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CONTRIBUTION TO THE CALCULATION OF TURBULENT BOUNDARY LAYERS*

by

J. Rotta

1. INTRODUCTION

In judging the flow conditions about a body and especially in esti-
mating its resistance to flow, the behavior of the layer of fluid adjacent to
the body, which may be either laminar or turbulent, is of great importance.
Zt 1s true that the physical conditlons for laminar boundary layers have been
clarified and the mathematical problems involved have also been solved to the
point where methods of calculation are available for use in actual practice.
The exact calculation of turbulent boundary layers, however, 1s still impos-
sible. The well known methods of approximation! can be improved if one con-
siders that the kinematic viscosity » and the geometrical configuration of the
wall (wall roughness) only influence the velocity profile near the wall in a
layer 0. which is very thin compared with the boundary-layer thickness 0 and
that with proper normalization the flow quantities in the remaining zone of
the boundary layer appear to be almost independent of viscosity and wall
roughness.

2. BOUNDARY-LAYER EQUATIONS

The following statements are limited to flows of an incompressible
fluid that are steady on an average. Let the x-axis be taken parallel to the
wall and let y represent the normal distance from the wall. On a two-
dimensional mean flow which has in the x- and ¥-directions velocity components
Uand V averaged with respect to time, there is superposed a fluctuating tur-
bulent motion, varying in time, with the components u, v, and w which are al-
ways three-dimensional. Integration of the boundary-layer equation for a
plane wall

ou ou

__9p Ot [2.1]
Q(UE+V’a—y>‘ 32 T3y ‘

*A more detailed description is found in: J. Rotta, "ﬁber die Theorie der turbulenten Grenz-
schichten," Mittellungen aus dem Max-Planck-Institut fir Strémungsforschung, No. 1, G¥ttingen, 1950.

lReferences are listed on page 20.
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in which p represents the time average of the static pressure, ¢ the mass den-
sity of the fluid, and

r=g(v§—g—zﬂ;> 4 [2.2]

the shearing stress in the xy-plane, averaged with respect to time, leads,
with the aid of the equation of continuity

oU |, oV 2.3
ox oy 0 [ ]
and the corresponding boundary conditions

y=0: U=0; V=0; wW=rtl=1=0
T

— A
y—>d: U—>U;; u2—0; -0, w2 — 0 [2.4]
to the familiar momentum equation
d dU. T -
a—x(Uféz)+U161—a—;=?° [2.5]
Here
; U
0,= | (1—=-d [2.6]
= [ (g ar

represents the displacement thickness,

62=fm%<1—%)dy (2.7]
0

\

the momentum thickness, U; the velocity at the outer edge of the boundary
layer and 7, the shearing stress at the wall.

The mean value, with respect to time, of the product uw of the fluc-
tuating orthogonal components which occur in [2.2] is to be regarded as an
additional unknown which does not exist in laminar flow. We must now look for
additional relations to establish a connection between this unknown wv and the
remaining flow quantities. We find such a relation, for instance, in a bal-
ance of the tir~ averaged kinetic energy of turbulence per unit mass

| poEtTw 2.8)



where the bars again indicate the average value with respect to time. Accord-
ing to such a balance, first stated by L. Prandtl,® the convective change in
the turbulent energy per unit time (the total or substantial derivative) is
,’ equal to the difference between the energy transferred from the\mean flow
(work of the mean stresses) and the sum of the energy transformed into heat by
friction (dissipation S) and the energy exchanged with the neighboring points

(diffusion of energy Q). Using the familiar boundary-layer simplifications
this energy balance assumes the form

Q(Ua_E+V2E) :ta_l_j —0S — 2 [2.9]
ox dy y dy
' e —a—— p— m— ~—
Convective change Energy Dissipation Energy
in the energy of transferred diffusion
turbulence from the
mean flow

" Here the dissipation per unit mass is

Szy[(aa_l;)2+2(g_:)2+2(%)2+2(%¥)2+(37w+3_:~)2+.(%+%g>z+(g_;+%)‘] [2.10]

and the energy diffusion in the direction of the y-axis

0=—v(§—f+?£)+v(“’+';ii“;’+i;~) © [2.11]

