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SYMBOLS

Circulation F(Line integral of the velocity;
m2s-1)

Density p = y/g(kg s 2 m-4 )

Airfoil:

Lift

Drag

Speed of Advance

Area of the Airfoil

Lift coefficient

Drag coelficient

Drag-lift coefficient

Propeller:

Thrust

Torque

Power input

Speed of Advance

Angular velocity

Blade-tip radius

Intermediate radius

Area of Propeller Disc

Thrust loading Coefficient

Power loading Coefficient

Efficiency

A(kg)

W(kg)

V(m s- )

F(m2)

ca= A/- FV2

c =W/ FV2

S= Cw/ca

S(kg)

M(m kg)
WPS

v(m s -1)

w = 2m(s' )

R(m)
r = xx R (m)

Fp = R2 r(m 2 )

c s = S/ F V2

cL = 75 WP/A FV2

S= C s/cL
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THE PRESENT STATUS OF THEORETICAL RESEARCH ON SHIP PROPELLERS

WITH RESPECT TO ITS TECHNICAL APPLICATION

In reporting on the status of research on ship propellers I wish to

survey and correlate for you some of the more recent investigations in this

particular field from which a practical method can be developed for the tech-

nical calculation of the conventional ship propeller and also of the more com-

plicated propulsion systems such as propellers with guide vanes, counter-

rotating propellers and tandem propellers. Naturally, nothing more can be

accomplished in the time allotted than to outline the ideas developed in the

studies referred to; however, since they are scattered over a wide area of

technical and mathematical literature, I assume that even a brief survey pre-

sented from a unified point of view will be advantageous. Moreover, it will

be necessary to limit this review to propellers of constant initial velocity,

the so-called "free running propellers."

The first practical method for the design of a ship propeller based

on theoretical research was published in 1926 by Helmbold.' He made exten-

sive use of the results which had been obtained previously in the field of

airplane propellers under small load. Up to that time the prevailing method

of calculating propeller data used in shipbuilding was based on the interpo-

lation of a propeller within methodical series tests. It was soon found, how-

ever, that in contrast to this method, the theoretical approach was consider-

ably more elastic in that it is not bound to the constants necessarily occur-

ring in the geometrical structure of a methodical series. Moreover, it yields

more detailed data than the method of interpolation, especially when the in-

vestigation no longer concerns the propeller as a whole but rather the flow

about the individual propeller sections. Such problems arise when investi-

gating cavitation or the construction of suitable guide vanes. It is true

that this method used to require more time for calculation than did the cus-

tomary interpolation but numerous attempts have been made recently to reduce

the time outlay to a minimum by using suitable aids such as curve sheets2 and

the like. In this respect also, recent investigations deserve credit for the

progress made toward improving the methods to such an extent that by the ex-

tensive use of tabulated values of mathematical functions and by a certain

arrangement of the method of calculation it is now possible to reduce the com-

putational time to such an extent that it compares favorably withthe time

required for interpolation from methodical series tests.

IReferences are listed on page 18.
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All modern research pertaining to the flow produced by a propeller

and to the force generated by this flow are based on the airfoil theory of

Prandtl.s '4 The conclusions derived from this theory regarding the flow about

a single airfoil may be logically applied to the ship propeller if the pro-

peller blade is conceived as being the sum of an infinite number of single

blade elements and if, in accordance with this, the action of the propeller is

considered as being the sum of the actions of all these individual blade ele-

ments. It is well known that the motion of an airfoil produces a force with

the two components of lift and drag; the first component is perpendicular to,

and the second is parallel to the directio:i of the relative velocity. The

problem now is to clarify the origin of these two force components and to ob-

serve their effects upon the flow. It will be sufficient for our purpose to

emphasize the following results obtained by this theory. The lift necessarily

depends on the existence of a vortex which is conceived to be located in the

wing and which is carried along by the latter, whence it is called a "bound

vortex." This vortex produces additional velocities in the flow which in-

crease the pure speed of advance of the wing above it while decreasing the

speed of advance below. According to Bernoulli's principle, differences in

pressure correspond to these differences in speed and result in the action of

a force on the wing which we call lift. The relation of the intensity of the

vortex which is measured by its circulation, the speed of advance, and the

generated lift is determined by the theorem of momentum. According to this

theorem, the lift is perpendicular to the resulting speed and, for each unit

of length of the span-width, it is equal to the product of the density of the

fluid, the circulation and the speed of advance (principle of Kutta-Joukowski)

