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1. INTRODUCTION

A solid body moving with unsteady motion in an ideal fluid is subject to hydrodynamic

pressure forces which are proportional to the instantaneous values of the acceleration. This

result of classical hydrodynamics has been verified with good approximation by experimental

investigation on real fluids. Thus, in contrast to the case of steady motion where it is well-

known that no resistance occurs in an ideal fluid but does occur in a real fluid, in unsteady

motion the representation of the flow in an ideal fluid is suitable for evaluating that portion

of the hydrodynamic resistance forces which are produced by the acceleration of the body in

the surrounding medium. In the mathematical treatment of the motion of ships these forces

have long been associated with a "covibrating water mass"* and an "apparent" moment of

inertia. The motion of solid bodies in an ideal fluid was also treated by several theoretical

physicists during the second half of the past century; the well-known textbooks of Lamb,

Wien, Prandtl-Tietjens, and Durand, 1 , 2 , 3 , 5 in addition to fundamental concepts, also contain

a good deal of information about the numerical evaluation of that component of resistance

which must be added in the case of accelerated motion of simple bodies. It is also to be ex-

pected that future developments in ship theory will pay much greater attention to the phenom-

ena of nonuniform motion not only as applied to all kinds of vibrations, but also to phenomena

of starting and stopping as well as to phenomena associated with steering and course-keeping.

Although some of these phenomena, such as the rolling, heaving and pitching motions in calm

water as well as the phenomenon of steering, have been considered to be a part of the ship

theory ever since the days of Eulei, it is nevertheless true that until recently only the dynam-

ic aspect of these problems has been subjected to a more thoroughgoing investigation. The

bodies used to be considered as if they were moving in a vacuum except that buoyancy forces

were included; the hydrodynamic aspect, however, i.e., the determination of the forces pro-

duced by the motion in the surrounding fluid, was given but scant consideration. This was

due, on the one hand, to the difficulty of treating mathematically the motion in a real fluid,

and on the other hand, to the fact that in the beginning research was concerned with only a

qualitative knowledge of the phenomena which could be obtained in a satisfactory manner

without determining the hydrodynamic forces or else by determining them only very approxi-

mately. If, however, the motion is to be predetermined as accurately as possible, then a pre-

cise evaluation of all the forces present, including the hydrodynamic forces, is required. As

regards the problems of the ship theory which are to be discussed hereafter, it should also be

noted that the hydrodynamic forces due to acceleration are of the same order of magnitude as

the inertia forces of the solid bodies which participate in the motion.

*Translator's Note: "Mitschwingende Wassermasse," literally "covibrating water mass"; this is the idealized

mass of water which takes part in the motion of the body.

1References are listed on page 73.
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In regard to the designation$ chosen let us point out the following: In mathematical

hydrodynamics, it is perfectly correct to say that the entire effect produced by the presence

of the fluid may be represented by a mass which is to be added to the mass of the moving

body (Lamb, Art. 68). In contrast to this, we find that in ship theory even to this day the idea

has been advocated that the experimentally determined mass increase represents the mass of

that volume of water which actually takes part in the motion of the ship. Such a limited vol-

ume of water which takes part in the ship's motion does not exist, however. For the purpose

of carrying out calculations, it is nevertheless advisable to introduce a fictitious mass as well

as a fictitious moment of inertia. In any event, we shall proceed in such manner and we shall

designate these quantities as hydrodynamic masses and hydrodynamic moments of inertia. In

experimental physics and in English literature on this subject we find that the term "apparent

mass" is used instead of hydrodynamic mass;* we shall not follow that example, however, be-

cause in ship theory-in Germany at any rate-the designation "apparent mass" (scheinbare

Masse) and "apparent moment of inertia" (scheinbares Tragheitsmoment), respectively, have

already been generally adopted as expressions for the sum of the mass or the moment of inertia

of the solid floating body and any added hydrodynamic mass or moment of inertia, respectively.

2. SURVEY OF CONTENTS

First we shall make a few remarks on the acceleration pressures, especially on their

distribution over the surface of the body. In this case as well as later on, our calculations

will be confined to the case of two-dimensional flow. The reason for this limitation will be

set forth along with the most suitable method of determining approximately the actual case of

three-dimensional flow. After examinine the experimental results, we shall finally draw con-

clusions regarding the degree of accuracy of the results obtained analytically.

In the second and third parts, the hydrodynamic masses and moments of inertia will

then be determined mathematically for a series of cross sections, especially such sections

which resemble the transverse sections of ships. The influence of bilge keels will be dis-

cussed in detail. For some of the cross sections investigated the pressure distributions oc-

curring in translation will again be considered. The results will then be compared with the

available material.

In Part IV, we then proceed to investigate, likewise by the analytical method, the ef-

fects of the free surface and limited depth on the hydrodynamic masses and moments of inertia.

Furthermore, the influence of the ship's speed and of the frequency of the oscillation on these

quantities will be briefly discussed.

Finally, in Part V, we shall make a few remarks on the application of the hydrodynamic

masses and moments of inertia to the theory of elastic oscillations and of rolling and heaving

oscillations.

*Translator's note: In English the terms added mass, virtual mass and apparent mass are all used in this con-

nection. Whereas added mass applies only to the hydrodynamic effect there is some ambiguity in the use of the

other two terms.
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I. PRESSURES RESULTING FROM THE ACCELERATED MOTION OF SOLID
BODIES IN LIQUIDS. DEFINITION OF THE HYDRODYNAMIC

MASSES AND MOMENTS OF INERTIA

3. PRESSURES PRODUCED ON THE SURROUNDING FLUID IN STEADY
AND UNSTEADY TRANSLATIONAL MOTION IN THE TWO-
DIMENSIONAL FIELD OF FLOW. HYDRODYNAMIC MASSES.

The velocity potential* for the absolute flow about a cylinder of radius a moving with

the velocity U in a fluid which is at rest at infinity is

a2

<p = - U--cos [1]
r

(Lamb, Art. 68,1 Prandtl-Tietjens, Art. 783) where r and 0 are polar coordinates of a coordin-

ate system which has its origin at the center of the cylinder.

In order to set up the relation which correlates the pressures with the velocities, we

consider a liquid particle whose center is assumed to lie at the point X, y at the time t. At

the time t + St, the same particle is located at the point x + u - 6t, y + v • t where the veloci-

ties in the x- and y-directions are designated by u and v. Let us furthermore assume that p

represents the pressure, p the density, X and Y the components of the external forces per unit

mass at the point x, y at the time t, and Sx and By the lengths of the element. In order to be

able to use the velocity potential, -indicated in Equation [1], which refers to the moving cylin-

der, we need a system of coordinates which likewise moves with the velocity U of the cylinder.

In that case, the change of position of the particle with respect to the moving system is u - U

in the x-direction, and after the time Bt the velocity components of the particle with respect

to this system are

u + +(u-U) +v au6
Iat ax a y

v+ - + (u - U) ax + a- 6t
Ia t B X ayI

where the brackets represent the acceleration components. (In this case, au/t is to be taken

with respect to the moving system.) If we now apply the dynamic law to the particle, with

Q 6x by X... as external force,

p x y-(p 1 ap dx by= 6xby
2 Bx /2 x ax

as the difference of the forces acting on the two end faces, -and with

*From the "velocity potential" or "flow potential" of a motion of the frictionless liquid the flow velocity in any

given direction is to be determined by differentiating in this particular direction. The velocity component in the

x-direction, for instance, is u= /d x, that in the y-direction is v= e / y. For further details see References

1 and 3.
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[Bu Bu Bu
ox by + (u--U)0 + V-y

I1 atx by

as the mass times the acceleration we obtain the equation
___u bn bu] bp

S x by au (u- U) a +IV =a Lx by X-xby P
it x by bx

and a symmetrical relation for the y-direction. Simplifying we get

bu bu bu I _ pS(u- U) +v -- X 1 p
at ax by Q bx

___ by by ___ p[2]
v (u- U) +v 1 p Y

bt ax by - by

which are Euler's equations referred to a coordinate system moving in translation with velocity U.

The assumed ideal fluid has a velocity potential; hence, the following applies

_ b9 Bu 2  by 2 u _bu - and v a and thus also - 2 and - ,hence -
bx by by ax by bx bx y b x

The external forces (the forces of gravity, for instance) and the hydrostatic forces (buoyancy)
neutralize each other and need not be considered any further in the investigations to be under-
taken which concern only the dynamic forces. If we now introduce these relations into Euler's
equations [2], we get

____ bu byv _ 1 b p
2  -[ (u- U)- + V_ -

ax at x ax bx
2q + (u -U) bu V 1 bp

by at by by a y

For the purpose of integration, it should be noted that because

lb lb bu 1 bu buI- (u) =-- (u) 2  2 u - u -
2 bx 2 bu bx 2 bx bx

the equations may be written as follows:

b [b 1 (u]bv 1 -/Uu= - -
+ (u2 +v 2)-Uu i= -

bx bt 2 ]b x\ 2)

a aT + 1 (U2 + V2) U

by bat 2 '' ] by \

Multiplying by 8x and 3y, -respectively, and performing the integration, we obtain from each

one of these two relations

I _- ed I I i I



a +2(U 2 + V2) - UU ± p  F (1) [31
a 2 Q

where the integration constant may still be a function of t. Equation [3] may be designated

as a general Bernoulli equation for a coordinate system moving with the velocity U.

