of the pressure curve

of the explosive pressure wave measured in water for TNT, the pressure wave

contains a somewhat smaller percentage of explosive energy. Accurate numeri-

cal values cannot be given yet. Considering this, it must be emphasized that

the initial pressure Po = 9020 atm, calculated in the beginning, represents

only a fictitious value and will be much higher in reality. Similarly, the

Initial Temperature ro = 1948 degrees abs = 1675 degrees C
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resulting from Equation 157], based on a specific gas volume vG = 800 cms/gm,
will be too low. The temperature and pressure curves at adiabatic change of

state, as shown in Figure 16, are therefore not tenable in the initial state,

as the pressure wave is not considered. The same holds true for the second

minimum.

Temperature 7 in degrees absolute
70 20 30 4050 100 1000 10000

S.c.rmoT .2

C 1

5 o0

0 A -7- : . --- ,

S30 40 50 100000 0000
Pressure p of Gas Globe in atmospheres

Figure 16 - Pressure and Temperature Curves for
Adiabatic Change of State of Gas Globe

The state of equalization, defined by p = Pa, sets in according to

Equation [54] for

Ta = 9.31 cm
at Ta = 205 degrees abs = -68 degrees C

In the state of maximum expansion, where r = rm.., pressure and temperature

have dropped to

Pmm = 0.0133 atm; r.min = 68 degrees abs = -205 degrees C

as can be read from Figure 16 or as calculated from the adiabatic equation.

b. SECOND OSCILLATION

In the investigation of the second oscillation all terms will be

distinguished from those for the first oscillation by the prime sign; as a

guiding concept, it will be assumed that the transition from the first oscil-

lation to the second is adiabatic. Then the identical states of equalization

ra' = ra, and p' = Pa or -' = T, will prevail as in the first oscillation, and

the curves derived in Section 9 (Figures 8 and 9) can be used. For measure-

ments we take the
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Period of Oscillation T' = 0.0375 second

which must be referred to the

Period of Sonic Oscillation Ti = 0.0281 second

pertaining to the state of equalization ra, Pa according to Equation [40] for

the curve diagram, Figure 9. For T'/T, = 1.334, the

Expansion Factor m' = 8.60 and At' = 1/m' = 0.1163

can be read off. According to Equation [15'] or Figure 3,

r' = 1.041; a' = 0.1116; f8' = 1.037 x 10-'

pertain to the foregoing, supplying all the data necessary to permit treating

the second oscillation as in Section a. However, the values of interest can

also be read from Figure 8, as the state of equalization is already known at

this time. Primarily, the

Maximum Radius of the Globe ra = 20.35 cm

is found in surprisingly good agreement with measurement; furthermore, we get

the initial state

.ro' = 2.37 cm, p0 = 264 atmospheres

-ro 805 degrees abs = 532 degrees C

which can also be found from Figure 16, as the pressure and temperature curves

for both oscillations are the same, owing to the identity of the states of

equalization. The real radius of the second minimum will lie between ro and

r o and may be taken as 1.7 cm by taking the mean. This is therefore consider-

ably below the apparent value of 10 cm obtained by measurement.

The curve of the oscillation plotted in Figure 13 agrees well with
observation, except in the vicinity of the minima. Lamb's approximation shows

graphic agreement to about r = 5ro' only, corresponding to the smaller expan-
sion factor. The initial stage including the velocity curve for which rmn "

53.5 m/sec is recorded in Figure 14.
Within the scope of this treatment, it must be assumed that the

first oscillation reverts only as far as ro, Po, 'o', and not to the initial

state r, Po T0o, and instead of achieving the original capacity for work Ao,
it now attains A = 1 .028 kg-cal only. The excess is imparted to the second

pressure wave and dissipated in additional energy losses.

15. BALANCE OF ENERGY
An energy balance for individual phenomena in underwater explosions

will be of general interest. Therefore, the values already given will be

summarized again and complemented by a few additional ones.
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The evaluation in Section 14, based on high-speed photographs of

underwater explosions with sniall charges, already permitted establishment of

a certain energy balance. There it was shown that, of the total energy con-

tained in the explosive, only 47.8 per cent was imparted to the first oscil-

lation of the gas globe. Hence the remaining 52.2 per cent of the total

energy will have to be assigned to the first pressure wave or to other energy

losses. If the original energy of the explosive is set at 100 per cent, the

following energy balance can be expressed:

Energy of the Explosive, 100 per cent

First Pressure Wave and Energy Total Energy of the First
Losses Immediately after Deto- Oscillation, 47.8 per cent
nation, 52.2 per cent (Maximum Thrust Energy,

41 per cent)

Sicond Pressure Wave and Energy Total Energy of the SecondSecond Pressure Wave and Energy Oscillation, 19.8 per cent
Losses in the Second Minimum, (Maximum Thrust Energy,
28 per cent (Maximum Thrust Energy,

28 per cent 13 per cent)

A more accurate balance can be established on the basis of the measurements

already cited with 100-gm charges of the explosive mixture consisting of 45

per cent TNT and 55 per cent RDX, because surface effects were eliminated by

the charge depth. From these measurements (see Section 13) the constant

CT = 0.3075 follows directly, and therefrom the gas globe energy is found to

be 42.85 kg-cal, while the energy content of 100 gm of explosive charge by

measurements made on 5-gm charges in the explosive calorimeter was 99 kg-cal.