Primarily, this principle holds good for the two-dimensional flow only, i.e.,

for a wing of infinite span over which the lift has a constant value per unit

of length. For a wing of finite span the lift decreases from a maximum value

at the middle to zero at the wing tips. This is due to the fact that the

pressure difference between the overpressure on the lower side and the under-

pressure on the upper side of the wing becomes zero at the wing tips. This

equalization of pressure produces a transverse flow of the-fluid across the

wing 4 which is directed from the middle toward the wing tip on the lower side

of the wing while its direction is reversed on the upper side. Hence, the

particles of the fluid which pass over the wing are diverted somewhat later-

ally toward the middle while those which pass under the wing are similarly

diverted toward the wing tips. Such a movement of the fluid, however, can be

conceived to result from a vortex sheet located in the wake of the wing. As

already pointed out, the transverse velocity of the fluid and thus the circu-

lation in the vortex sheet are directly related to the variation of the lift
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and circulation about the wing. According to the principle of Biot-Savart,

this vortex sheet, like any vortex, produces additional velocities in the en-

tire surrounding fluid. Thus, in addition to causing transverse velocities

behind the wing, it generates downward velocities about the wing itself (by

analogy with electro-dynamics, the term "induced" is used in reference to this

kind of distance-effect). This result is of great significance. A resultant

velocity about the bound vortex is now obtained which is composed of two com-

ponents, viz., the speed of advance and the downward velocity induced by the

trailing vortex sheets, hence this resultant velocity has a downward direction.

Since, according to the principle of Kutta-Joukowski, the force exerted on the

bound vortex is perpendicular to the resulting velocity, the latter is in-

clined rearward, i.e.,, opposite to the direction of the motion of the wing.

This explains the generation of a drag in a fluid assumed to be frictionless.

This component of the drag is called the "induced drag"- since it results from

the downward velocity induced by the trailing of the vortex sheet from the

wing of finite length. The work performed in moving the wing against this

induced drag equals the kinetic energy which the trailing vortex system im-

parts to the fluid.

Let us now apply these ideas to the propeller whose individual

blades are considered as the sum of blade elements. First, consider each

blade on which forces are exerted as the center of a bound vortex which, as

in the case of a single wing of finite length, generates a trailing vortex

sheet since the force exerted by the blade is variable in radial direction.

This force has zero values at the propeller hub and the wing tips and between

these two points it follows a hitherto unknown law. The direction of this

trailing vortex sheet is determined by the direction of the stream-lines,

hence it assumes a spiral form. Again there is the problem, as in the case

of a single wing, of computing at the place of the bound vortices, the induced

velocities of this system of bound vortices and vortex sheets and then of cal-

culating from these the speed of advance, the peripheral velocity, the result-

ing velocity, and, finally, the resultant force according to the principle of

Kutta-Joukowski. This resultant force can be resolved into a thrust component

and a tangential component whose integration over the radius finally yields

the exerted thrust and torque. The solution still presents considerable dif-

ficulties in this general form sinc-e it can only be said that the additional

velocities produced by the bound vortices cancel each other in the case of

symmetrical screws. The field of the induced velocities of a helical vortex

sheet is still not known initially and no details can be stated concerning the

shape of the vortex sheet which, as we know, depends on induced velocities

still to be computed. Moreover, the variation of the circulation within the
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vortex is not known since it is determined by the distribution of the circula-

tion over the blade, i.e., over the bound vortex which as yet is entirely un-

known. In order to make any progress we shall first make an assumption and

then apply two principles of Betz which will lead to a solution of the problem.