We now return to the flow about the cylinder moving with unsteady motion and for this

purpose we introduce the velocity potential [1] of the absolute flow in [3] since the flow pat-

tern is carried along with the system. From [1], it follows that

099 dUa 2
- -- cos 8

at at r

furthermore, since the sum of the squares of the velocity in any two perpendicular directions

must always yield the same value

u2 +v2 ( 2  ( alp2 U 2 a' (cos2 0 +sin 2 0) U2 a4

Sr a/ 4  r 4

U u U U cos - sin 9 U 2  cos 2
ax aT ra r2

With these expressions we obtain from [3] the following pressure equation for the field of flow

about the cylinder:

dU a2  1 a4  a2d cos0 +- U 2  2 -- cos 2 = F (1)
dt r 2 r4  r 2  Q

F(t) must be a constant in the present case since the fluid is at rest at a great distance from

the cylinder. Since the pressure at infinity is po, when r increases without limit the constant

becomes po/p. On the surface of the. cylinder where r = a, the pressures are expressed by the

relation

d U 1
p=oa-- cos0 U cU2 o+ U 2cos2 + po  [41

dt 2

Let us now first consider the case of a cylinder moving with uniform velocity. In this

case, the acceleration obviously becomes zero and the pressure equation [4] assumes the

simple form

e 2
Po- p + (1 - 4 sin20) [5]

2

The pressures remain the same at all times, i.e., the flow is steady. The pressure distribution

resulting from [5] can be seen from the plot of the ratio

11,



6

pressure difference __ p - Po __ 4 sin 0

dynamic pressure Q/2 U 4

in Figure 1; we obtain, in particular, for

= 0 ..... Po =1
e12 U2

J o jc0= 300 ..... ,, = 0

/ 0= 900 ..... ,, - 3

S 180 ..... ,, 1

The resultant pressure disappears; as is well-

known no pressure drag occurs in potential

flow.

In the case of unsteady motion, however,

for which we now proceed to determine the

pressure distribution, a pressure resistance

does occur, even in potential flow; this we

observe right away if we make use of the com-

plete Equation [4] . Now the acceleration is no

longer equal to zero and the flow is unsteady.
Figure 1 - Pressure Distribution Over the Obviously, the distribution of the pressures re-

Surface of the Cylinder in Steady Flow
+ Positive Pressure, - Negative Pressure suiting from the velocity terms is exactly the

same as in the steady case; now, however, the
absolute magnitude of these pressureg is no longer constant with respect to the time. Be-
sides, we have to add the pressures resulting from the acceleration term

dU
PB = a cosO [6]

dt

whose distribution can be seen from Figure 2. In Figure 2, we have plotted

PB Cos

dU
adO=ds 4 Q a d

pa dt

On the forward face of the accelerated cylin-

d± / der, which is assumed to be the face toward

which the acceleration is directed, the pres-

sure is positive, i.e., it exerts a thrust on the

surface of the cylinder while on the opposite

face the pressure is negative, i.e., a suction

force occurs on the cylinder surface. In con-
Figure 2 - Acceleration Pressure trast to the case of the uniform velocity, the

-- rr - - ---- ~ - ------- WIN,



forces exerted by the fluid pressure on the surface elements of the cylinder do not balance

out in this case. They have as a resultant a force acting in a direction opposite to that of

the acceleration called the resistance to acceleration. For a unit of length of cylinder the

integration results in

2n

W'B = PB acos O d [6a]
0

and with the acceleration pressures given by [6] we have

2 7

W B 1 a2 'dU _i cos2  d o a 2 dU [7]
dit dt

0

Thus, a circular cylinder moving with unsteady motion must overcome this resistance to the

acceleration in addition to its own inertial force m U- (m = mass of the cylinder). Expression
dt

[7], which must still be multiplied by the length I if the resistance of a cylinder of given

length is to be determined, contains a mass

m" = + ~ e a2 1 [Ta]

with an acceleration dU . Accordingly, we designate m" as the hydrodynamic mass of the
dt

cylinder in the surrounding fluid. Since the disturbance of the medium extends to infinity, the

hydrodynamic mass is not the mass of a particular limited volume of fluid, but is a formal ab-

straction which adds clarity to the concept.

The total force which must be applied to produce an acceleration of the cylinder thus

amounts to

dU dU
WB = (M + M") dU m dU [81

dt dt

where m represents the mass of the cylinder, m" the hydrodynamic mass, and m'= m + m

the apparent mass. The hydrodynamic mass m"depends only on the size and form and not

on the mass of the cylinder. In the case of a circular cylinder-Equation [Ta]-the hydrodynam-

ic mass is exactly equal to the mass of the displaced volume of water.

4. KINETIC ENERGY OF THE FIELD OF FLOW. DETERMINATION
OF THE HYDRODYNAMIC MASS AND OF THE ACCELERATION
PRESSURES FROM THE KINETIC ENERGY.

In the further course of our discussion, we shall not make use of the derivation of the

hydrodynamic mass from the general Bernoulli equation. This particular method of determining

the hydrodynamic mass was referred to at the outset only because the Euler equations, which

express the dynamic law in terms of hydrodynamics, afford an opportunity of giving as clear

a representation as possible of the acceleration resistance and hydrodynamic mass. If,

I _Y



however, easily understandable and simple calculations are to be sought for more complicated

cross sections, it is more expedient to determine the hydrodynamic mass from the energy of
the field of flow. We shall demonstrate this method also by using the circular cylinder as an

example.

The kinetic energy of a flow is given by the expression

2 T =- 6Tds

S

(see Lamb, Art. 44) when potential flow is involved. The integral is taken over the bound-

ary S of the region occupied by the fluid (two-dimensional flow). T represents the kinetic

energy, p the density, 4 the velocity potential, ad/an the velocity along the normal to the

boundary directed into the fluid. Since

aqP _ a,

6n 6s
Equation [9] may also be written* in the form

2 T =- -Q pdV [10]

Equations [9] and [10] give the kinetic energy as a function of the velocity potential and of

the density p, If we succeed in setting up the potential expression for the accelerated body,

we can calculate the kinetic energy from [9] or [10]. As far as our use of Equations [9] and
[10] is concerned, it should be emphasized that these equations remain valid even for the un-

bounded fluid regions which are at rest at infinity (Lamb, Art. 46).

For the kinetic energy of the field of flow we may also write 2 T -= m"U 2 ; if we substi-

tute the velocity of the body for U in this equation, we get

Q 09 ds
-- 9 0 n [11 ]

U 2

We shall now apply this relation to the circular cylinder and in doing so find that the fictitious

mass m "'is the hydrodynamic mass m" introduced in Equation [Ta] above. The potential of

the absolute motion was

-=U- cos ;
r

*qi is the "stream-function." tI = constant gives the stream-lines. For further information with regard to the

velocity potential and the stream-function and the representation of potential flows of the two-dimensional motion

by an analytical function F(z) of the complex variable z = x + iy, see References 1, 2, 3, 4, and 8,

I ~I I___~
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hence we obtain

bq) p q Ua 2
_-- - cos 8

Sn a r r2

and the kinetic energy for the field of flow which is bounded by the circumference of the cyl-

inder but which, apart from that, extends to infinity is found to be

2n

2 T = e a2 U2 cos2 0 d = r e a2 U2

0

If we substitute this into [11], we get m"= r p a 2 , which is in fact the hydrodynamic mass for

the cylinder of unit length.

For a number of problems in the ship theory it is necessary to know the distribution of

acceleration pressure over the boundaries of the cross-sectional area. This distribution can

also be determined from the energy of the field of flow. For the circular cross section, for

instance, we obtain from Equations [6], [6a], ,and [T71

d U 2n
m" d t- P a cos O d Odi

0

and with ad = ds

din" 1 dU
PB =-

ds cos 0 dt

With m'" from [11] and the potential from [1] we obtain for the pressure

dU
PB= Qa cos O

dt

which is the same relation which was previously derived directly from the general Bernoulli

equation. (See Equation [6].)

For the numerical determination of the hydrodynamic mass of various cross-sectional

forms, the inertia coefficients C introduced by Lewis 6 * can be used to advantage.

'"

C - m [12]
m" circle

*In the literature of hydrodynamics (see Lamb 1 and Munk9 ), the inertia coefficient, in contrast to the above

expression, is given as
kinetic energy/dynamic pressure

k=
volume of displaced body

Moreover, Munk introduces for the numerator of this ratio the designation "volume of the added apparent mass."

The inertia coefficient k has certain disadvantages, particularly for two-dimensional flow, in that it becomes

infinite for a plate moving against the direction of flow because the denominator vanishes despite the fact that

there exists a well defined kinetic energy.

