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THE ELASTICITY PROBLEM FOR THIN SHELLS OF

TOROIDAL, SPHERICAL, OR CONICAL SHAPE

The elastic theory of thin shells which are formed as surfaces of

revolution and which are loaded with axial symmetry, requires the integration

of a total differential equation of the fourth order. Even in the simple

cases this equation is difficult to solve.

In the present paper I intend to show that a reduction to a second-

order differential equation occurs if the curvature of the meridional surface

is constant, such as in the case of the sphere, cone, and torus. Also, I

will develop a method for the integration of this equation and thereby make

possible the strength calculation of such shells. This is of importance in

industry, since pressure vessels of these shapes are frequently utilized.

Also, the theory of spherical arches is consequently solved.

1

Let P (a) be a point on the meridian of the middle surface of the

shell, a the angle that the normal to the meridian makes with the axis of

rotation, R the radius of curvature of the meridian, and PC = R the second
1 2

principal radius of curvature of the surface at P.* We pass through P an

x-axis along the tangent to the meridian, a y-axis along the tangent to the

parallel circle, and a z-axis along the normal to the inner surface. The

shell has the constant thickness 2h, and the loading per unit area of the

middle surface has the components X, Y = 0, Z, which may be given functions

of a. If we consider a section normal to the middle surface of the shell

along the parallel circle through P, then the following forces act on an ele-

ment of unit length of this shell:

(a) Tensile stresses uniformly distributed over the shell thickness

and having the resultant T ,

(b) Normal (bending) stresses whose magnitudes increase in proportion

to the distance from the middle surface of the shell; these stresses are

statically equivalent to a pair of forces of moment G ,

(c) Shearing stresses in the z-direction with the resultant N (see

Figure).

*I employ essentially the notations and formulas of Love-Timpe, "Lehrbuch der Elastizitt,"
Chapter XXIV, Leipzig, Teubner, 1907. In the notes, the figures given in brackets [] and preceded
by L-T refer to the formulas of the theory developed there.



2

On a meridional section through P there

act analogous stresses of resultant T and the mo-
2

ment G per unit length. Here the symmetry is lack-
2

ing because of the shear.
*+ +x Between the five stress components T, G,

A' N, T , G there exist the three equilibrium equa-
2 2

Stions:*

(T R 2 sina)' - T 2R1 cosa - NR 2 sina + R 1 R 2 Sina X o,

(N R sincc)' + T R sina + T, R 1 sina+ R1 R2 sina Z o, [ ]

(G1R2 sina)' - G2 R 1 cosa - NR 1 R2 sina = o.

The prime here as well as in the following denotes differentiation

with respect to a.

From the first two equations one obtains the integral

R2 sina (T 1 sina + N cosa) - F(a),

where [2]
F (a) = fR R2 sin a [X sin a + Zcosa] d a + constant

The magnitude of the constant results from the static interpretation of the

integral.

Let u, w be the displacements that the point P (a) undergoes in

the x and z directions respectively, and let e , E be the normal strains

at P in the x and y directions respectively. Then**

U -W UCOt a-,
El R1 2 R2

and the elastic relations yieldt

I T r ) [4]x= Eh ( T 1 -- T2), E 2 - [)

Here E is the modulus of elasticity of the material and a denotes Poisson's

ratio.

In addition we may put t t

I u+w" cot a (u + w'S(u RI [5]

*L-T [45], [46]
**L-T [21]
tL-T [36']

tt,-T [26]



The quantities X 1,x,, the so-called changes of curvature, are related to

the moments of the stresses as follows:*

G=-D[x 1 + ax2 ], G2 -D(x 2 +'Yx 1),
D= 2Eh' [6]

3(1 -) "6

By means of Equations [3], [4], [5], [6] the displacements u, w

can be introduced in the equilibrium Equations [1]. If one then eliminates

N, there will result two simultaneous differential equations for u and w as

functions of oa.

2

For a spherical shell Reissnerl has obtained a symmetry in the

fundamental equation by introducing stresses and deformations in place of

the displacements u, w. This can also be obtained for the case of the gen-

eral surface of revolution and, as is shown here, is of fundamental impor-

tance.