The trailing vortex sheets of the blades induce a field of velocity

which appears externally as the propeller slip stream. In general, the in-

duced velocity will have an axial, a tangential, and a radial component at any

fixed point of this slip stream. The axial component indicates an increase

in the velocity toward the rear, the tangential component indicates a rotation

of the fluid contained within the slip stream, and, finally, the radial com-

ponent brings about a contraction of the slip stream whereby the stream lines

tend to move toward the axis. These components are not mutually independent,

however .

First, it may be stated that the axially induced velocity component

of any fluid particle.increases continuously from a zero value infinitely far

ahead of the propeller to a definite finite value infinitely far behind the

propeller. According to the theorem of momentum, this variation is directly

related to the generation of thrust and it is familiar as one of the results

of the simple slip stream theory. This continuous increase of the axial com-

ponent results in a corresponding contraction of the slip stream and thus of

the vortex sheets whereby the radial distance of a fluid particle from the

axis is reduced. Since the moment of momentum of a particle which arises from

the tangential component remains constant during the contraction of the slip

stream, the tangential component has to increase correspondingly. This means

that the kinetic energy of its movement is also increased. This can only hap-

pen at the expense of the kinetic energy of the axial movement so that it is

decreased accordingly. On the other hand, due to the action of a centrifugal

force, the tangential component produces a pressure gradient which is directed

across the flow toward the interior of the slip stream. This pressure gradi-

ent tends to increase the axial component. Thus, the contraction of the slip

stream, i.e., the induced radial compcnent, and the centrifugal pressure grad-

ient have mutually opposing effects on the axial velocity component. It prob-

ably will not matter a great deal, therefore, if these two effects are ne-

glected in the subsequent analysis. The extent to which they may safely be

disregarded will be explained briefly later in the paper.

A principle of Betz s applies for the case of a slip stream free from

contraction; it states that for symmetrical propellers the additional veloc-

ities resulting from the trailing vortex sheets at the bound vortex are equal

to one-half the velocity which is induced at a corresponding point infinitely
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far behind the propeller. Attention has already been directed to the contin-

uous increase of the axial component. The tangential component, on the other

hand, behaves differently. According to a general principle of Stokes on the

geometry of vortex fields, a tangential component along any closed line can be

present in a flow only if the vortices are surrounded by this closed line.

From this it follows that the rotational motion of the fluid forward of the

propeller is zero and attains a finite value in a discontinuity where the free

vortex sheet begins. The Stokes principle states further that the tangential

component no longer varies along the slip stream behind the propeller. This

is explained by the fact that the circulation of the trailing vortex sheets

at a certain distance from the axis is determined exclusively by the variation

of circulation at the corresponding point of the propeller blade. Thus the

circulation remains constant downstream. In order to harmonize these conclu-

sions with the Betz principle, a core of small yet finite thickness must be

attributed to the bound vortex over which the tangential component increases

from a zero value in front of the core through its mean value at the mid-point

to its maximum value at the rear of the core where the vortex sheet is shed.

Clarification of the radial distribution of the additional veloc-

ities and their distribution along the circumference remain to be accomplished

before the forces on the propeller blade can be calculated. In the case of

the distribution along the circumference, it may be stated qualitatively that

the additional velocities vary from a maximum value within the vortex sheets

to one generally smaller between them. In order to avoid this variation, the

assumption is made that the vortex sheets are very close to each other, i.e.,

that there are an infinite number of blades in the propeller. Although in

that case the calculations involve an excessively large mean value for the in-

duced velocity, it is later reduced to the mean value corresponding to the

finite number of blades. First, however, let us continue with the considera-

tion of the propeller with an infinite number of blades for which there is no

variation of the induced velocity components along the circumference so that

the only remaining question concerns the radial distribution. We know that

this question is related to the distribution of the circulation, i.e,, the dis-

tribution of the forces over the blade, and that it can only be answered ei-

ther by assuming a certain distribution of circulation or by establishing cer-

tain definite conditions by which this distribution would be determined.

