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THE ELASTIC STRESSES IN THIN-WALLED TUBES CAUSED BY INTERNAL PRESSURES

CREATED BY EXPLOSIONS

by

Karl Klotter and Ruth Pich

ABSTRACT

The problem concerning the precise relationship between the rise, with

respect to time, of an internal pressure caused by an explosion in a tube and the

tangential stress in the tube--which was taken up in earlier investigations--is raised

again, and by revision of previous conceptions is solved in a manner sufficiently

exact for all practical purposes. The maximum value of the tangential stress may

exceed the static value which corresponds to the maximum value of the pressure,

but it cannot rise by more than approximately 8/3 times the static value.

1. INTRODUCTION AND STATEMENT OF OBJECTIVES

The investigations presented here were prompted by two reports by

H. Schlechtweg and R. Moufang* from the research institutes of the cast steel

works of Friedrich Krupp (Essen) dated 18 November 1941 and 26 February 1942

(designated briefly as report I and report II hereafter). In report I, the

authors develop approximation formulae for the elastic displacements and

stresses in a thin-walled tube subjected to internal pressure varying with

respect to time; in doing so, the pressure-time curve p(t) is being assumed

in a form which can be adapted to the pressure curve resulting from the firing

of guns.

By a numerical example in which the internal pressure is assumed

in the form of

p(t) = P.(e - a t - e - 2a t )  with a > 0 [1.1]

(Figure 1), it is being shown that the maximum value of the tangential stress

0a to which the tube is subjected may exceed the value which this stress would

have under static internal pressure in the amount of

Pstatic = [P(t)lmax [1.2]

It is true that in the example referred to only the insignificant

*"The elastic stress distribution in thin-walled tubes under shock-like in-
ternal pressure when the outer surface and ends are not subjected to any
force."
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Figure 1 - Internal Pressure, p = P(e-a t - e- 2 t)

value S = 0.2 had resulted for the relatively increased stress in the center

of the tube,

S = (a max - o static) / Ostatic [1.3]

However, it seemed desirable to know the exact relationship existing

between the rise of the internal pressure p(t) and the maximum value of the

tangential stress a#. A universally valid formularization of such a law

(based on the theory developed in report I) proved to be too difficult.* In

report II the attempt is made to figure out, at least numerically, according

to which law the maximum value of the tangential stress a. changes with the

pressure rise assuming the form [1.1] for the internal pressure p(t) in the

case of a thin-walled tube of definite material and definite dimensions (such

as in gun-barrels, for example). Three examples were calculated in which the

parameter a corresponding to the pressure increase was ascribed the values

a I = 3.15.10 2 /sec, all = 3.15.10 3 /sec, aIII = 3.15.10 4 /see

Using the non-dimensional quantity**

5 = 1.lla 10 -" sec [1.4]

we summarize the result of these numerical calculations by saying that in the

investigated time interval

0< & 5 0.35 [1.5a]

*This is due mainly to the complicated formulae for the free vibrations
of the tube. We shall refer to this point again later on.

**The (linear) relationship between the parameter and a non-dimensional
quantity designated as 5 is expressed by varying relationships in different
sections of this treatise. (Cf. [2.5] as well as [4.4a] and [5.1']. The
factor 1.11 . 10 - s sec in [1.4] represents a special numerical value of the
factor Rp5/ in [4.4a] and [5.1 ']; in [2.5], however, the natural frequency
(of the rfng) has been used as a factor of a.)



the values

S(aI) = 0.02, S(aiI) = 0.26, S(aiIi) = 2.05 [1.5b]

can be interpolated by the linear function

S(5) = 6.3 a [1.6]

In a table compiled toward the end of report II (page 9) the value
IV = 10 (i.e. a = 3.15 . 105/sec)is also quoted in addition to the

parameter values 5I to aII Although the difference aIV - aII is nine times
as great as the entire time interval 0 to aIII on which the interpolation was
based, S(aIV) is, nevertheless, calculated according to the interpolation
formula [1.6] and the value thus obtained is being used in setting up the
above-mentioned table.

Among other things, it is to be the objective of this investigation
to examine the feasibility of such an interpolation (which yields the ques-
tionably high value of S = 22). We shall endeavor to avoid as long as pos-
sible the use of the rather complicated formulae which served as a basis for
the calculations of the values [1.5b]. First, however, we need a short tab-
ulation of the most important characteristics of the function p(t) describing
the pressure curve.

If this function is given by [1.1] (Figure 1), it begins at t = 0
with the value of zero and with the slope

1 (0) = aP [1.7a]
it reaches at

to -=~ In 2 [1.7b]
a maximum in the amount of

Pmax =  [1.7c]

and from then on, it falls asymptotically to zero. Since however, P (and
thus pmax) is to be independent of a, the pressure rise, to be sure, becomes
steeper and steeper with the rising parameter a, but at the same time the
time integral of the pressure-curve

p(t)dt - [1.7d]

(the "impulse") decreases more and more.
In connection with these circumstances we shall carry on certain

considerations, the detailed proof of which is to be the main body of this
paper.