11



gives the ratio of the hydrodynamic mass of the cylinder of a particular cross section to the
hydrodynamic mass of a circular cylinder with the same maximum diameter 2 a perpendicular

to the direction of motion.

5. HYDRODYNAMIC AND APPARENT MOMENT OF INERTIA. PRESSURES
PRODUCED IN UNSTEADY ROTATIONAL MOTION. GENERAL MOTION
OF ANY ARBITRARY SOLID IN AN IDEAL FLUID.

From the existence of hydrodynamic masses in translational motions, it naturally fol-
lows that hydrodynamic moments of inertia occur in rotational motions. These will also be

determined from the energy of the field of flow; for this purpose, it is only necessary to intro-

duce the velocity potential of the rotational motion into the relation for the kinetic energy.

Let us consider, for instance, the elliptic cylinder already treated by Lamb. We shall intro-

duce:

x= acos ? y= bsinq

where a and b are the semi-axes of the ellipse and 71 designates the angle, indicated in Figure

3, which both coordinates have in common. If we then iitroduce a = c cosh and b = c sinh (
into the expressions for x and y, we obtain

x = cosh cos 0 $ < 00
y c sinh sin q7  0 < 7 < 27

with the elliptical coordinates and -q. From these relations = const

and the familiar equations defining hyperbolic functions (see

Hiitte, 26th edition, p. 80) it follows that

e a +b e- a-b a2b2e = , e-- , c --p a2 - b2

c c const

Thus, for a rotation about the axis of the ellipse with angu-

lar velocity a, the potential (see Lamb, Art. 72) is Figure 3 - Elliptic Coordinates

1
p=- - w (a + b)2 e-2 sin 2 7 [13]

4

and the stream-function

1
y - w (a + b)2 e-2 cos 2 r [1]

4

If we introduce [13] and [14] into relation [10] for the kinetic energy, we obtain

iill
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2 T = I t 2 (a + b)4e - 4 sin 2 2 d7 [15]
8

0

from which with

e- 4  __

(a + b) 4

we obtain twice the kinetic energy

1
2 T =- Q 2 C4 [16]

8

This value for the kinetic energy is likewise found in Lamb (see Art. 72). For all confocal

ellipses c is constant and likewise the kinetic energy.

Now the following equation holds for the kinetic energy of a rotating solid with the

moment of inertia referred to the axis of rotation

2 T = Jw 2

If we substitute this relation into Equation [16], we obtain as "hydrodynamic moment of

inertia"

2T 1
J" _ - 7C g C4  [171

w02 8

for a unit length of the rotating cylinder. Therefore, the moment of resistance which in the

case of an accelerated rotational motion is to be overcome in an ideal fluid is found to be

dw0
MB = (J J") [181]

dt

We shall designate J + J" as apparent moment of inertia J'.

It is natural to deduce the distribution of the pressure forces generated by the acceler-

ation do also from the expression for the kinetic energy [15]. From the general definition of
dt

the moment of inertia it logically follows that for the hydrodynamic moment of inertia

a b

J" dw - -4 pBydx + 4 pBx dY [19]

dt
0 0

From the equations correlating elliptical and cartesian coordinates it follows that

ay bx
d x =-- dr and dy =- d1

b a

M11111



for fixed e; we naturally assume that particular value of e to be chosen which fits the contour

of the body. On the other hand, we obtain from [15] and [171]

2T 1"2 - 1 (a +b)4 e -4sin' 2 dh )
8 o

[20]

From these two relations [19] and [20] we deduce after a few transformations the desired re-

lation for the pressure distribution

1 c
2 a3 b3 [21]

For dimensionless plotting it is advantageous to use the expression

PB

dc2  d- -
dt

2 2 2

a 3 b3 [22]

B The pressure distributions calculated in this

c - manner for two different length-width ratios of

rotating elliptic cylinders (a/b = 3 and 10)

have been plotted in Figure 4.

At this point we wish to add a few re-

marks on the determination of the general mo-

SB tion of a solid of any arbitrary shape in a fluid.

S¢ .2 Fundamentally, this problem has been solved

by Kirchhoff. To recapitulate the extensive

and, in part, very complicated line of reason-

ing of Kirchhoff, who carried out a complete

a.4 1investigation of the ellipsoid, would go be-

yond the scope of this paper. Hence, we

Figure 4 - Pressure Distribution on Rotating merely call the reader's attention to the

Elliptical Cylinders treatises of Lamb, Chapter 6,1 Wiens, 2 and

Munk. 9 From Kirchhoff's investigation we

merely point out the result that any arbitrary motion of a solid in a surrounding inviscid medi-

um is determined by the velocity components in the direction of the three axes and by the

three components of the angular velocity, corresponding to the six degrees of freedom of the

general motion, and by the 21 hydrodynamic inertia coefficients. In the most general case,

all 21 inertia coefficients are required since in addition to the six squares of velocity, 15

products of velocities must also be inserted into the quadratic expression for the energy. The

potential is obtained however by the use of only six terms corresponding to the maximum

Y
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number of possible components of motion. From these six expressions in the potential function

the inertia coefficients may be calculated. In problems encountered in actual practice, how-

ever, such as those posed by stability of course and the steering of airships and ships (see

Munk, 9 Weinblum 1 o), the flexural vibrations of the ship body (see Lewis, 6 Koch 7 ), the ship

oscillations in calm water and in waves (see Brard"),as well as problems which are related

to the generation of waves (see Lamb, 1 Havelockl 2 ), the most general motion is never requir-

ed; besides, the floating bodies to be considered always contain one or more planes of symme-

try so that ordinarily most of the inertia coefficients vanish and thereby simplify the calcula-

tions substantially.

6. THREE-DIMENSIONAL FLOW

Analytical investigations treated here will be confined to those processes, such as

flow over wings, where the flow is essentially two-dimensional. In practice two-dimensional

flow may be realized by mounting the cylindrical body to be investigated in a flow between

parallel walls. The situation is different when the calculated inertial coefficients are applied

to full-scale conditions. Here bodies are subjected to flows in both longitudinal and transverse

or downward directions. If the mathematical calculations are to fit the conditions with reason-

able accuracy it is necessary to make an approximate evaluation of the three-dimensionality

of the flow as the only practical method for determining the hydrodynamic masses and moments

of inertia for hull forms which are not defined by any simple mathematical law. Lewis who was

the first to carry out an analytical investigation of the effect of the surrounding medium on the

inertial increase for the case of flexural vibrations of ship hulls 6 has also indicated a method

for the approximate evaluation of the tridimensionality. He makes use of the exact solutions

derived by Lamb and by himself for the hydrodynamic masses of an ellipsoid of revolution and

he defines a longitudinal coefficient of reduction R as follows:

actual kinetic energy of the surrounding fluid

kinetic energy for the case of two-dimensional flow about the body

Hence, this coefficient R for the ellipsoid can be calculated with the aid of the exact solution

for the latter (Lamb, Art. 114) and with the aid of the kinetic energy for the flow about circular

and elliptical cylinders.* This has been carried out by Lewis for the case of the ellipsoid of

revolution executing translational oscillations (see Figure 5). Accordingly, for a length/width

ratio greater than 6, we have to expect an error of at the most 8 percent if we assume two-

dimensional flow about the body. By means of the coefficient of reduction Lewis proceeds to

correct the two-dimensional hydrodynamic mass obtained for any arbitrary hull form composed

of different transverse sections. It is true that this kind of approximation must be considered

*To this end, the ellipsoid is divided in a longitudinal direction into a number of elementary cylinders. These

elements are conceived to be separated from one another by walls across which there is no flow.
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Figure 5 - Coefficients of Reduction According to Lewis

as somewhat rough since it takes into account neither the specific shape of the displacement

body nor the width/depth ratio; nevertheless a better approximation which, no doubt, would

also be more complicated, seems to be unnecessary as long as we confine ourselves to slen-

der displacement bodies.

Occasionally, the idea is put forth that the hydrodynamic mass and consequently the

acceleration pressures of an ellipsoid of revolution moving in translation in a direction per-

pendicular to its greatest axis must experience a sharp reduction at the ends of the ellipsoid

while no reduction at all, or a much slighter reduction, is experienced at the middle. In view

of the practical importance of this problem, we shall dwell on this point a little longer. Ob-

viously, if the three-dimensional flow about the body is considered, we obtain, according to

Lewis, the same coefficient of reduction over the entire length; hence the same reduction of

the hydrodynamic mass results over the entire length. From the analysis of the acceleration

pressures it can now be demonstrated that Lewis' method leads to exactly correct results, at

least for ellipsoids of revolution. To this end, the acceleration pressures for a special case

of the ellipsoid of revolution, viz., the sphere, will be considered. In a manner entirely anal-

ogous to that developed in Section 3, wherein the acceleration pressures are found from the

general Bernoulli equation in a coordinate system moving with velocity Vand by use of the

velocity potential of the absolute flow for a circular cylinder in two-dimensional flow, the ac-

celeration pressures on a sphere may be found by extending the relations to three dimensions.

A calculation of this kind has been carried out by Prandtl-Tietjens. 3 The acceleration pres-

sure on the surface of the sphere is found to be

1 dU
pB = Q a cos d

2 dt

where a represents the radius of the sphere and Q the solid angle indicated in Figure 6.