A question of practical importance concerns a way to so distribute

the thrust and thus the circulation for a given total thrust over the blade

that the loss of energy which is unavoidable with the generation of thrust and

which arises from the appearance of the induced velocities may be kept at a
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minimum. This question constitutes a variation problem and seems to compli-

cate our problem; it will be seen, however, that the answer yields a very

simple and easy result which was first formulated by Betz.' It is obtained by

increasing the circulation at any point of the propeller blade by a small

amount and analyzing the increase in thrust and torque thus produced. If the

thrust distribution over the blade is such that it corresponds to the maximum

obtainable efficiency, then any increase in thrust must be produced at every

point with the same degree of efficiency otherwise it could be transferred

from those places where additional thrust would entail a decrease in efficien-

cy to other areas where it would result in an increase in efficiency and en-

hance the total efficiency. Inasmuch as optimum efficiency is assumed al-

ready, the efficiency of a variation of thrust must have the same value at

every point of the blade for the case of free running propellers.

The calculation based on this way of reasoning yields the result

that at optimum thrust distribution tgf = k tgfi (Cf. Figure 1), where k is

independent of the radius. This means that in this case the direction of the

resultant velocity at the blade section results from the direction which is

formed with v and rw by multiplication with a factor which has the same value

for each radius. Thus, the resultant velocities in their entirety form a true

helicoidal surface also. The calculation shows, moreover, that the factor re-

ferred to is identical with the efficiency of a blade section which should now

be designated as induced efficiency ni since the losses resulting from the in-

duced velocities are indeed the only ones now under consideration. At the op-

timum condition, therefore, each blade section has the same induced efficiency;

consequently, the induced efficiency of any blade section is identical to that

of the entire propeller. Finally, the optimum condition can be expressed in

still a third form. In fact, where k is independent of r, the expression

tgP = k tgPi is equivalent to the statement that v' is independent of the ra-

dius so that the quantities w and =-
v

likewise become independent of the ra-

dius. Hence, for the case where the

loss of energy is at a minimum, the fol-

7 dTi , lowing equivalent relations exist:

ds5 = tgf rw v v 1

i  v' v1 V + W-7
T Aw 2 2

rw

Figure 1 - Velocity- and Force-
Diagram on a Blade Section ofrDiagram on a Blade Section ofR where ni and the other quantities, es-

pecially the so-called "displacement
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coefficient" 0, are independent of the radius so that they are applicable to

the analysis of the propeller as a whole. Consequently, these relations hold

good for the blade tip as well, so that the optimum condition can also be

expressed:

Rw

where A designates the advance coefficient.

It should be pointed out that the components of the induced velocity

are not completely determined by the optimum condition since this requires

only that the end point of the resultant induced velocity lie along the direc-

tion of i. When the vortex sheets are sufficiently close to each other, it

can be shown that the resultant induced velocity is perpendicular to the di-

rection Pi, i.e., perpendicular to the resultant velocity. This is considered

to be sufficiently satisfied in the following discussion.* From the geometri-

cal relations represented in Figure 1 the following expressions can then be

given for the induced components at the radius x =- of the blade:5

I wa 0 x2  It x i
2 v 2 x 2 + 2' 2 v 2 2 + 2

i i

r v' = w
R' .i R 'i

The next task is to determine 0 and A i or else 7i which, according to the

optimum condition, is the same thing. In accordance with the principle of

Kutta-Joukowski, therefore, we express the forces acting on the blade section

from which the thrust and torque developed by the propeller are obtained, by

integration over the entire propeller blade. The following expressions are

obtained for the element of thrust and the tangential component of force:

w w
dS1 = 'oop(r - ) dr = Tpv RU -2 d

d P(V fr pvR( - 2rlwt = 2Rfx wt

*Investigations conducted since this paper was originally written indicate that the "normal con-
dition" is satisfied for vortex sheets of true helical shape without any restriction to the mutual
distance of the sheets.
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The indices co and i must be used for the elements of force since for

the present we are considering a propeller with an axially symmetrical slip

stream, i.e., a propeller of infinitely many blades operating in an ideal,

i.e., frictionless, fluid. If the above expressions are substituted for the

induced velocities, it will be found that the integration over the radius x

is possible. Thus the desired relation is obtained between the thrust loading

factor of the power loading factor of the propeller and the quantities 0 and

Xi or their equivalents qi and A respectively. In order to facilitate the

later application of these results to a propeller with a finite number of

blades, it is desirable to introduce first the dimensionless circulation

x2

GO = x
x 2 + A

which is related to fr as follows:

F =2rffw = 2rirw x2 2v 2 + 2 + = G. x 2 +
+ W

The dependence of the circulation on the radius is thus expressed by G., while

the products of the other quantities constitute a constant factor for each par-

ticular optimum propeller. The integration of the elements of force over the

radius yields integrals of the form

2(x + ). dx

which we shall designate by K; these integrals depend only on m and n and they

are related to G. as follows:

f1 Xm n-2
K,= (x ) dx = fG (x + x

This is essential to the application of the results to a propeller with a fi-

nite number of blades. Expressed in this form, the integration over the ele-

ment of thrust now yields the following formula which represents the depend-

ence of the thrust loading coefficient upon 0 and Xi:

1 I I II I I I;



" = 40 x K" + 2 2 x K"
si -, i 5,2

K - 2 x ln 1 +
3, 21 1 2

2

K = 1 [ Ai - 2 x In(1+L 1
,2 2 1 +'

The next step toward a complete solution of the problem is to apply this ex-

pression for the thrust load factor of a propeller with an infinite number of

blades to a propeller with a finite number of blades; in doing so the assump-

tion of a frictionless fluid is retained for the present. The first consid-

eration will be to transform ci to Ci 6 This transition to a propeller with

a finite number of blades can be accomplished if it is recalled that, other

conditions being equal, the mean values of the induced velocities for a fixed'

radius differ from the corresponding values for a propeller with an infinite

number of blades. The smaller the number of blades, the greater is this dif-

ference, i.e., the greater the distance between the trailing vortex sheets.

The value of the induced velocities remains constant on the blade itself but

between the blades it varies according to the distance between the vortex

sheets. Since the circulation depends only on the mean value of the induced

tangential velocity component, the following expression is Justified:

=- =X x F,. According to the method of calculation just outlined, the cor-

responding values for a propeller with a finite number of blades are obtained

by substituting X x r. for r, ; thus

K,, X x G. x 2 dx = x dx
(X2 + X2) (X2 + X2)

and, finally, according to Kramer's analysis:
6

c" = 40 x K" + 202 x Ko
si ,1 5,2

The "mean value factor" was obtained by Goldstein by solving the

potential theory problem involved in the determination of the velocity field

of the helicoidal vortex sheets.7 It will be found that X depends only on x

and Xi , in addition to the blade number .8 Consequently, the integrals K, 1
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and K5, can be expressed as numerical functions of yand Ai . Thus the thrust

load fact'or Ci appears as a function of r, A i , and 4, or, in terms of the op-

timum condition, of T, A and ?I. On the basis of this relation, represented

in Figure 2, it is possible to read off the efficiency with which a propeller

with - blades generates a certain thrust loading factor in a frictionless

fluid at a given advance coefficient.

Before discussing this result further, we shall eliminate the sole

remaining assumption, viz., that of a frictionless fluid, and turn to a pro-

peller with a finite number of blades operating in a viscous fluid to obtain

a complete approximate solution of our problem. The friction which occurs

produces a component of force dW on the blade element in the direction of the
resultant relative velocity (Cf. Figure 1).' This causes a change in the direc-

tion of the lift so that the thrust decreases while the torque increases. The

resultant drag is measured in terms of the drag-lift coefficient e = Cw in
Ca

percentages of the lift. From Figure 1 the relation between the element of

thrust dSi in the ideal fluid and dS in the viscous fluid can be readily ex-

pressed as:

dS cos i

dS - cos( 1 + 6)

This relation varies from one radius to another, but fortunately the variation

is only slight. Hence, it can be replaced by its mean value or even by its
value at the blade tip which would be sufficient for practical calculations.