As already indicated by the heading of reports I and II, the authors
had undertaken to investigate the effect of a "shock-like" internal pressure



upon the tube. Obviously the question "at which particular value of the param-

eter a determinative for the pressure rise can the curve of p(t) be labeled

'shock-like'" can not be answered at all in an absolute manner; instead it

depends every time upon'the structure and the material upon which the pressure

is to be applied. If the structure is capable of natural (or free) vibrations,

the smallest frequency of these natural vibrations offers a measure indicating

how quickly the pressure must rise from zero to its maximum value in order to

have a "shock-like" effect upon the structure. If the reciprocal value of the

time interval to = 1/a In 2, which elapses from t = 0 till the maximum pres-

sure is reached, is not even of the order of magnitude of this smallest nat-

ural frequency, we cannot yet speak of a "shock-like" curve of p(t) with

regard to the structure under stress; only when 1/to = a/ln 2 becomes large as

compared with the smallest natural frequency of the structure, the pressure

is having a "shock-like" effect.

As soon as this requirement is met, however, the time integral of

the pressure curve representing the magnitude of the shock must be considered.

It is given in the preceding example by [1.7d] and decreases, therefore, ac-

cording to the growing steepness of the pressure rise. What does this mean

with regard to the tube under investigation? Obviously, in a time interval

in which the interpolation formula [1.6] applies, the internal pressure p(t)

does not yet exercise a "shock-like" effect upon the tube. Otherwise, the

maximum value of a# could not continue to increase since the force of the

shock decreases continuously as a increases. Rather must we assume that the

maximum values of all stresses and displacements asymptotically approach the

value of zero as a increases. (The only exception to this is the radial

stress ar, which on the inner surface of the tube balances the internal pres-

sure p; and thus it has there the finite value -pmax as a maximum which is

independent of a.)

After these considerations, we again return to the fundamental ques-

tion of our problem which is: Up to which particular value of the parametera

is an extrapolation of the linear relation [1.6' permissible beyond the time

interval given by [1.5a]? Especially, does [1.6] still apply for aIV =

3.15 * 105/sec?* With this we have reached a point, however, where we can no

*Here one might first raise the question if the pressure created by gun-

fire can, with the means presently at our disposal, rise to its maximum value
already in the time interval t (aIII ) or even to(aiV), namely

(a n 2 = 0.69 10-ssec = 2.2 0.10 sec, t (a in 2 o.69 10-'sec = 2.2 10-sec
o III) = 0.315 ' o iV aiV = 0.315

Since this is not the case, the investigation of the precise relation be-
tween S and a beyond the time interval [1.5a] has only theoretical signifi-
cance for the time being; yet it is of fundamental importance.
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longer proceed without a theoretical elasticity calculation--for we must now

find out the smallest natural frequency w of the tube for which the values

[1.5b] have been calculated. It can be shown (cf. Sections 4 and 5) that

even the parameter value aI I = 3.15 104/sec reaches the order of magnitude

of this smallest natural frequency. The fact that with a = wo the linear

relation [1.6] still applies does not contradict the above considerations.

On the other hand, according to these very considerations, it seems exceedingly

doubtful that the linear relation [1.6] between S and 6 still exists also with

a M10WO . Rather, it is to be assumed that the value S(6II I) = 2.2 already

comes very close to the upper limit given for S.

In order to be able to answer the questions suggested here as far

as possible, we have once more opened up the entire problem under discussion

and accordingly, in Sections 3 and 4, we have once more calculated (partly

according to a somewhat modified method) the formulae developed in report I.

In Section 5, the results are applied to the tube investigated in report II.

The formulae developed in Sections 3 and 4 can be greatly simplified

by assuming the length of the tube to be extremely small, i.e., by considering

the ring.* It will become obvious that the essential factors of our problem

continue to exist even in this extreme case. The discussion of the latter

will, therefore, be taken up first in the following investigations (Section 2).

2. THE RING

If in a tube, e.g. a hollow cylinder, made of elastic material not

only the wall-thickness, but also the length is very small compared with the

(mean) radius R (i.e., the average between the inner and outer radius), we are

dealing with a ring; with respect to its radial-symmetric vibrations it rep-

resents a system of only one degree of freedom.

If the internal pressure p(t) is acting upon the ring, the differen-

tial equation for the radial displacement u(t) [whenever damping forces are

not to be taken into account] reads as follows:

u +W u p(t) with W2 =- [2.1]
oR

Here E stands for the modulus of elasticity, R for the (mean) radius

of the ring, F for the cross-sectional area obtained by splitting the ring,

and finally o for the mass of the ring per unit of length. (The designation A

will be reserved for one of the two Lame constants which occur in Section 3.)

*This possibility has been pointed out to us by Mr. W. FlUgge.
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If p(t) is given by 11.1], one obtains as the particular integral

of [2.1] the expression

-at e2at
up 0 " + e+ (aw [2.2a]

representing the actual forced movement. The free movement is a harmonic vi-

bration; it can be reduced to the form

uf = 9 cos Wt + a sin wt [2.2b]

The integration constants a and a are determined by the initial conditions for

u (= Up + uf); these are

u(O) = 0, u(0) = 0 [2.3]

Accordingly, we obtain for the amplitude A = 2 + 1 of the free vibration

the expression

A = VU(0) + j1 (0) [2.4]

After a simple calculation--if one still introduces the (non-dimensional)

quantity*

a= a/W [2.51

there follows for u (0) and p (0) from [2.2a]

u (0) = P + [2.6a]

and

up(0) = . I - 2& [2.6b]

If one inserts these expressions in [2.4], one obtains finally

A = . + 5 + [2.7]

The tangential stress a. in the ring is proportional to the radial

displacement u; i.e.

o(t) u(t) [2.8]

For the sake of simplicity we shall, in the following section, at

first speak only of the radial displacement itself.