As a fundamental variable we choose

V = NR. [7]

The first two equilibrium Equations [1], then become

I I F(a)T,-- cot a V - (a), [8
R, R, sin2a 8

T -- V' + H(a),

where

H F() RZ [8']
R, sin2a

H depends upon the loading.

As a second variable we choose the expression

U* Rx, tan a U+W [9

*L-T [37']

-*TranslatorIs Note: This equation evidently contains a misprint; it should read

D 2E h3

3(1-e2)

1 References are listed on page 15.
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so that [5] becomes

I cota
x1 U*' X2 = RU*. [10]

The last equilibrium Equation,[1], then becomes

O= U*" W)+R-cot a U*'U cot'a + o
R, -- --D-"

Now we introduce the linear homogeneous differential operator

S d [Rsinad( )' RCo2
sinada L R da-J

The preceding equation may now be written more simply in the form

L(U*)-aU*=-- [I]

A second relation between U* and V gives the condition of compati-

bility, which is found as follows:

From [3] we have

w=cosina. ER -- E2R2 da,

W Ccos a -flR1- ek-R2 da - R2 E
Ssina

and consequently from [9] we find that

U*R= [ (R2E)' + cot a (R1j, - R2Ed),

which because of [4] transforms into

2Eh -U* -R, = - (R T,)' + o (R, T,)' + cot a { R, T, - oR, T, - R T + o R TI).

If, by means of Equation [8], one now introduces the quantity V, then

,R, K oo R, R
2EhR 1 . U*= V" + 2R +cota VV cot2ao +(a),

where

= (a) c R R, - + (RZ)'-R, (R + dR)X [12]

Actually, the differential expression analogous to that of Equation

[I] appears here, so that this relation may be written in the form

2Eh. R, -U*= L(V) oV + . [II]

For normalization, we write

IIY IYIYIIIIIIYIIIIYIYIYIYYIIIYIYIIIIIII ii ii
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Then Equations [I] and (II] become

L(U)-- GU=iRI. V, [I']

L(V) + 6V= iAR, U-- . [II'

The quantities U and V are determined from these two simultaneous differential

equations.

3

Elementary particular solutions of [I'] and [II'] can be given for

the sphere and cone for practically all important cases of loading. In the

following the case of the homogeneous system of equations (,P=o) will be

treated first of all. This corresponds to the unloaded shell.

For the case o==0 , the elimination of U gives for V the fourth-

order homogeneous differential equation

(L(v) (V )+5-L(V) V [III]
R,_ - ± +  Y oR1 T T

An analogous equation holds for U.

If we now assume that the meridian is a circle (which is true of

the sphere, the torus, and the cone in the limiting case), then R is con-

stant, and if in addition

22R12 - o"2 =x

then [III] now becomes simply

L L(V) + x2= V=, [IV]

The same equation is also satisfied by U.

However, this equation separates into the conjugate second-order

equations

L(V) + ix V = o, IV1 ]

L(V)-ixV= o, Iv ]

The entire elastic problem depends upon the integration of these equations.

The solutions of [V ] are simply the complex conjugates of the solutions of
2

[V1] so that one can essentially restrict oneself to [V ].

For the torus, the center of whose meridian circle is at the dis-

tance a= yR, from the axis of rotation,
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a+R, sina sina +/1
R- S Xsin a sin ce

L(V) sin V + cota V'- cosasin a sina (sina + I)

and if one substitutes x=sina , then [V] becomes

d2 V dV(
(IX)(I-X) d Ij (@ + x (II - ) - X-- x () [ X - XX ( + X) V=o.

This is a linear differential equation of the Fuchsian type with singulari-
ties at x==+,--u , and -.

The exponents corresponding tox=+iare equal to 0, 1/2; those
corresponding to x=--j are equal to+1 , and those corresponding to x=oo
are the roots of

S-- -- (I + ix)= o.

If the meridional circle does not intersect the axis, then the
singular point x-=--I lies outside of the points +1 , and one can give the
solution as a power series without difficulty. This series converges for
--r<x<:. Also, by application of the general theory, the nature of the
function V can be investigated.