. p designates the fluctuations of pressure with respect to time. By 1ntegrat-
ing over y we can then develop an energy-integral theorem of form

oo
1d 4
= = 3 =
> 7= (U3dy) D +dfoEdy [2.12]
Energy d ‘ :
ergy decrease Dissipation -
Increase in the
of the mean
1 turbulent energy

where the energy thickness 1is

_Tu U\
and the dissipation function

D=‘dey [2.14]
(1]
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While the momentum equation [2.5] has the same form for both turbu-
lent and laminar boundary layers, the energy equation [2.12] is characteristic
of the behavior of turbulent boundary layers. The energy losses of the mean
flow are firsf essentlally transformed into the kinetic energy of turbulence
which in turn is then converted into heat by friction. Equation [2.12] ex-
presses the fact that the transfer of the energy of the mean flow into the
energy of turbulence and the transformation of the energy of turbulence into
heat need not take place at the same point. If the fluctuation velocities
are allowed to approach zero, we obtain from [2.12] the energy equation for
laminar boundary layers stated by K. Wieghardt.® ‘

o

1 d oU\?
0
3. SEPARATION OF THE BOUNDARY LAYER INTO A ZONE NEAR

THE WALL AND AN OUTER ZONE

At distances from-the wall which are small compared with the
boundary-layer thickness 6, the shearing stress 7 does not deviate perceptibly
from the shearing stress 7, at the wall and the flow conditions in this zone
are practically independent of the pressure gradient 9p/dx. As is well known
experimentally, the viscosity and the wall roughness exercise a direct in-
fluence on the flow processes only in a layer of thickness 4, adjacent to the
wall. If this thickness 6, 1s sufficiently thin, then there are certainly
distances y from the wall larger than §, but still very much smaller than
boundary-layer thickness 0 so that a universal law for the boundary-layer flow
applies in this region 6, <y <8 according to which all flow quantities are
determined by only two quantities with dimensions, viz., by the friection

v*=‘/;_o‘ [3.1]

and the absolute distance y from the reference plane which practically coin-
cldes with the wall surface. The velocity distribution of the mean flow is
given here by the familiar relation*

velocity

xy%gzv* [3.2]

In this relation x~~0.4 is a universal constant.



The existence of a universal law of flow in the zone 4, <y <6
enables us to separate the boundary-layer flow into a part (0 <y <£0) near
the wall and an outer part (y > d.) (see Figure 1); the former passing over
asymptotically into the universal turbulent boundary-layer flow with increas-
ing y, and the latter with decreasing y. This separation has the advantage
that, after introducing the parameter o*, the processes of flow in each zone
may be investigated separately (both experimentally and th‘eoretically) with
reducticn in the number of influencing factors and that both zones may be
joined together again as the need arises.

Y=

y
Dependent |[Not Depending
Range Velocity Law Upon » and Upon
- v, wall
I Zone near the wall| 0<y< 4 U=,,*f(’%> roughness U, (%)
U, (2),
yv*\| (depending | », wall rough-
II Outer Zone Ow <y UI—U=.,*F(3T) only on ness
15171 o¥/U,)
U - v, wall rough-
III Universal Law o< y<Ld ~_r - ness
. oy =y U, (%)

Figure 1 - Separation of the Boundary Layer into a
Zone Near the Wall and an Outer Zone

For the zone near the wall (0 <y <d) a velocity law of the form

e

(3.3]
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applies wherein the function f(v*y/y) generally depends on v*y/y and also on
wall roughness. With the aid of Prandtl's mixing-length formula, existing ex-
perimental results on smooth and rough walls can be understood up to the im-
mediate vicinity of the wall and they can be expressed by means of‘formulas.sv
In this connection, we are merely interested in the asymptotic form for ¥> 0w
which is obtained from [3.2] by integration:

U:v*(i—lnﬁTy—i—C) [3.4] -

Here the quéntity C is a function of wall roughness.

The outer zone (y > d,) 1s independent of the viscosity and is es-
sentially determined by two functions, viz., by the velocity distribution
U,(x) at the outer edge of the boundary layer and by the friction velocity
v*(x) . While velocity U,(x) generally represents a given function (potential
flow about a body, for example), v*(x) is a function which the boundary-layer
calculation has yet to furnish. Fortunately, as will be seen later, however,
the velocity profile of the outer zone with a proper normalization depends
only relatively little on v*/U,; consequently, a separation of the turbulent
boundary layer as just described may be successfully applied in a rational
calculation.