*Cf. last footnote on page 2.

w~c~~iw~ a*r~~~r~ ~
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The maximum value of u(t) (and also the time of its occurrence)

cannot be indicated in closed form as a glance at [2.2a] and [2.2b] will

show. The value umax, however, certainly does not exceed the limit

G = A + up max [2.9]

The (actual) forced radial displacement u p(t), which is given by [2.2a], can

be written in the form

u = U e-a t - U e2at [2.10a]
p 1 2

Here

u = P/( ) ; P/( =) ' [2.10b]
1 + 5 2 1 + 4a2

The maximum of u p(t) is reached at the time

ot = ln(2U /U) [2.11]

and has the value

u =  U/U 2  [2.12]

For t h O, up max represents the maximum value of u p(t) only as long as

T2 0, i.e. 2U _ U ; on the other hand, if 2U < U , then for t 0 the

maximum value of u p(t) is indicated by

u (0) = U - U [2.13]

From [2.12) and [2.13], and with [2.10b] it follows that

p max 1= p 3-- [2.14a]

and

u (0) = 4 . i + [2.14b]

(cf. [2. 6 a]). According to whether < 1 (2U > U ) or > y (2U U),
2 2 1 2 2 1

either

P 4r 1 + 4a 2

G = Ga = 4pW2  + 5 + 4a (1 + i2 )2  [2.9a]

or

P 4d 1282 '

G = Gb = E V + + a 1 + y + [ 2.9b]
b 0pw'[-+- e

- 1 11NOW11ai
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represents the upper limit for the maximum value of the radial displacement

u(t).
For = V Ga = Gb o= •

As we can see from [2.1], the factor P/(4 o 2 ) in [2.9a] or [2.9b]

represents the value of the radial displacement u in case a static internal

pressure in the amount of

Pstatic = [p(t)]max, thus Pstatic = [2.15]

acts upon the ring. (Cf. [1.2] and [1.7c].) Hence we can write

P = static [2.16]

The function g(S) = G(a)/ustatic thus represents the upper limit

for the quotient umax/Ustatic and likewise (because of [2.8]) for the quo-

tient o~max/o~static This function begins at a = 0 with the value g(O) = 1

and the slope* dg/da = 4; already at U = 2V' (thus a = w/V), g(a) reaches a

maximum value of gmax = 8/3 and from there on it drops asymptotically to zero

(Figure 2).

Hence, this course of the upper limit g(b) for the quotient

%,max/o static corresponds absolutely to the general considerations 
of

Section 1. (Concerning the validity of the formulae derived here beyond

i= 1 compare, however, the observations at the end of Section 5.)

3. THE TUBE

After dealing in Section 2 with the ring as a special case of the

tube, we now turn to the tube of finite length and also of (for the time

being) finite wall-thickness. Here also we presuppose that displacements

other than radial-symmetric ones need not be considered.

= + (1 + (- 2a) for 5

da + 24a + 2  (1 2d) for a V

herein

da= 4 1+ 5 2 (1 - 28')

so that the following holds true:

- fordd5
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2.0

for the Ring (q.: Tangential Stress)

For the radial displacement u = u(r,zt) and the axial displacement

w = w(r,z,t) we can apply the differential equations

&2u 1_Q u m 2 1 + M _W 2
-+ r r - r--' +  2g + 2 z = @ "

[3.1]
1 +MOU + 1 _ 2 2
2 -r Oz 2 U r2 ar2 O at

and the initial conditions

u(r,z,O) = 0, t = 0

[3.2]

w(r,z,0) = 0, t = 0

In [3.1] p denotes the density of the material; furthermore,

1 + M 1
- (1 - M)(1 + 2M) E, m -

where m designates Poisson's ratio and E the modulus of elasticity.

The tangential stress, radial stress, axial stress, and the shear

stress are given by

0 ( + M-+ M )

(u Ou ± wl
r = 0 • M u + -Ou + M Ow
r Or Oz)

[3.3]
-u ou 6w)(z = 0 M 1 + M ±+

rr Or Oz

2u +r w ith 1+M
rz z r wth & 2(1 + 2M) E

- 1IIII MIilliYl ill



If we assume that.besides the internal pressure p(t) no forces act
upon the tube, then there apply upon the surface of the tube for the radial
stress Cr or for the shear stress 7rz the following boundary conditions:

Or a -p(t) for r = Ri

r 0 for r = Ra  [3.4a]

rrz 0 for r = Ri and r = Ra

Furthermore, there apply at the tube ends for the axial stress oz and the

shear stress Trz the boundary conditions

aoz  0 and 7rz 0 for z = TL [3.4b]

Herein Ri designates the inner radius, Ra the outer radius, and L one-half

of the length of the tube.