For brevity, I prefer to discuss completely only the simpler cases
of the spherical and conical shells and to withhold the discussion of the
torus until later.

4
The Spherical Shell

For the sphere:

R, = R, = R; P=o
L(V)= V"+ cota. V' - cot'taV,

and from [12] we have

,= RI [Z' - ( ) + o)X], [1 4]

so that the nonhomogeneous equations [I'] and [II] become

L(U)-aU=i2RV, [151

L(V) + aV=i2RU-R'[Z'--(+o)X]. [15 2

We must find particular solutions of these equations for techni-
cally important types of loading, and then, in order to be able to satisfy

ii MIII4Y0Y I IUMI MUIY INI1 A~~ i MEEE MY IMYIIII III IIIY



the general boundary conditions, we will superpose the solution for the un-

loaded shell. The latter necessitates carrying out the integration of [V ]

which becomes

V" + V'cota- Vcot 2 a + ixV=o. [161

5
Particular Solutions

(a) Constant surface pressure p: In this case X= o, Z = p, ,== o, and

U = o, V = o satisfy Equations [15]. This leads essentially to a closed

hollow sphere under external pressure. On every section there occur uni-

formly distributed tensile* stresses

Ti T2 P R; G~G2.=N=o) -

(b) Loading due to its own weight: If y is the specific weight and F

is the weight of the shell per unit area of the middle surface (r==2h), then

we have for an axis placed vertically**

X= Fsina, Z Fcosa,

tP - R 2F(2 + o) -sina.

If we observe that

L (sin a) - sin a,

then we easily recognize that the equations can be satisfied by means of the

relation

U=Asina, V=Bsina

if A and B are appropriately chosen.

(c) Spherical shell rotating uniformly about its axis: If w is the

angular velocity, then the inertia forces are regarded as the loading, and

they have the components per unit area of the surface

X = sin a cos a, Z= - rsin2 a,

where

V=2 7 ho2R
g

and

45-- Rr (3 + o) -sina - cosa.

*Translator's Note: This is evidently a misprint and should read "uniformly distributed compressive
stresses."

**Essentially the same equation holds if the spherical shell is accelerated (in translation) in the
direction of the axis.

,1 1 1M IEI0
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The observation that

L (sina cosa)= - 5 sina cosa,

shows that the expression

U= - RC sinacosa, V -- RC 2 sinacosa

gives a solution of [15], as soon as one puts

(3 + o) 7 R w

+ 3 ( --j2) R

(3+ + )(5 + o) 2h
3  .(o2

C2 2
i 5'-2 h3 G2) J -- + o) R

We then obtain from [8] and [91

T1 = C, cos 2
a,

T2 - C, cos2a + rR sin2 ca

G, = DC 1 [cos 2 a + 6 cos"a],

G, = DC, [cos' a + ( COS 2 a],

and recognize that this solution corresponds to a completely closed sphere

free to rotate uniformly about a diameter.**

6
The Unloaded Spherical Shell

This necessitates the integration of [16]. We substitute in that

equation

V= sin- S, x=sin2a [17]

and obtain

d2S + dS I -s ix
- I)dx 2  

\2 x- x 4

*Translator's Note: The denominator of this equation evidently contains a misprint and should read

3(1-vu2)1 + 52 _a h2

3(1-v2) R-

*HIf the quantity 3-aTi  is small compared with unity, the flattening of the sphere is given by

3 (2 + a) , where V is the peripheral velocity at the equator.

ii1iiI YII *i inin* hIIdMIH iM IYYYI
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This is a hypergeometric differential equation for S(x) with the exponents
2

a 0 , a=- I at x-o,
I

=--, y=o at x=xI,
2

3+W 3-W
4 4

where

W= 5 + 4ix at x =oo

A first integral is thus the hypergeometric series

S,= 3
+ W , 

3-W W 3 2--W2 (3'--W)(7'--W') [191
4 4 2, x 2 2! 31

A second integral is of the form

S, = 1gx. S + (x), [20]

where the power series V(x)as well as the series [19] converges for all Ixj<.