Y4,
*
[ ] . ”
+
L ]
gy 72
x
N \e\
7 v 70
(I G A 72
D l
re ‘\‘ﬁ» 4
© Smooth Ul = a.0u I i
& Smooth =000 ° ) ‘
® Smooth =407 N
)P.;.
® Smooth = 8036 . :
X Rough = Q050 - &ﬁ{ k NS ¢
A Rough = 0054 e
L1
+ Rough =q047 .:.
H— 2
E *
° gl}
*:2 o Iﬂg 2
-2% -2 -20 -14 -16 -7¢ -2 -14 -48 -06 "~ -a4

Figure 2 - Velocity Profiles at Constant Pressure, According to Measurements
on Smooth Walls (by F. Schultz-Grunow) and on Rough Walls (by W. Tillmann)
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The prerequisites for the separation into two zones independent of
each other are satisfied in most cases. However, this is by no means a matter
of course and a verification is necessary for each individual case. For this
purpose, we shall indicate the following: The thickness §, 1n the case of
smooth walls amounts to 6, ~ 40 v/v*; 1f the wall roughness 1s very coarse,

8. 1s determined by the dimensions of the roughness elements. According to
the experiments of J. Nikuradse® on pipes having roughnesses of sand particles,
8, 1s approximately equal to the grain size of the roughness and the y-values
are measured from the reference plane in which U vanishes on an average. Be-
tween the value v*/U, and the local coefficient of friction ¢;, there exists

the following relation:
’ v* 2

4. EMPIRICAL VELOCITY PROFILES

In order to be able to calculate the boundary layer for a given ve-
locity U,(x) according to the momentum equation [2.5] or the energy equation
[2.12], we must either set up a sultable analytical formula for the velocity
profile like that for laminar boundary layers or determine the necessary
functional relations from test results. We shall now turn to this problem.
Since a series of measurements have recently become available in which the
wall shearing stresses were determined by means of a specilal measurement7’8
we can process the available test material more successfully than waé hitkerto
possible.

In order to represent the outer velocity profiles we plot the value
(U, — U)jv* against yov*/§,U, . In doing so, the scales of the coordinates are
normalized in such a manner that the integral value becomes

as a comparison with [2.6] shows. Such a plotting of boundary-layer profiles
for a flat plate without a pressure gradient #°'° is shown in Figure 2; Figure
3 represents profiles in a rising pressure.8

On the hasis of hydrodynamic differential equations it can be shown
theoretically that in the case of turbulent flow through a pipe the velocity
distribution* (U,— U)jv*, plotted against y/r, the so-called Velocity

*U, in this case designates the velocity in the middle of the pipe, while r denotes the radius of
the pipe.
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Figure 3 - Velocity Profiles in a Rising Pressure, According to
Measurements by H. Ludwieg and W. Tillmann

Deficiency Law, is indeed independent of the ratio v*/U;. For the boundary
layer on a flat plate without a pressure gradient, however, a dependence upon
v*¥/U, 1s to be expected even if the approach distance and the Reynolds number
are sufficiently large. Upon close examination, Figure 2 actually shows such
a dependence on v*/U although it is very slight. According to Figure 3, vari-
ations in the pressure gradient, at any rate, exert a much stronger effect on
the boundary-layer profiles.

Thus, the following general law applies for the outer zone of the

velocity profile

_ yo*
UI_U_U*F(aTi]—I) [u..l]

in which the function F(yv*/6,U;) depends mainly on U,(x) and only in slight
measure on v*/U;. For small distances from the wall y—>90, , these profiles

assume the asymptotic form

1 *
Ul——U=v*(—7lng;';]1+K> (4.2]



where the quantity K represents a different value for each profile.

In carrying out approximate calculations it suffices to know the con-
nection between the various characteristic quantities such as the displacement
thickness 4,, the momentum thickness d,, etc. The next step consists in giv-
ing these characteristic quantities a form which will permit the separate de-
termination of the influence of viscosity and wall roughness. According to
[2.7], the following formula applies to the momentum thickness &,

o0 oo

a,:ofg;(l_%)dy= [ e[~ o

which can also be written in the form

*
¢s,=¢s,(1—-;’-,-1 Il) (4.3]
Here the value
_ ([lo—up yv*) M
Il—of[ =l (4]

under the assumption made (8,<9), \s practically independent of the velocity
distribution for y<é.. In a similar manner the energy thickness can, accord-
ing to [2.13], be written in the form

63=61[2—3l"]—':11+(5—:)'1,] [4.5]
where
-y

is likewise practically independent of the profile for y<d, . Inasmuch as
the velocity law for y-values §,<y<8 satisfies both [(3.4] and [4.2], we
obtain by introducing [3.4] and [4.2]

v »®

y;l=llnRe1—|—B . (%.7)

where
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Re, = Uid [4.8]
{a
represents the Reynolds number in terms of the displacement thickness 0; and
where