Here we do not yet represent the internal pressure p(t) in the form
[1.1]; instead we first choose a more general representation which is more

suitable for the following calculations, namely

p(t) = Pne-t with a n _ 0 and P= 0 [3.51

The form of the differential equations [3.1] and those of the pres-

sure curve p(t) in connection with the boundary conditions [3.4] suggests the

following approximate solutions for the forced and for the free displacements

u and w:

u() = (P) with un = [Un (r) + n(r) cosh (nz)] t

[3.6a]

w( ) = wn(P) with wn = Wn(r) sinh (fnz)e-ot

or*

u =  uk(f with uk = Ak(r)cos(Ykz)cos(wkt)

[3.6b]

W(f) = wk(f) with wk = k(r)sin(Ykz)cos(wkt)

*For the sake of simplicity the approximate solutions for the free disTf
placem s are indicated in an incomplete manner only; the expressions u )
and wkrk in [3.6b] are to be supplemented in the following manner: k

(Continued on the next page.)



From the foregoing, according to [3.3], we obtain the following approximate

solutions for the stresses:

(p)
4,n

aP) = 0
r,n

= [ U + MU + (~ Un + MUA + MnWn)cosh(fnz)e-antr, n n r n

MU
r n + U ( M U  + " + MRWn )cosh(Bnz)] e-.nt+ U n n [3.7a]

Oz, = 0 * M (7 Un+ Un)+ [M (r! Un + Un ) + nW n cosh( nz )] e-ant

= A(fn8n + W' ) * sinh(n z)e-ant

rf k + Mk + MYk kcos(kz)cos(wkt)

ik + k + My k] cos (kz)cos (kt)

[3.7b I]

[M ( G+ Ak + k) kCk]cos(ykZ)cos(wkt)

k (-Ykk + Ck sin(Ykz)coS(wkt)

The functions of r, which occur in the approximate solutions [3. 6a]

or [3.6b], thus U n(r), Un(r), and Wn(r) or "k(r) and ik(r), must, because of

the equilibrium conditions [3.1], satisfy the following differential equations:

2P + _L_ u(+L -('un +Ut)=o
r r n

[3.8a]

*(Continued from the previous page.)

ukf) = [k(r)cos(wkt) + Ak(r)sin(wkt)]cos(ykz)

wk = [k(r)cos(wkt) + Ck(r)sin(wkt)]sin(Ykz)

The equations derived hereafter for the determination of Ak(r) or k(r)
apply in the same form also for Wk(r) or Gk(r). The differences between

Ak(r) and Ak(r) or between Ck(r) and k(r) become apparent only when one at-
tempts the complete determination of all these functions; the initial con-
ditions [3.2] serve this purpose.

(P)
rz n

(f)p k

f) =
r,k

Oz, k

Trz,k

- -- --- -0 = " 0111111111filimlIY
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n r2  2 - U n 2

[3.9a]
n n - n - n ) = o

or

+ + 1 - M 1 + M =

r2 2 r 2 [3.9b]

' 21 1 1 +(Ik )0
(-? + k) k - ( k e + ^ -t 2 Yk Fr k k =0

These five functions of r are fixed by these five differential equa-

tions (as the complete integrals of the latter); yet there are left altogether

10 (arbitrary) integration constants. Besides these integration constants,

the constants fn or yk and wk also remain at our disposal. However, the

boundary conditions [3.4] for the stresses and the initial conditions [3.21

for the displacements are now to be taken into consideration.

Because of the boundary conditions [3. 4 a] for ar and rrz applicable

to the surface of the tube, the majority of these (altogether 13) available

constants is fixed now by the fact that the functions of r for r = Ri or

r = Ra, which we are discussing here, must satisfy the following equations

(cf. [3.7a] or [3.7b]):

M U + Un = -P n/ or = 0 for r = Ri  or r = Ra  [3.10a]

M + U + MW = 0 for r = Ri and r = Ra [3.11a]
r n n nn

S+ W = 0 for r = Ri  and r = Ra  [3.12a]

r k + ' + MykCk = 0 for r = Ri and r = Ra [3.11b]

-Yk k + k = 0 for r = Ri  and r = Ra  [3.12b]

For the two integration constants contained in the complete integral

Un (r) of the differential equation [3.8a] the two equations [3.10a] represent

a non-homogeneous system of algebraic linear equations. Therefore, these two

integration constants can now be fully determined from them. The complete

integrals U (r) and W (r) of the (coupled) differential equations [3.9a] con-

tain altogether four (arbitrary) integration constants. For these the four

equations [3.11a] and [3.12a] represent a homogeneous system of algebraic

linear equations so that only the relation of the four integration constants

can be determined from them. From the disappearance of the determinant of

this homogeneous system a relation results between the constants Pn and the

, ,, 1.14AWINNIMMININOMNOWN il, ,,, ""4 6 ,10,1., lu~i I Y~lllrI II ihe liY i n ~



parameter an. Since the latter is given with the internal pressure p(t),

Pn is completely determined by the relation referred to.

The functions Ak(r) and k(r) determining the free vibration can be

dealt with in a manner very similar to the functions Un (r) and W (r). As

complete integrals of the (coupled) differential equations [3.9b] they like-

wise contain altogether four (arbitrary) integral constants, the relation of

which can be determined from the four homogeneous linear equations [3.11b]

and [3.12b]. From the disappearance of the determinant of this system of

equations results a relation between the two constants yk and wk. However,

in contrast to the parameter an the constant &k is not given, but is only

determined by the relation just referred to--for the time being, however,

only as a function of the constant yk,which is yet to be determined.