This avoids the tedious integration over the radius which involves an addi-

tional assumption with respect to the radial dependence of e. Therefore, the

same relation between the thrust loading coefficients can be written which at

first was only applicable for the elements of thrust, viz.,

csi cospi

Cs -cos( i + E)

where Pi now designates the value at the blade tip (tg Si = Ai) or a mean

value over the blade. This relation is important for practical calculations

since it enables the thrust loading coefficient of the propeller to be con-

verted into the greater value csi which it would generate in the ideal fluid
under otherwise equal conditions.

I I I I I ( It I~



rW -8-0 N I 01*A
X -\ \

# . . . . . . -. .

Figure 2 - Induced Efficiency qi As a Function of A, csi and -

(According to Kramer, Luftforschung,
Vol. 15, No. 7, 1938, pp. 326-333)

The effect of the viscous fluid on the propeller results in a spe-

cial efficiency 1 ,,which expresses the change in the thrust and torque brought

about by the appearance of dW (Cf. Figure 1). Assuming that the drag-lift

coefficient is constant along the radius, a more detailed calculation shows,
1'9

that the formula

1 - 2eAi
1- 2E1

' " 2 e1+
'3 xi

expresses these losses with sufficient accuracy.

1' I I

Ido I \, "

117b~~~ 'rT+ ~S etlawa Iz~I
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Now the total efficiency n of a propeller may be separated into

? = i x T ,, where 7i expresses the kinetic losses which accompany the genera-

tion of thrust in an ideal fluid and which result from the induced velocities,

and where rW represents the loss in power input through friction. In a

broader sense, w represents all the losses produced by factors which affect

the drag-lift coefficient, for instance, cavitation. Unfortunately, it is

not possible within the scope of this paper to discuss the phenomena of cavi-

tation in more detail. Nevertheless, we have seen that by this method of ap-

proach, it becomes possible to determine velocity and pressure of the propel-

ler flow at any station of the blade. This permits the design of a propeller

under any condition of cavitation provided the profile properties of each

blade element are known for the corresponding pressure and velocity of the pro-

peller flow.

At this point, a remark should be made regarding the optimum condi-

tion which is essential to our method of analysis in so far as it determines

the thrust distribution or the distribution of the induced velocities, re-

spectively. This condition was formulated so that the induced losses are at

a minimum and the losses caused by the drag-lift coefficient, especially the

frictional losses, are.not taken into consideration. That a practically use-

ful result is obtained-by limiting the minimum condition to only one part of

all the losses is explained by the fact that the induced component of the loss

is by far the major portion of the power loss. This is seen from the small

value of the drag-lift coefficient of a wing section which, in the normal

range of propeller operation, amounts to about 3 percent of the lift. Hence,

there is justification for retaining the simple and obvious result of the op-

timum condition just developed, or, in other words, for regarding the induced

velocities as independent of friction and for designating a propeller designed

in accordance with this as the propeller of minimum energy loss. Of course,

as pointed out previously, it is possible to set up this minimum condition in

a similar manner for the total loss; this has been done by Bienen9 and more

recently by F1tgel. It may be noted here that according to FlUgel's investi-

gations, the total losses for propellers under small loads are at a minimum

when the total efficiency is constant along the radius.

It is possible to solve the practical problems of propeller design

on the basis of the results of the theory as presented thus far. The calcula-

tion will be set up so that a certain thrust loading coefficient is required

for a given advance coefficient, i.e., so that thrust, number of revolutions,

diameter and speed are given while the required power input is to be deter-

mined. It is also possible to set up the calculation so that power input and

number of revolutions are given while the attainable velocity is to be found.
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The method of solution begins by converting the required thrust load-

ing factor cs of the propeller to the somewhat greater value csi which the pro-

peller would generate with the same speed coefficient in an ideal fluid; then,

with the aid of the diagram of Figure 2, the efficiency qi of this thrust in

an ideal fluid is determined. Hence, by means of the optimum condition, all

quantities required for the calculation of the induced velocities on a blade

section and thus for the calculation of pitch as well are already determined.