The general coefficients may be given
3 in slightly simpler form than for the

series [19]. By virtue of [17] the integrals [19] and [20] correspond to the

two integrals V , V of [V ]. If we separate real and imaginary parts
1 2 1

V= I,+i1 2 = sin a S, V 2 = ,3+i1,= sinaS, [21]

then by virtue of [V ]

L(I) = x12 , L(1 3)= x,, [22]

L(I,) = -x1 , L(1 4) = - x 3.

We can recognize that the general solution of [4] is of the form

V = c, I, + c, I2 + c313 + , 4. [ 23 ]

where the ci's are constants of integration. We obtain from [15 2 ] where

ijRU= 2EhRU*=L(V) + V,

and then, because of [21] and [22], we find that

U* = ((;c,-- xC2) I + (xc 1 + c 2) 12 + (oc 3 - xc4) 13 + (X oc34) 14. [24]

Therefore the mathematical part of the problem is disposed of. We may obtain

the values of the constants of integration c i from the edge conditions pre-

vailing at the boundary of the shell. If, for example, the shell is closed

at the crown(a = o)then the stresses there must be finite, and the integrals

,I 11illllrll4
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I and I do not appear (CS = C4 = 0). Along the free edge of the shell any
3 4 4

boundary conditions compatible with the equilibrium conditions can be satis-

fied. For a shell that is open at the crown, I and I do appear. Therefore,
3 4

one must satisfy additional boundary conditions at the edge of the hole.

From the form of the integrals I and I we can easily deduce the
3 4

following relation:

If the inner edge of the hole is stress-free, then the stress

components T , G assume values there such that, when the diameter
2 2

of the hole decreases to zero, the values are double those values

which under otherwise equal conditions would prevail at the crown

of the shell without any hole.

Thus the known result for a plane plate is extended to the spherical

shell. It illustrates the danger of a hole or a small crack on the strength

of the crown.

7
In the previous section, the elastic theory of spherical domes is

reduced to the numerical calculations appearing in the power series [19] and

[20]. The region of convergence of these series is to be taken into considera-

tion. That these series are useful in practice is shown in work by Bolle

now being carried out under my supervision.* It is clear that one can make

use of the relation that exists between the hypergeometric developments in

powers of

x - sin 2a and - x= cos2 a

for attainment of better convergence. Also, it is of interest to compare

the results of the exact theory developed here with those of the approximate

theories due to Blumenthal4 and Reissnerl which are developed by asymptotic

integration.

8
The Conical Shell

Stodola5 was the first to treat the problem of the conical shell,

when he introduced the power-series expression for the displacement into the

*Translator's Note: This work was published as "Festigkeitsberechnung von Kugelschalen" von der
Eidgenbsischen Technischen Hochschule in Zifrich, L. Bolle, Ziirich, 1916.

iililM llm lll lllllil ,l 1 . 10 1 d , i ,



differential equation. Here a simple theory for these shells results as a

limiting case of the development of the second section of this paper. There,

we may take R1a==x and pass to the limit, R=oo . If f denotes the half apex

angle of the cone, then

lim cot-9.L( )=x d2x d( ) = ), [25]
R,= R dX2 dx x

l o F, (x) d(x Z) _X , 26]
lim cotP - + tan [6. x= 1,2
R,= x cos . dx

where

F,(x)= fx(X cosp + Zsinl) dx. [26 ]

The fundamental equations [I] and [II] become

'cot [VI]A(U*) = - D,
A(V)= 2Ehcoto. U*--Q1. [VII

In addition we have, in place of [8], [9], and [10],

T V F
S xc os# [27]

d V ___ dF+ j
dx- cosj dx '

dw dU* U*
U*= X ddX X2 =- [281dx dx x[28]

from which after determination of U* and V the stresses and deformations can

be calculated.

9
Special Solutions

Again, for the most important cases of loading, particular solutions

of [VI] and [VII] are given, whereupon we further limit ourselves to the ho-

mogeneous equations.

(a) Constant surface pressure p:

Here
X=o, Z==p, $-3 tan P.p. x+

2 X

where c is a constant

We observe that for every n
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A(x~)= (n2- 1) x,-1. [291

We then immediately find the solution

3 tan2/'P c tahOlt I V
=

o.