Accordingly, the pressure at the points A and B on the surface of the sphere (see Figure 6) is

1 dU
PB 2 d- a

2 d t
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while at corresponding points on a circular cylinder we ,a.1

obtain from Equation [6] PB

dU a-sin
PB =ea

dt 4

Thus the transformation to three-dimensional flow requires

that the equator drawn in the direction of motion from A to

B be reduced by a factor 1/2; this agrees with Lewis' the-

ory which, for the sphere, leads to a coefficient of reduc- Figure 6-Acceleration Pressures

tion of 1/2. on the Sphere in Translation

It is obvious that this coefficient of reduction must

also apply to the two-dimensionally calculated acceleration pressures and likewise to the two-

dimensional hydrodynamic masses on all, sectional planes drawn parallel to the equator through

A and B; otherwise the hydrodynamic mass for the entire sphere would not be equal to half

the mass of the displaced fluid as the calculation (according to Prandtl-Tietjens 3 ) requires.

Besides, Lewis gives solutions for ellipsoids oscillating with one to three nodes which

are of interest in connection with flexural vibrations of ship hulls. For these motions coeffi-

cients of reduction become smaller with the number of nodes. The curve applying to two

nodes is shown as a broken line in Figure 5.

The data of Lewis refer to oscillations and hydrodynamic masses in translation; there

is no reason to expect essentially different coefficients of reduction for rotational oscillations

about an axis perpendicular to the plane of the two-dimensional motion.

For further information in regard to the three-dimensional treatment of hydrodynamic

masses and moments of inertia, we call the reader's attention to the article by Munk in Durand's

"Aerodynamic Theory". 9 In this article, Munk confines himself to the requirements of airship

navigation which can also make use of the analysis of ellipsoids because of the generally

ellipsoidal shape of airships.

7. EXPERIMENTAL DETERMINATIONS OF THE HYDRODYNAMIC MASSES

Before carrying out the analytical calculation of the hydrodynamic masses and moments

of inertia of particular cross sections, we shall first consider whether we expect the theoreti-

cal values to agree in general with the empirical values. Such a verification of the calculated

values is especially necessary in the field of hydrodynamics since it is well known that a

good many of the results obtained on the basis of the assumption of an ideal fluid are in sharp

contrast to the processes actually occurring in nature.

In the field of physics,when the sources of error in pendulum observations were investi-

gated, the question first arose as to the manner in which the surrounding air affected the pen-

dulum oscillations. Independently of each other, Dubuat (1786) and Bessel (1826) recognized

that the aerodynamic reduction of the length of the pendulum must be carried out by introducing

II



an apparent mass (m +km ') instead of the mass of the body of the pendulum m, where m'

represents the mass of the displaced air and k is a constant. The value of k for the sphere

as determined experimentally by Bessel was found to be 10.6. As we have already seen,
the theoretical derivation leads to the value of 0.5 [Poisson (1832), Green (1836)]. Taking

the internal friction into consideration, Stokes (1856) and O.E. Meyer (1871) later found ex-

pressions for k which explained values in excess of 0.5 as resulting from internal friction.*

For the special case of a sphere and small oscillations justification was thereby furnished

for the agreement between the hydrodynamic mass found experimentally and that derived by

calculation.

From an article by L. Schiller, entitled "Impact Tests with Spheres and Disks," 1 3

we mention a few more experimental results regarding the hydrodynamic mass (called "relative

apparent mass" by Schiller). In climbing tests with pilot balloons, Hirsch found values which

exceed 0.5 only slightly. Cook found the value of 0.46 in an impact test with a mine case in

water. Experiments carried out by Lunnon also indicate that the hydrodynamic mass appears

to have the same value in a viscous and in an ideal medium, at least in the initial stages of

the accelerated motion.

In more recent times, Holstein 1 4 carried out oscillation tests in water with a parallele-

piped. We shall discuss these important experiments in more detail later on in connection with

the theoretical calculations. For the time being, we shall merely make use of the value for

the hydrodynamic mass of the parallelepiped (width = 12 cm) oscillating at a depth of immer-

sion equal to the half-width. (Two-dimensional flow was obtained by having the lateral walls

of the tunnel fit close to the ends of cylinder.) For this case, Holstein finds for the hydro-

dynamic mass in s2: 0.0693 < m"< 0.0805 with an error of at most ± 0.01 9s2 . The scatter
cm cmCM CMof the m "values shown by the interval is due to the dependence of the hydrodynamic

mass on frequency. This variation with frequency which occurs in the case of oscillations in

or near free surfaces will be discussed in more detail later on. On the basis of a relation de-
rived subsequently (see Part II, Section 11) we obtain by the analytical method for the hydro-

dynamic mass of a half square parallelepiped: m "= 0.0872 g8, i.e., a value which still liescm

within the limits of error of the experimental determination; in this connection, it should also

be kept in mind that Holstein's parallelepiped had slightly rounded edges which must result in

a small reduction of the measured hydrodynamic mass, thus rendering the agreement even

better.

The test results considered thus far are confined to hydrodynamic masses. Fundamen-

tally, no different behavior is to be expected for the hydrodynamic moments of inertia since

they also result from acceleration forces.

*This excess value var.shes in the case of a sphere with large radius.
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Thus we arrive at the result that the hydrodynamic masses and moments of inertia

which are determined analytically for a frictionless ideal fluid also satisfy with good approxi-

mation at least, the conditions in viscous fluids as long as we are not dealing with very

small bodies. Additional test data, especially those obtained experimentally in connection

with problems of naval architecture, will be considered in connection with the corresponding

results of the analytical calculatio..
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II. HYDRODYNAMIC MASSES

8. METHODS OF DETERMINING THE POTENTIAL OF TWO-
DIMENSIONAL FIELDS OF FLOW

As has been pointed out in Sections 4 and 5, the hydrodynamic masses and moments of
inertia can be determined if the velocity potential 0 on the bounding surface of the respective
cross section is known. The theory of the analytical functions provides us with a powerful
means for determining the potential of two-dimensional fields of flow.

Every analytical function

w---- ii - f(z)--i(x~iy)
/ 92 + (Z) (X2 + _ _)

Sx ay' dy ,Cauchy-Riemann* differential equations) represents a solu-

tion of the Laplace equation

a2w w
A W - + = 0 (Divergence = 0)Ox2 y 2

furthermore, and like every continuous function of two variables with continuous derivatives,
it satisfies the fundamental relation for the existence of a potential

Z) aw a a w0a (a ax ( - 0 ( Rotation =0)

These two conditions are necessary for the existence of irrotational motion in an ideal
incompressible medium. 5 is the velocity potential from which the velocity components at
each point of the field of flow u = 09/dx, v = 8d/9y are to be determined; 0 is the stream-
function and w = 0 + iq is the complex potential function.

If several potentials exist in a field of flow, they may be superposed as scalar quanti-
ties. This linear characteristic is utilized in setting up complicated fields of flow; for exam-
ple, by superposition of parallel flow and the flow due to a doublet, the field and the potential
of the relative flow about the circular cylinder may be found.

Apart from this, the two following methods are primarily used in hydrodynamics to de-

termine the potential:

a. The method of the conformal representation. In this case, one starts out from a known

field of flow in the z-plane 0 + i/f = f(z) = f (x + iy) and maps this conformally into the Z-

plane by means of the function fl, Z = X + iY = f, (z)=fl , (x + iy). The new field of flow

again represents an analytic function and thereby a possible form of motion. The boundary

*In an analogous manner, these equations also apply for any other two directions which are perpendicular to
one another.
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of the mapped region ordinarily corresponds to the boundary of the original representation.

The infinite character of the field of flow is retained. This method is especially well-known

in the field of aerodynamics where it is used to determine the potentials of airfoil sections,

for example. For the initial potential function one ordinarily uses the flow about the circle

which, in turn, can be determined by a simple transformation (Z -= z + a-, a = radius of the
z

circle) from the obvious expression for parallel flow w = -UZ. (See References 1, 3, 4.)

b. The method of direct solution of the boundary-value problem. Since every analytic

function is a solution of the Laplace equation, we only have to find that solution which satis-

fies the conditions at the boundary of the field of flow (including boundaries extending to

infinity). No general methods of solution can be given for the practical solution of this prob-

lem. It will be necessary to assume suitable functions and then to find out if they satisfy

the required boundary conditions. (A more systematic method is indicated by Lamb, 1 Chap-

ter 4.) In many cases it is possible to tirst transform,by conformal mapping, the region for

which the analytical function is sought into a region in which the boundary conditions are

easily satisfied and then to determine the function for the latter region.

We shall illustrate each of the two methods by one example. First, we are going to

determine the potential for the circle by the last-mentioned method, i.e., by the direct solution

of the boundary-value problem (Lamb, Chapter 4).