B=C+K [(4.9]

The quantities I,, I,, and K are pure shape parameters which can be
directly derived from the profile shape and which do not depend on the form
of the velocity law applicable to the zone near the wall, Equation [3.3]
provided condition 6,<d 1is sufficiently satisfied. We shall now make the
assumption that a definite correlation exists between these quantities which
can be determined empirically from available measurements such as represented
in Figures 4 and 5. This assumption, by the way, appears to be justified
mainly on account of the slight dependence on v*/U,. If we approximate the
velocity profile for d>y=6, by the formula

uL,—-Uu _4 ¥\ 1.y
o —;O—ﬁ*;ms [4.10]

/

200 /
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According to [4.11] and Experiments !

and 12



1

then the relations between I,, 1l,, and B can be described approximately by the
following expressions

2+ 34+l
34
I,— -

21 11 - 1
I_‘6+TA +gA+7 4 [4.11]
t R 1 :

x’(l-{-z—A)

1
1+14

B=CH082% Zm 2

where A occurs as a parameter. Hence, it is possible to determine 8s, 83, and
¢ if &, I,, and Re, and the wall roughness are given.

(W ]
25130

20125 /ﬂ' =]

Wi
/

0115 /

srw 7 xSchuttz-Grunow 97/02 =0 ——
s +Pressure Rise
(f oPressurg Rise
/Z ®Pressure Drop
o5 !
. -,i_ I,
[ & n k4 20 25 0

Figure 5 - Correlation between the Ratio v¥*/U,, the Reynolds
Number Rei and Shape Parameter I,, According to
[4.11] and experiments on Smooth Walls
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5. FLUX OF TURBULENT ENERGY

In order to be able to determine the magnitude of the flux of turbu-
lent energy by means of [2.12], it is necessary to have a 'turbulence profile,'
i.e., the dimensionless plotting of the energy of turbulence E/fv*? against
yv*/6,U, . Here, E[v** in the vicinity of the wall y—§, approaches a uni-
versally applicable value and decreases very rapidly to zero for y<6., . Al-
though with the aid of the famillar hot-wire arrangement it is fundamentally
possible to determine experimentally the root-mean-square values of all three
fluctuation constants, and thus E, usable measurements from boundary layers
are only available for component u which, to be sure, makes the most essen-
tial contribution to E. The longitudinal fluctuation profiles Vﬁﬁv* repre-
sented 1n Figures 6 and 7 were measured by W. Tillmann.'! Inasmuch as v*/U,
exerts only a moderate influence on the outer velocity profile (see Section
4), we mﬁy also expect that the influence of ¢*/U; on the turbulence profile
be only very slight. Figure 6 confirms this assumption for longitudinal fluc-
tuation profiles of the flow over a plate without pressure gradients in the
case of smooth as well as rough surfaces; hence, it is reasonable to assume
that the quantities related to turbulence profiles, i.e., the flux of turbu-
lent energy and the dissipation function D defined in [2.14] can be approxi-
mately described by some unique relationship with shape parameter I,.

As far as it was possible to ascertain up to now, the variation in
the flux of turbulent energy usually has no very great effect on two-
dimensional boundary-layer flows; hence, a somewhat liberal treatment of this
term in [2.12] seems permissible as a rule. The order of magnitude of the v-
and w-fluctuation components can be estimated from several earlier measure-
ments in pipes and tunnels.®? According to the available material we can
assume that the relation -

fUan ~0.658, U? v* [5.1]
0

independent of I, is usable as an approximation.

6. DISSIPATION FUNCTION

In order to determine the dissipation function D from [2.14], we
will again evaluate separately the effects of viscosity and wall roughness on
the basis of the results described in Section 3. The contribution of the
region near the wall (0<y <d) to [2.14] can easlly be calculated since we
may here place 7/o=v*2 = constant, and neglect the energy of turbulence carried
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away in the mean flow. The energy dissipated in a strip of width b is then
equal to the work done by the mean flow plus the kinetic energy diffusing into
this strip from the outside. Thus, we obtain for y <4

Y
[say=wm vty —e0) [6.1]

If the upper 1limit of integration y lies in the region of the universal
boundary-layer flow (8. <y<d), we may introduce U (y) according to [3.4];
and Q(y), for reasons of flow similitude,has a value Q@ = — ¢, v*® independent
of y where ¢, represents a universal constant. Thus we obtain for 8, <y <4