4 Eh 2Eh x

Thus in this case no shearing force exists; at the edge of the shell eccentric

normal pressure must be exerted. At the apex of the closed cone c = 0, and

from [28] it follows that

3 tan
2f

w= - . X2 ,7 Eh '

The cone thus bends into a paraboloid of revolution.

(b) Cone loaded by its own weight or by axial acceleration: As in the

case of the sphere, we have

X= Fcosfl, Z=Fsing, = ax+-,
x

so that again the relation

BU=Ax+- , V=ox

gives a solution.

(c) Cone rotating with uniform angular velocity about its axis: Here,

X=rsing.x, Z=-rcos.x,

- = -.2h -sin,? 
-  

2

and

c
1 =-(3 + o) sin r- x

2 - --
x

By virtue of [14] we can determine the constants A, B, and C in

B
U*= AX 2 +-, V=Cx

x

so that the equations [VI] and [VII] are satisfied.

10
The Unloaded Conical Shell

Here we have

x

where c denotes a constant which is zero for the closed cone. By observation

of [13] and putting

- - ~~~~'-IIIIIIIIIIIYIIIYYII ii

~i-'-1Y*ii~~ru*arnll~r r~~ ^ -~~~xT)U"~-j~l^L' i~i~um~aY"~-~*~P~u~rUriE-r r~~~~'r
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= x. .cot 3,

d2() d() () A
d zg dg g cot 0

and substituting in [VI] and [VII] the expression

2 ctan$ I
u* = i. -1w +-*" -

2Eh 2Eh x

we obtain

A* (W)=iV, [VIII]

A*(V) =iW. [IX

In these equations only pure numbers appear as coefficients. Elim-

ination yields

A* A* (V) + V=o, [X1

A*A*(W)+W=o. [X21

Equation [X ], for example, may be separated into

A*(V) + iV=o, [301]

A*(V)-iV=o, [302]

The problem is reduced to solving these conjugate second-order equations.

They have singular points at #=o,o. The exponents for g=o are 1. Thus there

exists an integral V of [30 ] which can be developed in a power series con-

vergent with respect to i. The use of [29] immediately leads to the equation

V (X -)(+ 1)!

Separating real and imaginary parts, we have

V = 11 + i12 ,

where

I -- (2 -1 ) ( -x)!'

- 1)[31 (2

(2Z - 2)! (2 )!

are real power series, which can be tabulated immediately.

A second integral of [30 ] is of the form

V2 = log VI +~ ~) =I 3 + i14 [32]

where '()denotes a power series. Here also the functions I and I can be
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tabulated. By virtue of [301 ] the following equations hold:

A*(I = I , A -, A*(A*(I I,, A*(I,)= - 13s,

and the function I thus satisfies the differential equation [X 1]. Conse-

quently

V = 11, + c,2 2 + c, + c,,14 , [33]

and from [IX] we have

W = - iA*(V)= - i [c1 -cl + c,,- c,4 ,], [ 34]

whereby the problem is solved.

For a cone that is closed at the apex, c = c = 0 once again.
3 4

Because of the form of the integrals I and I there again follows a result
3 4

concerning the stresses at the hole analogous to that given for the sphere

at the end of Section 6.

The elastic theory of conical shells is considerably simplified

because essentially only the four pure numerical quantities I, ... I ap-

pear, and they can be calculated once and for all.

I have examined the practicality of the method developed in regard

to numerical computation while checking Stodola's work.5 Further calculation

is being undertaken at the present time by F. Dubois.

11
I close with the following remarks:

If a case of loading exists for which a particular solution cannot

be stated immediately, then we must solve the nonhomogeneous system of equa-

tions [I'], [II']. If R is constant, the elimination of V gives an equation

of the form
LL(V) + X2 V= p(a).

Here,O(a)is a known function dependent upon the load. In order to

obtain from this a particular integral Vo , we seek to determine a function

r(a) from the second-order differential equation

L (p) -- i x = (p

We can then set up the equation

L(Vo) + ixVo= =aV,

which is again of the second order. The problem is thus reducible in this

case also.

IIII Iid lIllullk lli , , ll Ili,,n kdl
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