For the complete determination of the integration constants con-

tained in ^k(r) and Ck(r), the initial conditions [3.2] for the displacements

u and w* can be used. The remaining boundary conditions must then be used

for the complete determination of the integral constants contained in U (r)

and W (r) as well as for the determination of the constants yk (or wk); these

are the equations [3.4b] which are to be satisfied by the axial stress az
and the shear stress z at the tube ends, i.e. for z = tL. However, neither

rz
these nor the initial conditions can any longer be retained exactly without

contradicting the results obtained thus far. If we first consider the bound-

ary conditions, a glance at the equations [3.7a] and [3.7b] will show that

because of [3.4b] the following conditional equations which are valid for

the entire interval Ri  r - R (not only for its boundaries), would result

for the functions Un(r), Un(r), and W n(r) or Ak(r) and Ck(r):

M ( Un + Un) + [M . ( + n+ Pnlcosh(nL) =0 [5.13a]

(8n + Wn) * sinh( nL) M 0 [3.14a]

or

[M GL)k + rk] cos(kL) 0 [3.13b]

(-ykAk + C) sin(ykL) = 0 [3.14b]

Because of the equations [3.12a] or [3.12b] the equation [3.1 4a]

or [3.14b] is satisfied at least at the two limits (r = Ri and r = Ra ) of

its prescribed area of validity.

*Cf. with this the annotation on pages 10 and 11 as well as the qualifying

equation [4.12b] for k"

- -- 11111
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The equation [3.13b] can be maintained in the entire interval

Ri S r 5 Ra , if the constant Yk, not thus far determined, is disposed of in

such a manner that the following holds true:

cos(ykL) = 0 for k = 0,1,2,... [3.13'b]

However, the result of this is that the initial conditions for u and Ou/6t

at z = tL (thus at the tube ends also) can no longer be satisfied.

If finally in the case of the equation [3.13a] one is content with

merely satisfying it at the one limit of its prescribed area of validity--

thus e.g. for r = Ra--then [3.13a] can be used for the complete determination

of the integral constants contained in U (r) and W (r).

Also under the initial conditions [3.2] [which were to be used for

the complete determination of the integration constants contained in Ak(r)

and dk(r)], one must give up the idea of satisfying them in their entire area

of validity. This applies with respect to the (independent) variable z only

for z = tL, but with respect to the (independent) variable r we must limit

ourselves to satisfying the equation [1.2] only for a particular value, e.g.

r = Ra.

Further constants which might be used for the more exact retention

of the boundary or initial conditions are no longer available to us now. But

the fact that these conditions can, in every case, be satisfied at least for

a definite particular value r, namely one of the limits of the interval

Ri 9 r 9 Ra , suggests that for a tube of very slight wall-thickness, i.e., for

R - R
a.R [3.15]Ra

the solutions attempted here are at least approximately correct.

If we, therefore, limit our further considerations to thin-walled

tubes, we can then turn to the task of calculating the functions U (r),

Un(r),...as integrals of [3.8a], [3.9a], [3.9b].

4. THE THIN-WALLED TUBE

The integration of the (ordinary) differential equations [3.8a],

[3.9a], [3.9b] will succeed only if the dependent variables--Un(r), Un(r),...--

are developed in series. Since, for reasons explained in Section 3, we are

forced to limit very narrowly the interval (Ri 9 r 5 Ra) for the independent

variable according to rule [3.15], it is advantageous to develop according

to powers of the (non-dimensional) variable

= 1 -- [4.1]
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While r increases from Ri to Ra , h drops from the value

Ra - Ri [4.1a]
R

a

to zero. In the case of a thin-walled tube, therefore, the variable E (even

its maximum value H) remains very small compared to 1. Inasmuch as our so-

lutions [3.6] apply only approximately anyway, we are justified in breaking

off the power series, after the term h or--under certain conditions--even

after the absolute term.

In the qualifying equations for the variables Un(r), Un(r),...de-

rived in Section 3, there occur, besides these funct'ions themselves, also ex-

pressions such as U' I U , U".... For the power-series developments ofpressons such as U n  n

these expressions general formulae can be compiled. First, we write, there-

fore, for U (r) or U (r),...

V(r) = V," with h = - r

a

In this way, we obtain further:*

0h

av =0
--oo

V" Z )V+ 2 h1X=--V' (v + 1)(vV+ 2)+
Ra v= 0

V = V with V = Vo + V + ... + V

r av = 0

r Rav = V > hV with V = (v + 1)V + VV + ... + VVa v = 0

-V' =-1 VMhV with V= V + 2V + ... + (+ 1)Vv+
2 i 2

r Ra V = 0

*The following relationships are to be taken into consideration

00

1 1 1 1 1 . oy
r Ha T thus r Ra V 0

V' drV, i.e. V' = - 1 dh
dr' i.R a dh

- 1 ~~-IIIIII IY
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Using the power-series developments here described, we obtain

(through comparison of coefficients) from the differential equations [3.8a],

[3.9a], [3.9b] recurrence formulae (Rekursionsformeln) for the coefficients

UnY nv ...of these developments. By comparing the absolute terms of the

series the following relationships develop between the coefficients with the

subscripts v = 0, v = 1, and v = 2:

(a + 1)Uno + U - 2U = 0 [4.2a]
n no ni n2

S+- M # +U + M
(r .+1 i - 2 + 2 nWni = 0

[4.3a]

- o) + MW - (1 - M) 1 + (U - U ) = 0
n n no 2 ni n 2 n no ni

or

2 M ;F2 I + M( ) + 1 ko A +  k - k2 +  kki = 0
[4.3b]

( +yk)Cko ki - (1 - M)k+ 2 k (Ako - Aki ) = 0

For the purpose of abbreviation the non-dimensional quantities

n = an Ra  [4.4a]

n :n " Ra [4.5a]

or

Wk = k * Ra [14.4b]

k = Yk a Ra [4.5b]

have been introduced here.

If we now apply the power-series developments also to those qualify-

ing equations for Un(r), 0 (r),..., which resulted from the boundary condi-

tions [3.4a] (valid on the surface of the tube) thus to the equations [3.10a],

[3.11a], and [3.12a] or [3.11b] and [3.12b], we can no longer carry out a

comparison of coefficients since those equations are supposed to apply only

for r = Ri and r = Ra , i.e. for h = H and h = 0. For r = Ra , i.e. for h = 0,

however, the power series in question are reduced to their absolute term; thus

we arrive at the following relationships between the coefficients of these

developments, obtained still without the approximation method:

[4.6a]MUno - Un = 0

ulmlslIllmIYIth



MUno Uni + M nWno = 0 [4.7a]

P n o " Wnl = 0 [4.8a]

MAko " Ak + Mkko = 0 [4.7b]

kAko + kl = 0 [4.8b)

These relationships imply that in the power series into which the

left sides of the equations [3.10a], [3.11a]...can be developed, the absolute

term disappears every time. If we take this into consideration and if, in

order to avoid.higher values for the subscript v than v = 2, we break off

the series after the term with fi (the thinner the tube is, the more jus-

tified we are in doing this), then we obtain from the above equations with

r = Ri, i.e. with h = H the following approximation formulae:

* (MUno + MUn - 2U ) " -Ra Pn/ [4.9a]

MGno + MUn - 2U0 + M n - 0 [4.10a]

nU 2W 0 [4.11a]

MAko + MAki - 2 "k2 + MkCkl - 0 [4.10b]

kAkl + 20k2 O 0 [4.11b]

For the three coefficients Uno Uni, and U of the power-series

development of U (r) the three linear equations [4.2a], [4. 6a], and [4.9a]

form a non-homogeneous system from which these coefficients can be fully de-

termined. From the (altogether) six homogeneous linear equations [4.3a],

[4.7a], [4.8a], [4.10a], [4.11a] the relationship of the six coefficients

U to Wn2 can be determined; as can also the relationship of the six coef-

ficients Ako to Ck2 from the (altogether) six homogeneous linear equations

[4.3b], [4.7b], [4.8b], [4.10b], [4.11b].

The constant jn results (if the parameter an is given) from the

disappearance of the determinant of the above (homogeneous) system of equa-

tions for the six coefficients Uno to W n2 A simple calculation yields the

relationship

n . -2 + 1 - M2

n+ n [4.12a]
n -l M (1 + M) + (1 - M)(1 + 2M)

(Since an - 0 and 0 < M < 1, -n is real and positive or equal to zero.)

-I - -- " "~'M - MlNNl IMINI



From the disappearance of the determinant of the above (homogeneous)

system of equations for the six coefficients Ako to Ck2' a relationship results

between the constants k and Ok which is very similar to the relationship

[4 .12a] between n and & . Since, in view of the boundary conditions [3.4b]

applying to the tube ends, the constant yk was fixed by [3.13'b], however,

which for jk =k " Ra) resulted in the relation

r 2k + 1 with L = and k = 0,1,2,... [4.13]
L Ra

there follows for ik, after a simple calculation, the quadratic equation

S- (1 - M + k) + (1 - M)(1 + 2M)k = 0

Thus, if the subscript k is retained, we obtain two different values

for@2; and for k = 0,1,2,...co there are accordingly two series of natural fre-

quencies wk. The two positive roots of the above qualifying equation for @Rk are

1 /1(1 - M) * 1 + 2M -4M2 [4.12b]
S) (1 + M)2  k

Considering [4.13] one may derive from this for k>>1:

@% - . 2k + I 1i _ 2 [4.14]

kI 1+M k>>1 2 L

With increasing subscript k the series of the k thus tends toward a finite

terminal value, the series of the Fki however, tends to the value . The

lowest natural frequency is given by

r L . 4 M2.) 2 22 + 2M - +4 [4.12'b]

0 V 2  [ '0 F 0 (1 + M)2 o
Ra

with o = ir/2L; for the sake of simplicity it shall be designated only by

o0 in the following discussion--as was done in the introduction.