Yy
([de’:v*“(i—lng;!-l—C—}-cq) [6.2]

In the case of the outer zone of the boundary layer (y>4,)where
the Reynolds number of the turbulence is large, there applies for the dissi-
pation [2.10] the familiar relation®*

S=cE——:£ [6'3]

where I represents a length designating the large elements of turbulence while
¢ is a dimensionless factor which only depends on the structure of the turbu-
lence. Equation [6.3] results from the fact that the kinetic energy E which
is essentially contained in the largest elements of turbulence is continuously
being transmitted to ever smaller elements of turbulence until it is finally
transformed into heat in the smallest of these elements. In the region of the
universal boundary-layer flow, Il is proportional to y,.for reasons of simili-
tude, and E is constantly proportional to v*. Furthermore, the dissipation
is hefe equal to the energy extracted from the mean flow so that for d, < y<éd
the following equation holds good: ‘

E3/3 %3
S—-C’l—z—"—y— R [6.“]
From this, we then obtain
£ , o E3is F s 1 yv*)
dey—fc—l—dy—v (J’—'7lnm (6.5]
y y )

2
au
*The contribution v(a—y) of the mean flow is to be neglected here.
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where the value of the integral expressilon

[}

c

Jo= * 61U1>+ x  6,U

(E/"*’)””J(y’v* RS L [6.6]
&0,

I‘f&% 8

LA

S

is independent of the lower limit of integration y if it lies in the region
do <y <6 . By the addition of [6.2] and [6.5] we finally get

D=dey=v*3(;—lnRel—|—G) (6.7]

with

G=C+J,+¢ [6.8]

Since nothing is known regarding the behavior of the functions ! and e, except
in the region 8, <y <& , J, cannot be calculated from [6.6] even if the tur-
tulence profile is known. The only

remaining possibility consists in

calculating the function D by a dif- » ;gi

ferentiation wherein experimentally
determined quantities are introduced 2 ///
into the energy equation [2.72], a //’
method which involves a number of 2 /( ’
uncertainties. The result of the /
evaluation of the series of measure- . y,
ments carried out by F. Schultz- N AR

Grunow® for a flat plate without a /g' v rasea5log Rey)
pressure gradient (see Figure 8) con-
firms the correctness of the relation
[6.7] regarding the effect of Reynolds
number. The result of the evaluation
of several series of tests by H.

” lw ”I;
dé 3¢ 6 J8 40 42 4¢

8
Ludwieg and W, Tillmann™* 1s shown Figure 8 - Dissipation Function for the
in Figure 9 indicating the correla- Boundary Layer without a Pressure
. Gradient as a Function of Reynolds
tion between the dissipation function Number, According to Measurements
and shape parameter I,. The scatter by F. Schultz-Grunow

*A number of test series involved have not been published.
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of the test points 1is partly due to the uncertainties involved in the evalua-
tion method. The conversion to the conditions prevailing on rough walls is
possible by using [6.8] and by substituting the modified value of C from [3.4].

7. SIMILAR SOLUTIONS

Further development requires additional tests to confirm the corre-
lations indicated as well as a theoretical analysis of the problem. By using
a number of hypotheses the calculation of the turbulent boundary layer would
seem to be fundamentally conceivable on the basis of boundary-layer equation
[2.1] and energy-balance equation [2.9]. In that case we would have. to inte-
grate two partial non-linear differential equations instead of one as is the
case for the laminar boundary layer. Also, from a mathematical standpoint we
must therefore expect more difficulties with turbulent boundary layers than
with laminar ones even though tHe latter still involve mathematical problems
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not to be regarded as simple by any means. At first, we shall therefore look

* for solutions of a simple nature on the basis of which various individual prob-
lems can be investigated. 1In this connection it is interesting that under
certain conditions there also exist so-called similar solutions for turbulent

* boundary layers, i.e., solutions in which the velocity profile along the wall
is only affinitativelj distorted; in this case, the partial differential equa-
tions can be transformed into> ordinary ones. .