Suppose that a cross section in the x-, y-plane moves in the x-direction in a medium

which is at rest at infinity. In that case we find that at all points on the contour of the sec-

tion the velocity component of the fluid in the direction of the normal is equal to the velocity

of the boundary in this direction. From this we obtain

S U y + const [23]

as the condition which must be satisfied at the boundary of the section (for more details, see

Section 11). At infinity, moreover, the medium must be at rest; therefore, the derivatives of

the potential with respect to x and y must vanish there. If we now tentatively substitute

S= A sin 0 with r and 0 as polar coordinates into [23 ], we obtain
r

AA- sin O = Ur sin 6 + const
r

Moreover, if the expression for x for a radius a is to transform into expression [23], it obvious-

ly follows that A = U a and the constant = 0. Thus we find
a 

a2S= U - sin 0
r

and from the Cauchy-Riemann relations

a2 CosO= - U rcos
r

I= 1 611



At infinity (r = oo) the derivative of the potential with respect to r vanishes; hence the ana-

lytical function w = 0 + iq satisfies all boundary conditions. This well-known expression

for the potential of the absolute flow about a circular cylinder has already been used several

times in Part I.

In an entirely analogous manner Lamb and Durand 8 determine, with the aid of elliptical

coordinates, the potential for an ellipse moving in the direction of the small and large axes.

As a second example, we are going to determine, by the first-mentioned method, i.e.,

the method of conformal mapping, the potentials for various frame contours from the known

potential for the circle. In this case, we follow for the most part the method developed by

Lewis. 6 As transformation function we put Z = f(z) = z +b.. For the circle of unit radius

we have z = x + iy = e iO, for the transformed figure in the z3 X-, Y-plane we have therefore

Z = X i Y = e +be - a30

and since e0 = cos 0 + i sin , we obtain thereby

X = cos O b cos 30 [24

Y = sin - b sin 3

as parametric equations of the transformed figure. For 0 = 0 and 0 = r/2, the semi-axes of

the figure in the X-, Y-plane are found to be

X 1 = 1 + b and Y 1 = 1 + b

By superposition of the parallel flow w = - Uz and the absolute flow about the circle, we ob-

tain for the relative flow about the circular cylinder of unit radius

9' - U r+ + cos
r

1/)' = U- T 0. sin 0
( )T

and in particular for the boundary r = 1

'= 2 U cos O y'=0,

which means that the circle is a stream-line. In order to determine the kinetic energy, how.

ever, we need to know the absolute flow. Therefore, since the flow at infinity remains un-

changed by the transformation, we must again subtract a parallel flow

w = - UZ --U (X + iY) --U [cos & - b cos 30 + i (sin 0 - b sin 30)]

from the 'and di 'values of the relative flow which also satisfy the boundary conditions for

the transformed circle. Thus we obtain for the absolute flow about the cross section in the

Z-plane

I I ~ I - ---- 1~-- --
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Figure 8 - Transverse Sections Obtained
from the Conformal Transformation

Z = z + b of the Unit Circle
Z3

= U (cos O - b cos 30)

y =- U (sin - b sin 30) [251

For definite values of b the parametric equations [24]give the transformations of the unit

circle into the Z-plane (see Figure 7). For example, we obtain for several values of b the

frame sections for which single quadrants are drawn in Figure 8. It is seen that these sec-

tions closely resemble normal transverse sections of a ship hull. The constants b are so

chosen that the body plan barely lies within the circumscribed rectangle. Lewis 6 selected

the transformation function

a bZ=z±- +
z z [26]z Z

3

with two undetermined coefficients; he thus succeeded in determining the potentials for a

large number of curves like transverse sections which can be varied not only in the curvature,

but also in the aspect ratio.

9. HYDRODYNAMIC MASSES ALREADY DETERMINED ANALYTICALLY

Before we turn to the determination of hydrodynamic masses of certain cross sections

which are important for naval architecture, we shall discuss a number of hydrodynamic masses

already calculated by other authors for such sections that resemble hull cross section.

By introducing the potential of the absolute flow about the circle and the ellipse into

----- - 11M.
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Figure 9- Ellipses of Different
Aspect Ratio but of Equal

Hydrodynamic Mass

the relations for the kinetic energy [9] and [10] as derived in

Part I, we find the kinetic energy and from this the hydro-

dynamic mass m " [11] and the inertia coefficients C [12]

for the respective cross section.

For the motion of the ellipse in the direction of the

main axis a, we find the hydrodynamic mass to be p 7 b2

where b denotes the semi-axis perpendicular to the direction

of motion. This expression is independent of the length-

width ratio of the ellipse; hence, for all ellipses of equal

breadth, which specifically include the circle and the flat

plate, the hydrodynamic mass is the same. Obviously, the

inertia coefficient C for all cross sections drawn in Figure 9

is equal to 1.

In more recent times, Lewis 6 determined the potential

for forms resembling transverse sections by means of the

conformal representation discussed in the preceding section.

The kinetic energy for the motion of the sections with the

"length-width ratio" X 1 /Y 1 = 1 is obtained from [25] and

[10]as follows:

0

2 T = U2 (cos O - b cos 39) (cos O - 3b cos 30) dO
2n

which, after carrying out the integrations, results in

2 T = er U 2 (1 +3b 2)

A circular cross section having the semi-axis X, = Y =

2 T -= p U2 (1 + b)2 ; hence, the inertia coefficient is

1 + b as radius has kinetic energy

1 + 3b 2

(1 + b)2
[28]

and the hydrodynamic mass for such a double-frame profile, moving in the direction of the

axes, is

2

where B represents the greatest width of the profile. Therefore, if we choose definite inertia

coefficients C, we can determine from [28] first of all the corresponding b and from [24] the

[27]
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Figure 10 - Transverse Sections and Inertia Coefficients Obtained by Lewis



lengths of the semi-axes and finally the shape of the section. In this manner, using the
transformation function [26], Lewis determined the inertia coefficients C for the potentials

for sections of various curvature. Lewis's transverse sections, together with the correspond-
ing C-values, are shown in Figure 10. In these figures, the arrow in the upper left corner de-
notes the direction of translational motion and a/b the length-width ratio of the circumscribed

rectangle. (In the figure, one of the semi-axes is designated by b,which is not to be confused
with the constant b of the transformation function.)

Lewis determined the hydrodynamic mass not only for curvilinear forms, but also for
rectangles and rhombuses of various length-width ratios, by a conformal mapping of the paral-
lel flow into a flow with polygonal boundaries by means of the Schwarz-Christoffel transforma-

tion. The values of C obtained in this manner are also given in Figure 10. From these repre-

sentations we conclude that conditions do not change materially when passing from the full-
form transverse section to the rectangle. Hence, as long as we endeavor to determine the

hydrodynamic masses and moments of inertia by the analytical method, the error made in re-

placing the usual full-form transverse sections amidships by rectangles is kept within moder-

ate and approximately specified limits.

10. HYDRODYNAMIC MASSES DETERMINED EXPERIMENTALLY
BY MEANS OF AN ELECTRICAL ANALOGUE

The potential V of a plane electric field likewise satisfies the Laplace equation

a2 V 2 V
AV= - + --- =0

aX2 a y 2

Hence, for every mechanical problem which is based upon the equation Aw = 0, there may be

substituted an analogous electrical problem. Koch 7 has indicated an electrical analogue in
the present problem for the determination of the hydrodynamic mass of water. It is essential
in this connection that it is possible to realize the electrical analogue experimentally. By

purely electrical measurements of resistance, current intensity, and voltage carried out with
an electrical circuit, a quantity T corresponding to the inertia coefficient C can be determined

and by means of this quantity the hydrodynamic mass may be represented in the form

m" = 2Q 9 b

where b denotes half-width of the cross section measured perpendicular to the motion. The

quantity j is equivalent to 7,/4 times the inertia coefficient C introduced above, where the

procedure outlined by Lewis was followed.

From the standpoint of hydrodynamics, these tests not only simplify the method and

reduce the number of calculations but they duplicate almost exactly the conditions in an ideal
fluid. Koch investigated the rectangular cross section in a bounded and in an unbounded

medium by this method and in doing so, he also represented electrically the effect of the free
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Figure 11 - Inertia Coefficients for
Rectangles Obtained by Koch's

Electrical Experiments

Motion normal to the free surface.

B = depth below keel, h= draft,

b= half-width

4,?

L4 (O0

ts 0q' 119 19? f,/ 16 48 do

Figure 12 - Inertia Coefficients for Rectangles
Obtained by Koch's Electrical Experiments

Motion in the direction of the free surface.

/ = depth below the keel.

surface which is essential in treating transverse os-

cillations. Figure 11 gives the test results for verti-

cal motions in a direction normal to the free surface

(q) while Figure 12 indicates the results for the rec-

tangular cross section moving in the direction of the

free surface (s). The parameter h/b denotes the as-

pect ratio in these figures; b is taken perpendicular

to the direction of motion of Figure 11 while in Fig-

ure 12 it is taken in the direction of the motion.