Therefore, the first pressure wave and the simultaneous energy losses contain

57 per cent of the explosive energy.

Energy of the Explosive, 100 per cent

Total Energy of the First
First Pressure Wave and Energy Oscillation, 43 per cent
Losses Immediately after Deto- (Maximum Thrust Energy,
nation, 57 per cent approximately 37 per cent)

In comparing the two energy balances, it must not be forgotten that

the first balance was arranged for TNT and the second for the mixture composed

of 45 per cent TNT and 55 per cent RDX.

In general, it can be said on the basis of the conditions just

outlined that the first oscillation contains a little less than half the ex-

plosive energy measured calorimetrically. The total energy of the second

oscillation is again a little less than half of the total energy of the first

oscillation.
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16. MEASUREMENT OF IMPACT TIMES

As described earlier in this report, during the oscillation of the

gas globe pressure waves radiate at the individual minima. These successive

waves, particularly with large charges, follow each other at increasing in-

tervals. They are often clearly audible and are perceived as impacts. Thus

the term "measurement of impact times" (Stosszeitmessung) has become current

for the measurement of the period of oscillation of the gas globe.

The actual significance of the measurement of impact times is based

on the relation between the gas globe energy Ao and the period of oscillation

T, given by Equations [1] and [22]. For water, where y = 1,

T 0.0011458Y/i (a Po 5 0.001 458
Vp (K- 1)8' Pa5/6 - 1

Ao

For sea water, about 1 per cent must be added. Therefore, when T is measured

in seconds and p, in atmospheres, it follows that

A0 = 15,570 Pa25 T kg-cal [60]

The gas globe energies Ao of two charges detonated at the same depth

vary approximately as the cubes of the impact times T. As the latter can be

measured by means of underwater microphones, the measurement of impact times

is a convenient criterion for evaluating the energy of explosives.

The significance of the measurement of impact times for determina-

tion of the gas globe energy is augmented by the fact that the relationship

for the impact time, Equation [22], is accurate even in second approximation

and was verified experimentally with surprising accuracy; see Section 13.

Furthermore, as already emphasized, we may add that for identical detonations

under constant conditions the impact times can be reproduced very accurately.

These considerations show that the best method to ascertain the gas

globe energy is measurement of the "impact time." Therefore, determination

of the impact time can be developed into a direct measuring method. To apply

this method of measurement in practice, the following essential pointb should

be emphasized.

"Regulation charges" of'identical weights must be detonated and the

impact time must be picked up with the aid of a microphone and recorded by an

oscillograph. In Figure 17, such an oscillogram is shown. Precautions must

be taken to maintain constant charge depth and precisely uniform quantities

of explosive charge in these measurements. Despite maintenance of constant

charge depth, the impact times may still fluctuate owing to variation of the

air pressure which affects the total pressure Pa at the point of detonation.
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These fluctuations, however, can be eliminated practically by using Equation

[22] Judiciously. The measured impact times are usually reduced to normal
air pressure.

Among the numerous possible applications of the measurement of im-

pact times, the following are mentioned briefly:

a. With the method of measurement of impact times, a simple and rapid

comparison of the energy of various explosives is possible for conditions

which correspond extensively or entirely to those encountered in practice,

that is, for detonation of explosives below the surface of the earth or un-

der water.

b. From the fact that the measurement of impact times is in final anal-

ysis a measurement of energy, another important application exists. In gener-

al, for explosives which are difficult to detonate or for materials whose

explosive character is doubtful at best, quantitative data on the initiation

of complete or partial detonation or the extent of induced detonation can

hardly be given.; Here the measurement of impact times permits quantitative

statements by a simple method.

c. -When the quantity and type of an explosive are known, the charge

depth can be ascertained immediately by Equation [30]. This method was used,

for example, to determine the depth of detonation of depth charges.
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17. GAS GLOBE ENERGY AS A CHARACTERISTIC
QUANTITY FOR EXPLOSIVES

The theoretical explanation of the physical phenomena attendant up-

on detonation of an explosive in water led automatically to a characteristic

quantity for each explosive, the gas globe energy.

It must be emphasized that, when measuring this quantity by the im-

pact-time method, maintenance of constant test conditions is very simple be-

cause the detonations always occur in water. In all other comparisons of

effectiveness, such as measurement of effectiveness in a lead block by Trauzl

(lead-block expansion) or measurement of the funnel-shaped hole in the ground

in underground explosions (crater effect), for example, rigorously constant

test conditions can be maintained only by virtue of considerably greater ex-

pense and equipment; even then, such constant test conditions cannot be at-

tained in most cases.