At first, it can be shown that for external zone (y>0.) similar
solutions exist if we neglect the visccsity in the bbundary-layer equations,
provided that the velocity distribution at the outer edge of the boundary
layer satisfles the relation

U =ax" [7.1]

where ¢ and m are constants, and that the local coefficient of fricticn

q; = constant. is given. The geometrical similitude of the flow pattern re-
quires that the boundary-layer thickness here increase linearly with x. The
velocity profile can be represented as (U;— U)/v* over y/x and it is a func-
tion of the two parameters m and v*/U,. For small y/x-values it assumes the
asymptotic form

U‘;U=——;—ln(%>+K(m %*:) [7.2]

where the constant K(m v*/U;) can be determined from the boundary-layer equa-
tions: if the values of m and v*/U; are given. This solution is valid only for
wall distances y=d, and must be supplemented by the velocity law [3.3] in
order to obtain from the latter complete velocity profiles. The condition for
the continuous transition of the outer zone to [3.3] is obtained by eliminat-
ing Ufv* in [7.2] with the aid of [3.4]:

%_i_%ln%——K(m %‘;):%ln—qs—x-—l-c ' {7.3]
Similar solutions for the outer zone discussed Here have a real significance
only if the Reynolds number U,x/y and the wall roughness, whose effect is ex-
pressed by the quantity C, are such that [7.3] is identically satisfied for
all xz-values. At very large Reynolds numbers this is the case if the length
characterizing the roughness (grain size in the case of sand roughness, for
instance) 1is proportional to x. In the case of hydrodynamically smooth walls
and at constant roughness where C is a constant, the condition [7.3] cannot
be rigorously satisfied for all,x-values. Since x occurs logarithmically in
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[7.3], we may, for sufficiently large x-values, regard the expression on the
right side of [7.3] as constant, at least piece-wise, and we are justified in
considering that the condition for similar solutions is thus satisfied with an
accuracy sufficient for practical purposes. It is important, however-—and
this applies also for the developments in Sections 4 to 6—that §, be so small
that the function (U,— U)jv* at the point y=40. does not deviate perceptibly
from asymptote [7.2] or [4.2], respectively.

An evaluation of similar solutions is possible by means of ths mo-
mentum equation [2.5], the energy eguation [2.12] and the empirical relations
ir. Sections 4 to 6. The results of such a calculation are shown in Figure
10 for conditions prevailing on smocth walls. It is interesting to note that
a physically logical solution cannot be obtained for all m-values. This
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Figure 10 - Similar Solutions cf the Equations for the
Turbulent Boundary Layer on Smooth Walls



19

follows from the momentum equation [2.5] if [7.1] is introduced. Because of
U/U, <1 we always obtain d,>4, according to [2.6] and [2.7]. If U, is pos-
itive, we obtain negative values for d, and 7, only if the flow breaks away
from the wall. In this case, however, the conditions for boundary-layer
theory are no longer fulfilled. Hence, according to the momentum equation

it must be that m>— 1/3. Figure 10 shows that in actual practice separation

is to be expected approximately at m= — 0.2. In comparison to this let us
call to mind that in corresponding similar solutions for laminar boundary
layers separation takes place at m= — 0.091. This confirms the famillar em-

pirical fact that turbulent boundary layers are able to overcome a greater
pressure rise than laminar ones.

8. SUMMARY AND CONCLUSION

It is advantageous to separate the turbulent boundary layer into two
regions (see Figure 1) which are joined by a common intermediate zone
(b.<y<d) . In the outer zone (y =4,) the velocity profile is essentially
a function of the velocity distribution U; along the outer edge of the bound-
ary layer only; it can be approximately represented as a function which is
proportional to the friction velocity v*::'VZJ@ ; otherwise, however, it is
independent of viscosity and the processes on the wall. In the region near
the wall (0 <y <4) the velocity profile depends on viscosity and wall rough-
ness, but is only indirectly, i.e., through parameter v* a function of the
veloéity distribution of the outer flow. In the intermediate zone a universal
law of flow applies which is a function of v* only while remaining unaffected
by wall roughness and viscosity as well as by the outer flow.

If we take this into consideration, the evaluation of test data fur-
nishes empirical relations between the various quantities which, tcgether with
the indicazted integral theorems for the balance of momentum and of energy, may
be used for an approximate calculation of turbulent boundary layers. If we
compare a method of calculation developed on this basis with the methods made
kroown thus far, we find that the former method offers the advantage that the
coefficient of friction can be determined more reliably as a function of the
Reynolds number and the given velocity distribution, apart from the fact that
this method can also be applied to rough walls. The velocity profiles are two-
parametric in this case since, in accordance with the existing Reynolds number
a velocity law [3.3] is adapted to the outer zone [4.1] which is assumed to
have but one parameter. When actually carrying out boundary-layer calcula-
tions, 1t 1s neressary to reduce the indicated relationships tc a more con-
venient form, a procedure which can be accomplished without difficulty.
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