11. DETERMINATION OF THE HYDRODYNAMIC MASSES
OF RECTILINEAR CROSS SECTIONS

In the preceding sections we have seen that the hydrodynamic masses of a great many

cross sections for an unbounded medium have already been determined (ellipses and their re-

lated forms, transverse sections, rectangles, and rhombuses). It would be desirable to sup-

plement the results obtained thus far by determining m " for transverse sections with bilge

keels. (The role, which the hydrodynamic masses and the resulting distribution of accelera-

tion pressures associated with them, play in the evaluation of the phenomenon of rolling will

be mentioned later on; see Section 23.) Since ships are usually full-formed in the region over

the length of the bilge keels, the investigation of the effect of bilge keels was carried out on

rectangular cross sections. Furthermore, an essential factor in making this choice was the

relative facility with which the calculations for rectilinear cross sections can be carried out;

moreover, as in the case of the ellipse, the fact that the entire range of all possible forms is

included by the variation of a single parameter, viz., the aspect ratio, combined with the fact

just mentioned, make this a desirable choice.

The method selected, which will be applied in an analogous manner to all investigations

to be undertaken, will first be demonstrated for the case of a rectangle moving in a direction

-10-
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parallel to its sides. In this case, we are able to draw a comparison with the calculations

carried out in a different manner by Lewis as well as with the experiments undertaken by

Koch.

The potential is determined by means of the method of direct solution of the boundary-

value problem as described in Section 8b. To do this, we have to transform the field about
the rectangular cross section under consideration into simpler regions. For rectilinear cross

sections, the theory of functions provides us with a method in the form of the Schwarz-
Christoffel theorem by which, among other things, a conformal mapping of the exterior of a
polygon into a half-plane is possible (see References 1, 15, 16, 20, and 22).

The function

t /1 IU 2 n

M = / (= = c fY - -) . .... (In- I)- dt + c [9
0

where z and t are complex variables; t, t2 tn , points on the real axis; tl, 12 . ". n'

real numbers; and c and c 'real or complex constants; represents a transformation of the upper

half-plane t = u + iv [J(t) 0] into a polygonal region of the z = x + iy-plane. For the mathe-

matical proof of this theorem established by Schwarz-Christoffel, the reader's attention is di-

rected to the bibliographical references cited1 5i s , 1 6 as well as to the more detailed textbooks

of the theory of functions. In our case, we shall confine ourselves to the demonstration of
the theorem for those regions which occur in the problems which we endeavor to solve.

Let us consider the shaded region of the z-plane (see Figure 13). By means of the
Schwarz-Christoffel formula [29], it is possible to transform the upper half of the t-plane
(see Figure 14) into this polygonal region of the z-plane which extends to infinity. In particu-
lar, the real axis of the t-plane is to map into the polygonal boundary of the z-plane. The
points t1 ... t n correspond to corners of the polygon in the z-plane and the real exponents

S ... n indicate the size of the exterior angles through which each successive side of the

polygon must be rotated in order to pass continu-

+ ously to the next side. Into the transformation

-x equation [29] we must therefore introduce the

points t = 0, k and 1 for t ... t ; in addition,
the point o of the u-axis should correspond to a

a- corner at z = -. Finally, the real numbers

S1C I ' Pn are defined by the exterior angles ofvT I
8

7,Z

4#_

Figure 13 - z-Plane
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the polygon (see Figure 13); they are Il= +17 = -, + - ( > 0 for angles
2 2 2

with positive rotation and 1L < 0 for angles with negative rotation). If we take into account

this rule of signs, we obtain i = 2 r, as can easily be verified for simple polygons. In
i=1

such cases as the one just considered, the polygonal region may extend to infinity; in an

analogous manner, for the region between two parallel lines, as shown in Figure 15, the ex-

terior angle r must be introduced into the calculation while for the region extending to infini-

ty as shown in Figure 13 the calculation requires the exterior angle 3/2 U. Thereby, the

transformation equation becomes

1 1 1 1

z = c (--1) t)-2 (k - t)2 (1 - t)-2 dt + c' [30]
0

and after adding the corner at infinity we obtain for the sum of the exponents i: E i = 2 7r,

as required; moreover, the constants c and c' permit us to arbitrarily change the position of

the representation in the z-plane; we choose its position in such a way that the position of

the polygon indicated in Figure 13 is obtained, i.e., the points in the t- and z-planes desig-

nated by the same letters are supposed to transform into each other.

We now follow the mapping of the real axis in

the t-plane into the z-plane where it is supposed to go

over into the boundary of the polygon and thereby the

constant is fixed. Starting at -oo (point A), we first Figure 15

allow t to traverse the u-axis as far as t = 0 (point B).

The integrand remains real along the entire path, and z travels from - to -c ', thus travers-

ing the segment AB in the z-plane if we set the still undetermined constant

c' = - a [31]

Over the next portion of the t-axis (segment BC) where 0 < t < k, the integrand becomes

imaginary in the denominator because of the term --. If we now dispose of c in such a

manner that for t = k
k

z= c -- a=- a + i b
o0

applies, or that
ib

C = k [32]k

0

(the constant is therefore real), then

z-ib -0-a
k

0

1L.1
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traverses exactly the segment BC in the z-plane. The segment CD in the t-plane is traversed

for k < t < 1 and for this region we obtain two imaginary roots in the integrand; thus the inte-

grand becomes real and we obtain for t = 1

1

0 ibz =itb - a =-- N
i k a k +

0 0 k

z= -a+ib+ib ko oko

o 1

Obviously, the last term of the last equation is likewise real, ( contains two roots with

negative radicands and it follows, of necessity, that
kknegative radicands and it follows, of necessity, that1

k =k + a
0

in order to satisfy conditions at point D where t - 1. Thus we obtain for the (real) aspect

ratio of the rectangular quadrant in terms of the abbreviated integrals for the imaginary terms

1

a _k [33]

b k

0

Hence, for the segment CD in the z-plane the following equation applies:

Iz=a+ib(1 +1k
0

The segment DE in the t-plane is finally traversed for 1 < t < c. In the integrand there now

appear three imaginary roots and thus we obtain

t k 1 t
ib ib

z o k + +

0 0 0 0 k 1
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and with the value just obtained for t = 1 we have

t

~z ::-b ( +I)
0

where z is purely imaginary and goes from +ib to +ioo.

Thus we have proved that the function [30]actually transforms the real u-axis of the

t-plane into the polygon ABCDE of the z-plane. Likewise it can be proved in an analogous

manner by means of [30], that the interior of the polygon is obtained from the lower half of

the t-plane. For the sake of completeness, let us further point out certain points of the z-

plane at which the representation is not conformal. At the points B and D the integrand has

singularities (.) and the transformation function no longer is analytic and at the point C the

derivative d = 0; it follows from this that at the points B, C, and D, the conformity of the
dt

representation is no longer retained. Hence, one excludes these points in the t-plane by by-

passing them with small circles.

We can now proceed to utilize these relations just obtained to determine the hydrody-

namic mass of polygons. We shall hegin with the determination of the complex potential

function for the absolute flow about a rectangular cross section:

At the boundary of any arbitrary cross section moving in a straight line (see Figure 16),a¢ a,/,
the normal component of the fluid velocity r =as must coincide with the velocity of the

boundary itself along the normal. The velocity of the boundary in the direction of the normal

is

Ucos a =U dy
ds

from which we obtain

aV U d y

as ds

and by integration along the boundary it follows that 11.Cosa

V=- U y + const [341 ] a

ds dy
a relation which has already been used previously in Equa-

tion [23]. At infinity, moreover, the velocity, and also \

and , must be equal to zero; with this and by [34], the

conditions on the entire boundary of the field of flow in the
Figure 16 - Derivation of the

z = x + iy-plane are given. Boundary Condition in the

Because of the double symmetry of the rectangular Case of Translation
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f" cross section now being considered (see

p=cons Figure 17), it suffices to investigate the con-

ditions in only one quadrant of the field. The
C 80 boundary conditions for such a quadrant are

found as follows: For the motion in the + x-

- .direction AB must be a streamline for reasons

S of symmetry; hence, the following condition

4 O 8 must apply on AB

_x -Y

or

V = const

Figure 17 - z-Plane and the constant may be set equal to zero

without restricting the generality. On DE, the velocity of the absolute flow must be equal to

zero. Therefore, DE is a potential line, and the tangential derivative _ must vanish along

it. 
y

In order to obtain a region in which we can easily find the analytical function which

satisfies the boundary conditions, the region ABCDE in the z-plane is mapped into a half-

strip in the C-plane. This is accomplished by mapping the z-plane and hence also the

= 6 + i,7-plane, in which the region is represented by a half-strip, into the t-plane. The

first transformation is made by means of Equation [30]; hence, the following condition applies

on the boundary BC of the quadrant in the z-plane

z = iy =ib 0 a
ki
0

for 0 < t < k; thus the boundary condition [34] is

y = Ub +const [351]
k

0

and in an analogous manner we obtain for the boundary segment CD, k < t < 1

V-= Ub + const

r I I -- -~ I r I I- I -r rrm~--~Pcl r*- IUIY -
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As the second transformation we put

1 1 1 [

0 ) , B

from which we get by integration (see Hfitte, 26th 4

edition, page 91)

-= h arc cosh (1 - 2t) + h' Figure 18 - C-Plane

or written in a different form

1 - 2t = cosh l[381
h h

We shall now dispose of h and h' in such a manner that we obtain a half-strip open toward the

right whose distance from the 6-axis is 7/ 2 and whose width is v/ 2 (see Figure 18). It will

be immediately apparent why we choose a half-strip of exactly this width and position. If

we set A = 1/2 and A'= i -, we obtain
2

1 -- 2 = cosh (2 - in) [391

This equation is obviously satisfied for = i (cosh ig = cos 7); therefore, point B (t = 0)
maps into (= 0 + i ll. For t = 1 it follows that - 1 -- cosh (2 ¢ - i rr); which is satisfied for

22maps into 4=0 + i E . For t = 1 it follows that - 1 = cosh (2 4 - i 7r); which is satisfied for

S= 0 + ii. For the segments AB (t < 0) and DE (t > 1), the integrand of [37] becomes real

and in the C-plane we obtain straight lines that are parallel to the 6-axis (see Figure 18).