The significance of the gas globe energy A 0, introduced as a char-

acteristic quantity, is already evident from the fact that the maximum kinetic

energy Es, imparted to the water at detonation, is approximately equal to it.

However, a basic deficiency is entailed. Owing to the simplifying assumption

of incompressible water used in the theory herein outlined previously, the

radiated pressure wave did not appear in the test results. Fundamentally,

therefore, the gas globe energy still does not furnish an absolute, flawless

characteristic for an explosive.

In contrast to the only other possible method of measuring the en-

ergy produced at detonation, measurement in the explosive calorimeter, deter-

mination of the gas globe energy by means of the impact-time method offers

decided advantages. In the calorimeter, only the heat of reaction can be

measured during reactions involving minimum quantities of explosives. Such

quantities reach their maximum at 10 gm. The type of the reaction of explo-

sives, i.e., detonation or explosive combustion, especially the less sensi-

tive explosive mixtures, is often just as uncertain as the completely unknown

secondary reactions of the products of combustion during the considerably

protracted period of thermal equalization occurring in the calorimeter. The

gas globe energy, and therefore the work capacity of an explosive, in con-

trast, can be measured without great effort by the impact-time method, even

for charges of greatest size. In fact, such measu:ement can be made under

conditions similar, or even identical, to full scale.

The points herein described, in themselves, permit recognition of

the gas globe energy as a basic quantity in the study of explosives. Accurate

investigation of the underwater explosive effect shows beyond this that it is

one of the most basic characteristics for an underwater explosive, and it can
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probably be added that it is the most important characteristic quantity with

respect to destruction of ships. Investigation of the effects of underwater

explosions on ships show that at a greater distance from the target, the

pressure wave only is effective. In such a case, truly serious damage is

exceptional. Lethal damage to a ship, such as blasting holes in the ship's

shell or demolition of torpedo bulkhead structures below the waterline, oc-

curs only if the point of detonation is so close that the hull is within the

zone occupied by the gas globe. It has been proved experimentally that the

gas globe energy is principally responsible for such types of demolition.

However, this proves that the gas globe energy determined by the

impact-time method is one of the most essential characteristic quantities

for underwater explosives.

On the basis of these facts, the gas globe energy derived from the-

ory can therefore be designated as an important characteristic for explosives

in general and probably the most important for underwater explosives in par-

ticular.

18. SUMMARY

The problem of expansion of the products of combustion in underwater

explosions has been treated theoretically. The expression for the adiabatic

expansion of the gas globe in undisturbed, incompressible water was rigorous-

ly evaluated. Special assumptions with respect to K, introduced as a constant

only, were largely avoided. The exact equations for the maximum gas globe

radius, Equation [18], and the period of oscillation, Equation [30], are

rmax = and T = CrT 2.5

where C, and CT are constants of the explosive and where the correction fac-

tors n, and nT, which are functions of depth, approach unity. Their respec-

tive values can be seen in Figures 3 and 4. We find that ., as a function of

depth is a small magnitude of first order, whereas nT is even smaller, being

merely of second order.

The curve of the oscillation of the gas globe is determined by a

trigonometric substitution described in Section 6. For large values of the

expansion factor m, a convenient development in a series was given. Compari-

son with Lamb's approximation Pa = 0 shows its applicability over a consider-

able range about the minimum; see Section 7. For the limiting case where

m= 1, the sonic oscillation of the globe was found; see Section 8.

Comparison of various stages of oscillation of the same gas globe

proved useful for theoretical comprehension of its pulsating oscillations,
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later damped by energy losses in underwater explosions. These phenomena were

comprehended for the first time in this way in this treatise.

The most important magnitudes were generally formulated and plotted

as curves, to facilitate application to any given numerical example with mini-

mum effort.

The equations derived for the maximum radius and period of oscilla-

tion of the gas globe were checked for their reciprocal functional relation-

ship, as well as individually by means of the measurements made; see Section

13. Agreement between theory and experiment was good, and for the impact

time specifically, excellent. This agreement between theory and experiment

was further checked for the total curve for detonation of a charge of 5 + 1.2

gm of TNT at 1 m below the surface of the water and was found to be very good;

see Section 14. However, it was found that the minima must be much more

sharply defined than was apparent from former measurements. The pressure and

temperature curves, based on adiabatic change of state, and the duration of

the energy as well were calculated completely and represented graphically for

the given example.

The energy balance for underwater explosions was established and

discussed in terms of various measured data; see Section 15.

The importance of the measurement of impact times for the determina-

tion of the gas globe energy was exhaustively discussed in Section 16, and a

number of problems were proposed whose mathematical treatment was either fa-

cilitated or actually made possible at all by measurement of impact times.

The special significance of the gas globe energy, determined easily

with the aid of the measurement of impact times especially for the evaluation

of underwater explosives, was emphasized; see Section 17.
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