The required chord length of the blade is obtained by first expressing the ele-

ment of life by means of the square of the resultant relative velocity V, in

accordance with the definition of the lift coefficient, and then by expressing

it according to the principle of Kutta-Joukowski:

dA =P V2 x C aX X t x dr

dA = x r, x xV x dr= x 2rr x XwtV dr

By equating, we obtain the expression

w
ca.t = 4rrX V

From the geometrical relations of Figure 1 we obtain for wt/V the relation

wt
t = 2 x sinfi x tg(P~ -i )

and, finally,

ca X xt = 8xnRX sin Bi x tg(i - )

Thus, all the quantities required for the calculation of the geometrical data

of a propeller are determined.

As an example, use the numerical values indicated in Reference 2

and, designing the propeller according to the method of calculation developed

above, compare our result with the result obtained in Reference 2 and with the

model test described therein.



Given: cs = 1.273; A= 0.187; = 0.025 = 1.43 °

Required: 17 and the shape of the propeller.

1. si = s x Cs i/cos(p + )

Ai cosp (Pi + ). Y cos(1 + e) csi '1

0.187 10.58 0.983 12.02 0.978 1.280 0.72

0.260 14.55 0.968 15.98 0.961 1.283 0.715
0.262 14.67 0.967 16.10 0.961 1.282 0.715
0.262 - - - - - -

2(1 -?)
= 11 = 0.797

1 wa ' x2

2. 2v 2 2 + A2
1

1 wt . xAi
2 v - 2 2 + A'2

1

x x2 x
2
+A 1A xA I.w tg 1  o 0 &P

2X x 2 v 2v x1

0.353 0.125 0.194 0.257 0.093 0.191 0.741 36.53 0.530 27.92 8.61
0.471 0.222 0.291 0.305 0.123 0.169 0.555 29.03 0.397 21.67 7.36

0.588 0.346 0.415 0.333 0.154 0.148 0.445 24.00 0.318 17.62 6.38

0.706 0.498 0.567 0.351 0.185 0.130 0.371 20.33 0.265 14.83 5.50
0.823 0.677 0.746 0.362 0.216 0.116 0.318 17.62 0.227 12.78 4.84

0.941 0.885 0.954 0.370 0.247 0.103 0.278 15.53 0.199 11.28 4.25

8irR
3. ca X t = -- xx xx sing x tg(Pi - ) = 17.80 xxXxsinf i x tg(pi - f]

c-t t d o
x X sini (i- (m) (m) ca

0.353 0.99 0.595 0.151 0.558 0.921 0.606 0.0923 -7 >0.035
0.471 0.98 0.485 0.130 0.516 1.029 0.502 0.0719 1.8 0.020

0.588 0.97 0.407 0.112 0.463 1.082 0.428 0.0582 1.2 0.020

0.706 0.92 0.348 0.096 0.387 1.065 0.363 0.O498 1.2 0.020

0.823 0.79 0.303 0.085 0.298 0.946 0.315 0.0433 1:2 0.021

0.941 0.49 0.268 0.075 0.166 0.634 0.262 0.0457 0,5 0.023

4. -= R x xx tg(a + P1 ) = 2.125 x x x tg(a + 1i
)2 i

Mean value - = 0.590

tg Pi

1 wa
2v

x 1 w
A 2

tg p =-

x (a + /io t (+l) (m)

0.353 43.53 0.950 0.712
0.471 30.83 0.597 0.598

0.588 25.20 0.471 0.589

0.706 21.53 0.395 0.592
0.823 18.82 0.341 0.595
0.941 16.03 0.288 0.578

I I II I '
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Figure 3

A comparison of our results with those of Reference 2 indicates

that the same data for the shape of the propeller are obtained as before. The

efficiency now becomes r = ri x n, = 0.715 x 0.928 = 0.664 where n, can be

taken from Figure 3. The efficiency now obtained is about 4 percent greater

than the previously calculated value n = 0.636. According to the model test

previously carried out, this means that the velocity of the ship as now pre-

dicted is too large by about 0.5 percent whereas its previous value was too

small by the same amount. The same can be said here as in Reference 2 with
regard to the correction of the value of the pitch.