The significance of this last representation lies in the fact that in the half-strip we

easily succeed in finding the analytic function which satisfies the boundary conditions. In

the z-plane Equations [35] and [36] must be satisfied on BCD; the segment BOCD is now trans-

formed into the segment of 4-plane designated by the same letters in such a way that the po-

tential on the boundary must remain invariant under the transformation. Hence, if we develop

the expressions [35] and [36] on BCD into a cosine series, viz.,

t

?p= Ub-- + const= Ub (ao + a cos ?I a2 cos 2 + .... +ancosn ) [40]

k
0

where for 0< t < k ft and fork < t <1 ft = fk ,or if the constants on each side of the
0 0 0 0

equation are set equal to zero, we obtain from [40] the expression in 7:
0

b= Ub = Ub (a, cos + a 2 cos 2 + .... + an cos n 1) [41

0
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which satisfies the boundary condition on BCD in the C-plane. For the entire half-strip

ABCDE it follows that

S Ub (a 1 e - , cos + ...... + an e - n " cos n ?) [42]

p = d = Ub (a 1 e - sin + a, e-
2 sinn ) [43]

since these functions fulfill all the necessary boundary conditions, i.e., they vanish for

-4 00 o, assumes the desired value [40] on BCD at 6 = 0 and the value b = 0* on AB, where

= ., while 4 contains a vanishing tangential derivative 0 on DE where / = n. The func-
2 aetion q + io , furthermore, is analytic which is already apparent from its formation by means of

the Cauchy-Riemann differential equations. Thus, it represents the only analytic function

which satisfies the boundary conditions and consequently it must be the complex potential

function for the half-strip.

Since the kinetic energy is also invariant under the transformations, the kinetic energy

of this field of flow in the C-plane also represents the kinetic energy in the initial field in the

z-plane and thus represents the solution of the problem.

In carrying out the actual calculation, we proceed as follows: First we develop the

differential quotient , abbreviated by c, from Equation [30]
dt

1

(k-t)2
1 1 [44 11

(- t) 2 (1 - t) 2

where we assume for k any arbitrary value between 0 and 1. The function which is represented

graphically by the curves in Figure 19 is then subjected to a continuous numerical integration

in which the improper integrals which occur in the vicinity of the zeros of the denominator are

to be evaluated by substituting an equivalent analytic expression. On integration we obtain

the Schwarz-Christoffel function, abbreviated by c, z = ft, i.e., Equation [30], in the form of
0

a table from which we can find the aspect ratio of the rectangle, determined by k, with the
aid of Equation [33], viz., = f /f. We then trace the integral curve f /fk, which, in each

b k /0 0 /0
case, reaches its peak value 1 at the point t = k and then, because ft fk for k < t < 1, retains

0 0
this ordinate. For the abscissa Equation [38] reduces to

1 - 2t - cosh (2 $ - i nT)

For the imaginary axis, this relation may be written more simply as

1 - 2t- cos (2q - -)

*Since the function = f(7) must be antisymmetric about R/2 according to its symmetry characteristics shown in

Figure 17, the terms in the series with even index must vanish as these terms are symmetrical with respect to

7/2.
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Figure 19 - Development of d Equation [44]
dt

1
t = - (1 +cos 2q

2

77 -

Figure 20 - ft /fk As a Function of i

) = cos 2 [45]

where, with the aid of the last expression, the negative root for cos 77 is to be taken. The
t

function plotted in Figure 20 - /(ql)is then approximated by means of Runge's method*

0by 

means of a cosine series

by means of a cosine series

a1 cos + a2 cos 2 1 . ...... + al cos n?

On the boundary BD, we thus have

(l = OO il lsp = Ub a, r sin n 4
n- 1

and

9p = Ub a, sin r1
1

For the half-strip the kinetic energy then amounts to

n=oo

Sa, cos 
n= 1

*Runge's method for representing a numerically expressed function by means of a Fourier series. 1 7
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Figure 21 - Inertia Coefficients for the Rectangle
For part of the data Lewis's values were used.

2T- 7 9 9

2 T QU 2 b2 ( a sin n )2 dr

2 T-= U2 b2(a 2 + 2a 2 + ...
4

. 1.. + n - n2)

Then for the entire rectangle we need four times this value or

T U 2 b 2( 1
2 - 2a 2

2  ...... n an2

2
[46]

and because T = M U2 , we have for the hydrodynamic mass of the rectangle in translation

m" =:r b2(a1
2 + 2a22 . ...... + n an2) [47]

On the basis of the method described here, the calculation was carried out, for various forms

including the square (k = 0.5); after developing the cosine series up to the 18th term, m" was

found to equal 1.512 np b2 . The inertia coefficient C is therefore 1.512. Lewis, by another

method, found C = 1.5131. In Figure 21, the inertia coefficients for the rectangle are plotted

as a function of the aspect ratio (see also Figure 10). The values determined experimentally

by Koch for rectangles by means of the electrical analogue-for example, C = 1.67 for the

square-likewise show but a moderate deviation due to the fact that in the experiment it is

possible to satisfy the boundary conditions only approximately; for many practical purposes,
however, this deviation is acceptable.

In general, the Schwarz-Christoffel function yields hyperelliptic integrals which do not

permit an evaluation in closed form. In the case of simple cross sections, such as rectangles,
it is possible to reduce the transformation integral to tabulated elliptic integrals. Since, in

M 1111 ME 01101 1 911101101MINEW
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the present paper, however, we are not generally

dealing with such simple cross sections, we re-

frained in all cases from the reduction to Le-

gendre's standard forms in order to maintain a

greater uniformity in our treatment.

For the limiting case of the flat plate of

the width 2b for which we have to put k = 1, we

obtain an elementary integral, hence, this case

will also be discussed. The stream-function

on the surface of the plate moving normal to its

plane must be as follows (see Figure 22):
t

S= Ub - for 0 < t < 1

with the integrand

1
(1 - t)2 1

1 1 a te t r t(- t)2 (1 - ) 2

and the integrals

S1

1
/- t

d = 2 i t

z L

lD 5=5ti.z/

Figure 22 - Representation for Flow
About the Plate

Therefore, the following equation holds:

p= Ub (t

For the imaginary axis, the representation of the t-plane in the C-plane is again made by means

of the function t = cos 27 ; the following, therefore, applies in the 4-plane on the boundary of

the plate

L)= Ub cos

and throughout the entire field

y = Ube - cos q

qp = Ub e- sin r

-consi
LC
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The energy integral vanishes everywhere except for the boundary segment BD and here, i.e.,
on the quadrant in the z-plane, it yields

2 T U2 b2

4

and for hydrodynamic mass of the plate of the width 2b we obtain

m" = b2

and for the inertia coefficient

C= 1

which is the familiar solution for the plate as the limiting case of the ellipse (see Section 9).

12. THE HYDRODYNAMIC MASS FOR A RECTANGULAR
CROSS SECTION PROVIDED WITH BILGE KEELS

In the case of the rectangle with bilge keels moving in translation in the +a-direction

(see Figure 23), it is again sufficient, because of the double symmetry, to limit the calculation

to one quadrant (see Figure 24). The problem is to find an analytical function which satisfies

the boundary condition = Uy on BCDEF, the condition qL = 0 on AB and the condition 0 = 0ay
on FG. In order to determine the function which satisfies these conditions, we again map the

polygon in the z-plane (see Figure 24) into a suitable half-strip in the 4-plane (Figure 26)

which can easily be accomplished by mapping the upper half-plane of the auxiliary t-plane

(Figure 25) into each of these regions.