Of the six coefficients Iko to dk2 or of the six coefficients

Uno to Wn2 we have thus far only determined their relationship. The initial

conditions [3.2]* are used, for the complete determination of the coeffi-

cients Ako to Ck2. For the complete determination of the coefficients Uno to

Wn2j however, we can go back to equation [3.13a] according to considerations

in Section 3; this equation is supposed to have validity in the entire

*Cf. again the annotation on pages 10 and 11 (under consideration of the
fact that there ae two Aeries of natural frequencieswk). The relationship of

the coefficients Ako to Ck2 is the same as that of the coefficients Ako to Ckm.



interval Ri 5 r 5 Ra, i.e., in the entire interval 0 ;C i 5 H; at least, how-

ever, it must be satisfied for r = Ra , i.e. for E = 0. After carrying out

the power-series development, we obtain from [3.13a] by comparison of coef-

ficients

M * (Uno - U ) + [M (no- U ) ] + nWno]  cOSh(fnt) = 0 [4.151

The equations derived thus far in this section suffice to determine

the first three, or two, terms respectively of the power-series developments

for the forced parts of the displacements or stresses. In the final result we

retain from these developments only the absolute terms.* [In the case of r)

or 7(P) this absolute term disappears. In the case of (p ) we, therefore,
rz r

still indicate the term by h'; in the case of rrz however, this term also is

equal to zero.]

After a simple calculation, we can accordingly set up the follow-

ing approximation formulae for the forced parts of the displacements and

stresses

(p) = Ra N P ent + M2" (1 - M)cosh(.nZ)/cosh('nL)
HeO a + 1 - M a2 (1 + M) + (1 - M)(1 + 2M)

n = 0 n n
[4.16]

Ra  N P e-' t  1 M " - M "cosh(.nZ)/cosh(#nL)
w 2( )HO O + 1 - M2 2 (1 + M) + (1 - M)(1 + 2M)

n = 0 n n n

and

1 N P e - [e"t  M2  (1 - M)cosh(nZ)/cosh(#nL)
.n I M2 - n a .

H o+ - Ma ' (I + M) + (1 - M)(1 + 2M)n = 0 n  n

F N
aP) =" Pne
r H 2' ne-t

n = 0N P [4.17]

-p) = * M • (I - M) 2 + 1 - M2  * - cosh(8Z)/cosh(. nL
H = 0 n

(P) = 0
rz

In contrast to this, the free parts of the displacements and

stresses are extremely complicated;** their numerical calculation, therefore,

*Compare with this the remarks at the end of Section 5.

**Exc eptions to this are only radial stress and shear stress; a(f) 0'X r
and -(f=) 0.rz
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would be quite protracted. Nevertheless, we can already answer the funda-

mental questions of the problem here under discussion, if we do not know any-

thing else of the free vibrations but their frequencies, and particularly

the lowest natural frequency, thus wo (= wo). This will manifest itself in

the following section where we shall apply the information here obtained to

the tube dealt with in report II. Before we turn to that task, we still

state the radial displacement u(P) or the tangential stress a(P) for then *,n
special case an = 0. Since 'n, according to [4.12a],, disappears with cn,

we obtain from [U.16] or [4.17]

u(p R ( 1 + M [4.16']
0 ( - M)(1 + 2M)

or

PSa= 0 1]

It follows that for a static internal pressure p = Pstatic the

radial displacement

static = R static * 1 + M [4.16"]

0 (1 - M)(1 + 2M)

or the tangential stress

' static =  static [4.17"]

results.

5. NUMERICAL EXAMPLES

We shall limit the following numerical considerations to the forced

parts of the radial displacement or of the tangential stress as it applies

in the middle of the tube, i.e. at z = +L. For these quantities, we obtain

from the approximation formulae [4.16] and [4.17] the expressions

=Ra N P e"t M2 (1 - M)/cosh(nL 5.1a]
[u(P)]z = a 1 + [5.1a]z 0 n n -+ 1 - M an(1 + M) + (1 - M)(1 + 2M)

or

1 N P e-ant M (1 - M)/cosh(#nL)

[ =P)] n = 0 n + I - M2 n" (1 + M) + (1 - M)(1 + 2M)

[5.lb]
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with

&n n *Ra [5.1']

and

&2 + 1 - M2
an n [5.1"]

y a -i2 ; (1 + M) + (1 - M)(1 + 2M)

(cf. [4.12a]).

We presuppose for the internal pressure p(t) the form

p(t) = P (e-at - e- at ) with a > 0 [5.2]

(cf. [1.1] and Figure 1) on which the numerical considerations were likewise

based in reports I and II. Equation [5.2] follows from the more general form

[3.5] inasmuch as in the latter the following equalities are assumed:

N = 1, Po = P, P I = -P, ao = a, a = 2a

For a specific time value t, [u(P ) ] = 0 or ['(P)]z = 0 is to be com-

pared in each case with that value ustatic or oastatic which would result

under static internal pressure in the amount of pstatic = [(t)max, i.e. ac-

cording to [5.2], Pstatic = P/4 (cf. [1.7c]). From [4.16"] or [4.17"] there

follow for these quantities of comparison the expressions

u R P 1+ [5.a+ M
static = [5.3a

H 40 (1 - M)(1 + 2M)

or

,static = [5.3b]

As a quantity of comparison for the velocity [ t - = 0 we shall

use the expression

(e_ R a P [5.3'a]

For M = 0.385 (m = 3.60) in the case of a tube, half the length of

which is 4.7 times as great as the outer radius (thus at L = 4.7), there

results for the non-dimensional quantity = Ra fr m [.12b]

the value 00 = 0.3. (The numerical values used here for M and T, were also

used in report II.)