An indication of the limitations of the approximate theory which as-
sumes a slip stream free from contraction and neglects the pressure gradient

resulting from the centrifugal force may be obtained by comparing its results
with those of an exact theory of Betz-Helmbold" which takes the factors of
contraction and pressure gradient into consideration for an infinite number of

blades. It will be found that for efficiencies of ni equals about 0.5 and
lower, i.e., in the entire region of practical importance, the agreement is

surprisingly good.s Thus, in practice, it is entirely sufficient and justifi-
able to take advantage of the extremely simple method of numerical calculation

of the approximate theory, an advantage which is unfortunately missing in the
exact theory.

I NOW r



Finally, we shall discuss the two component efficiencies ri and r,.

It will be seen in Figure 2 that the kinetic losses at a constant advance co-

efficient increase with the thrust loading coefficient while at a constant

thrust loading coefficient the losses increase with the advance coefficient.

This behavior of the propeller results in the first case from an increase of

the kinetic energy in the rotation of the slip stream. This second case is

particularly interesting since it is possible to convert a part of the energy

loss due to the stream rotation into an additional thrust by means of guide

vanes, and thus to convert it back again into useful energy. The questions of

practical importance concerning the increase that can be expected from a guide

vane and its dependence on the advance coefficient and the thrust loading co-

efficient may be answered by referring to the diagram for ni. The induced ef-

ficiency for a propeller with an infinite number of blades must be compared

with the efficiency which, with an equal thrust loading coefficient, would re-

sult for a purely axial motion of the propeller slip stream. This can be read

at the extreme left of the ordinate of Figure 2. The difference between these

two efficiencies is due mainly to the rotation in the slip stream and it gives

the approximate increase in energy made possible through the use of ideal

guide vanes which operate without any energy loss. This increase in energy is

then to be multiplied by the efficiency of the guide vanes. As shown by one

of Betz's investigations,12 this in turn depends upon the distribution of

thrust over the blades of the guide vanes and on the length and number of the

blades, Just as is the case for a propeller.

Figure 4 - Drag-Lift Coefficient
of a Circular Back Profile (d/t=t
0.0385) as Functions of a and a.
(According to 0. Walchner, Hydro-
mechanische Probleme des Schiffs-
antriebs, Vol. I, pp. 256 - 267)

compared with the propeller that is

The component efficiency iw de-

creases with increasing e and reaches a

maximum for Xi - 0.5 (Cf. Figure 3). At

the normal operation of a propeller, the

value of e amounts to about 0.03 - 0.04 so

that the corresponding losses at the most

favorable advance coefficient are about 8.

percent. With the inception of cavitation,

the drag-lift ratio and thus the energy

loss can increase considerably. Values of

the magnitude of 0.1 may result for a

under certain conditions (Cf. Figure 4).

Thus, losses of as much as 20 percent as

compared with ii can be accounted for; ac-

cording to what has been said previously,

this means a loss of about 12 percent as

unaffected by cavitation.

a I I I I I II I I I I I



The two component pfficiencies differ in their dependence on the ad-

vance coefficient; ni decreases with increasing A while I, increases with the

advance coefficient within the range of practical importance. Consequently,

for a constant thrust loading coefficient, there is an advance coefficient at

which the given problem is solved with a maximum total efficiency of

7 = 1i x '. One is justified, therefore, in speaking of an optimum diameter

of a propeller or of an optimum number of revolutions respectively. However,

this holds good only for that value of the induced advance coefficient Ai
which corresponds to the maximum of n.; outside of this limit the maximum to-

tal efficiency is related to the smallest possible advance coefficient.

These remarks about the two component efficiencies of a propeller

conclude my lecture. I should like to emphasize that while these considera-

tions were confined to free running propellers, the side propellers of multi-

propeller ships correspond with sufficient accuracy. The application of the

theory to the case where the mean initial velocity taken in the direction of

the circumference depends to a large extent upon the radius (as in single-

propeller ships) presents no methodological difficulties. Here also the op-

timum condition which involves the constancy of the variation of efficiency is

used as a basis. Then the corresponding thrust distribution14 is obtained

which, when compared with the free running propeller, is displaced toward the

hub corresponding to the distribution of the wake.

I
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