The three .parameter values a = ot or an or am, which were used in

report II for determining the linear relationship between umax and a,

yielded for the corresponding non-dimensional quantities 5 = a Ra

with R1 = 1.11 . 10- 5 sec (cf. [1.4]) the values
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az = 0.35 " 10-2, Un = 0.35 • 10 1, &m = 0.35

Hence, the parameter am(= &im. - *) is alreadj of the order of

magnitude of the lowest natural frequency wo(= Mo R * of the tube.

We have now calculated for the above values of 5 as well as for

the additional ones

5 = 0.50, l = 0.70, and 5 = 1

the following quotients:

[' max z = 0 x z 0

'0 static Ustatic

[u(p)]t = 0 [ t = 0
z = 0 a t z = 0

ustatic

(As the formulae compiled at the beginning of this section demon-

strate, numerical data other than those for the quantities M, L, and & are

not necessary for the calculation of these quotients.)

The results of this computation are tabulated below.*

) ] (P)] [u(P)]t = 0 u(p ) t = 0
[0 P)maxz= z = 0 z = 0 at z = 0
o static ustatic ustatic P/(H )

0.35 " 10- 2  1.000 1.000 0 +4.44 . 10- 3

0.35 " 10- 1.003 1.008 0.035 +4.36 . 10- 2

0.35 1.20 1.16 0.95 +0.156

0.50 1.29 1.22 1.18 +0.082

0.70 1.33 1.235 1.235 -0.026
1.00 1.14 1.05 1.05 -0.128

They demonstrate clearly that the maximum value of the total tangential stress

a, can no longer increase linearly with a when & has noticeably exceeded

the value 0 (=0.3). As the second column of this table will show, the max-

imum value of the forced part of a. is already smaller at & = 1 than at

F = 0.70. Columns 4 and 5 show that similar deductions probably apply for

the maximum value of the free part of a. also (which cannot be calculated

directly). Since the free vibration derives its energy from the initial

values of u(P) and au(P)/at, a continuous increase of the initial values of

u(P ) and Ou(P)/Dt also would have to result if a continuous increase of

*For az, an, and am the values for the two quotients mentioned first

coincide well with those which are on the graphs attached to report II.



C(f) with a should take place. The initial value of u(P), however, is al-
0 max
ready smaller at = 1 than at 6 = 0.70, and the initial value of au(P)/t

even goes through zero between a = 0.50 and & = 0.70.

Thus the statements we made in Section 1 appear to be proved. Now

we shall suggest briefly the reasons why we have carried out our calculations

only up to the value & = 1 and not at least up to the value dir = 3.5 (thus

am > 10 0 ) which appears in the table of report II. For this purpose we go

back to the equations [4.2a], [4. 6a], and [4.9a] from which the c9efficients

U no, Unl, and Un2 of the power-series development of Un(r)can be determined.

From these we obtain

Un = MUno and 2U = ( 2 + 1 + M)Uno

with

U P 1
no j 0 a2 + 1 - M2

n

The approximation formulae [5.1a] or [5.1b] for the forced radial

displacement or tangential stress resulted from [3.
6a] and [3.7a] after car-

rying out the power-series developments by ignoring in these power series

even in the final result already those terms which contain coefficients with

the subscript v = 2, thus especially the above coefficient U . This is no

longer permissible as soon as the parameter an >> 1. In this case, as a

matter of fact, Un2 >> Uno, and the terms which contain this(large) coefficient

U n2, can, despite the smallness of h (or H) no longer be neglected then as

compared with terms with a lower power of h.*

6. SUMMARY

The problem concerning the precise relationship between the increase

of the internal pressure p(t) and the maximum value of the tangential stress

o in a (thin-walled) tube, which was raised by the reports I and II men-

tioned in Section 1, is being brought up again. In this investigation we are

particularly interested idi the question whether a linear increase of this

maximum value along with the parameter a which determines the pressure in-

crease (such as the linear increase deduced numerically for a definite tube

from three examples in report II) still applies even when the parameter a

has exceeded the order of magnitude of the lowest natural frequency wo of the

investigated tube. The formulae required for this investigation are again

*Also the formulae derived in Section 2 for the ring do not apply to any

value of a, however large.
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set up in Sections 3 and 4. In applying the discovered results it is being

proved in an indirect manner in Section 5 that the maximum value of the tan-

gential stress can no longer increase along with the parameter a as soon as

a has exceeded the order of magnitude of wo. At the same time, it is also

shown that a calculation of a,, according to the approximation formulae de-

rived here or previously in report I, is no longer permissible when a >> o,

i.e. when the pressure increases so sharply that it has a "shock-like" effect

upon the tube.

As we have shown in Section 2, in the case of a ring (as a special

case of the thin-walled tube) the fundamental questions of our problem can be

dealt with much more clearly than in the case of a tube of finite length.

Hence, in the case of the ring we are able to give an upper limit for the

quotient aomax/om static where 'Ostatic represents that value of a. which

would result under static internal pressure in the amount of Pstatic =

[p(t)]max . This upper limit reaches its maximum value, 8/3, at a =~W.

PRNC-1410-6-22-49-75



3 9080 02993 0093