The transformation of t into z is as follows:

1 1 1 1 1
z- C (0-1) 2 (k - t) 4 (1 - 1) (m- ) (1 -)2 (dl + c' [48]

0

for which, if we take the vertex at infinity into consideration, we obtain the sum of the expo-

nents I pi = 2 tr, as required. Since for t 0, z should again equal -a, we obtain for the

constants c and c'
c =-a

_Xa

4 yooB

Figure 24 - Quadrant of the Rectangle
Figure 23 - Rectangle with Bilge Keels with Bilge Keels
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and furthermore since for t = k, z should be equal to -a + ib, we have

C =

o

As c and c 'are fixed and there are no other constants available, we have for t = 1

1

z=ib -a=O +ib

0

We divide this expression up into its separate integrals, wherein each integral is evaluated

over that segment in the z-plane designated by the arrow, by integrating from the lower to

upper limit

k 1

o k m

I/L/t l _ I _

Hence, the following must hold:

from which, by abbreviating the imaginary

to the half-length, we obtain

,n

k I

k

0

quantity for the ratio of the height of the bilge keel

d k
k

bY

4=u l[-

,4 CJ[ f F

Figure 26 - 4-Plane

ib
k

[49]

~1111111114

Figure 25 - t-Plane
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and for the ratio of the sides themselves
1

a __ l

b k

0

The ratio d/b, hence the height of the bilge keel, as well as a/b, the aspect ratio of the rec-
tangular cross section, can be determined from the values k and I which are selected arbitrari-

ly but in the proper sequence between 0 and 1; however, once k and l are selected, m is deter-

mined so that f . f' is satisfied; otherwise we would not obtain the desired form in which

the points C an F are supposed to have the same coordinates. If, in particular, the basic

rectangle used is a square, then the following equation must apply: f 1 = k.
m O

The mapping of the t-plane into the half-strip of the 4-plane is accomplished, as de-
scribed above (see Section 11), by relation 39]; thus for the boundary segment BF which is

purely imaginary in the C-plane, we obtain specifically Equation [45] once again. If we now

make use of the relations for y from Equation [49] for a = x + iy and if we introduce these into

the boundary condition iA = Uy, we obtain 0 as f(t) on BODEF. By means of Equation [45]

relating t as a function of 1, we obtain 1 = f(q). Finally, we again develop t/ on the boundary

BCDEF into a cosine series in q
00

S= Ub a,, cos n
1

- -and obtain ;b, q, and a on the boundary and

with these quantities, the kinetic energy of

the field. The calculation was confined to

the case of the square (a = b) as the basic

,,..***cross section and it was carried out for three

bilge keel heights defined by the ratio d/b.

% We obtained the following table (see Figure 27),

S/ TABLE 1U~ --

- Increase in C in
percent

I IL
Figure 27 - Inertia Coefficient 0 and Its
Percentage Increase for a Square Cross

Section with Bilge Keels of
Various Heights

Increase
d/b mC" in C in

percent

0 1.512 7rpb 2  1.512 0
0.0494 1.61 upb 2  1.61 6.74
0.123 1.80 irpb 2  1.80 19.05
0.2278 2.11 rp b2 2.11 39.5

li,41 1 " : 7- " • 7 :
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where the length 2b of side of the square cross section was chosen in all cases 1s, the refer-

ence width for determining C; hence the hydrodynamic mass is given by M " - 0 Ip b2 . The

percent increase in the inertia coefficient C for the square with the bilge keel compared with

the value without the keel was calculated by the expression

CO with keel - CO
Percentage increase in C = 100

CO

13. DISTRIBUTION OF THE ACCELERATION PRESSURES OVER
SOME OF THE CROSS-SECTIONAL FORMS INVESTIGATED

If we designate the acceleration pressure by PB , then the equation (see Section 8) de-

fining the hydrodynamic mass for motion in the x-direction is

Sp) cos a ds = m" U [50o

with cos a as the direction cosine of the outward drawn normal to the surface element da.

Conversely, if we find a relation for the hydrodynamic mass by integration over the cross-

sectional boundary, we can determine the acceleration pressures. Accordingly, for the rec-

tangle moving in the a-direction, we have

din " U [51
d-y

since the components of the compressive force are zero on the sides parallel to the W-axis.

In the 4-plane, the pressure on the segment which transforms into the boundary of the body is

din" 0 <q U
dp 6U U 2

Using the expression for 0, Equation [43], it follows that

n= co m= o
d" b2  h 7 asinn7 amms sin mq

dj n=1 m=1

Also on the q-axis of the C-plane, relation [45] holds

1t=- (1 +cos 2n)
2

whence with
dt

di - dt
sin 2 17
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we obtain

dm/"

dt
- o b '  an. sin n a m sin ?7

sin 2 n, m= 1

In like manner, from the transformation of the t-plane into the z-plane

k
1 1

dt o (-t)2 (1- t) 2
t b 1 dy

(k - t) 2

we finally arrive at the relation

PB 1 dm"

QbU eb dy

k

sin 2q

1 1

(-1)2 (1 - t)2 n, m=oo
1 2 an sin n 1 am in sin m r [53]

(k-t) n, m=1
(k - t) 2

from which the pressure distribution can be determined point-by-point.

In actual practice, we proceed as follows:

1. t is given and the corresponding value of 1 is also known by means of [45].

2. y btgives us, for<<k, the corresponding value ofand for<t , y= .
2. y- b 0- gives us, for 0 < t<k, the corresponding value of yand for k< t <1, y= b.

0 n, m=00

3. The series
n, rn = 1

is the product of the two series

an siln f7 = a sin r + a sin 3 ?1 .. .. a2 n + 1 sin (2 n 1) )

and

m= co

Sa,,, m sin m -- a sin + 3a sin 3 .+ + (2 m + 1) a2 ,n + 1 sin(2 m 1) i
mn= 1

if we confine the calculation to the square for which the even terms of the series vanish as

y is antisymmetric with respect to v/2, see Figure 20. For the product of these series, we

have considered the terms up to n, m = 11; we then obtain

a sin 11 - 33 sin3 . . 11 sin 11' sin 11 4 a 3 in in 3

+ .. 20aal. sin 9 7 sin 11r

[52]

n,m = 11V,
'I' 17 = 1
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4. For each group of values t, q, y we then

calculate the differential quotient G and the

dimensionless expression 1[53] B for thepbU
acceleration pressures. By plotting these val-

ues against y we obtain the desired pressure

distribution (see Figure 28).

In a wholly analogous manner, we deter-

mine the acceleration pressures for the square

cross section with bilge keels (see Figure 29).

In this case, too, there exists symmetry with

respect to a diagonal drawn through zero at an

angle of 45 degrees; hence the series develop-

ment remains correct, but the coefficients a n

and am are of course different. By differenti-

ating the transformation function [49] with re-

spect to t and by introducing the differential

quotients obtained for the individual boundary

segments into [52], we obtain, after several

additional transformations of the type already

carried out in the case of the square, the rela-

tions for the acceleration pressures on the indi-

vidual boundary segments. The numerical eval-

uation yields the pressure distribution, plotted

in Figure 30, for keel heights d = 0.0494 and
b

d = 0.2278. By this method, we obtain infinite

pressures at the sharp corners of rectilinear

cross sections. Since on real bodies the

radii of curvature are always different from

zero, we would obtain finite pressures even

if we assume an ideal fluid.

The pressure distribution on transverse

sections with considerable curvature is likewise

translational motion in the x-direction of a cross

obtain for the energy of flow field

-2a -

1? NJ
N \

7N

0 ,2A 6 99

Figure 28 - Distribution of the Acceleration
Pressure for the Case of the Square

in Translation

Figure 29 - Acceleration Pressures for the
Case of the Rectangle with Bilge Keels

of interest. (See Sections 8 and 9.) For the

section with semi-axes X = Y = 1 + b, we

2 T =-- m" U2 eU 2 f (cosO-bcos30)(cosO-3bcos30)dO

1~ 111

meb-----4
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V of 9 _ fly Z? 0 91 V a N S 06 07 M2 99 1

49
Keel 1

9 7 6

SFigure 31 - Distribution of the Acceleration
oPressures for the Case of a Transverse

,, as o ; , 41 o fl y 4e V Section Profile

Figure 30 - Acceleration Pressures for the
Case of the Square with Bilge Keels

Keel 1: d/b = 0.049; Keel 2: d/b - 0.228

The acceleration pressure, Equation [50], amounts to :

dim" 1

dY cosa

where a denotes the' direction which the normal to the surface element makes with the horizon-

tal. We find, moreover, that by Equation [24]

Y= sin O-bsin30
thus

dm" d m" dOd---- d(cos -b cos 3 0)
dY dO dY

and thereby

PB=e(cosO- bcos30) - _U
Cos a

For the purpose of plotting, we form the dimensionless expression

S= (cos 0- b cos 3 ) 1 1
( '1U Y cos a

or if, for the sake of a better comparison with the above-mentioned cross sections, the semi-

axes are put equal to 1:

B -(cos O-b cos 3 0) 1 1 [541
Q Y1 1 b cos a
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The normal pressures ? calculated in this manner are plotted in Figure 31 for the form

b = -0.111.

14. COMPARISON OF RESULTS WITH EXPERIMENTS

Experiments with rectangular cross sections executing translational oscillations have

been carried out by Nicholls, 1 8 Moullin, 1 9 and Holstein. 1 4

Nicholls fastened a block of wood to a steel plate to form a prism of cross section

2 x 1.562 inches and set it into vibration normal to the water surface. As will be seen later

on, a body oscillating normal to the water surface is, under certain conditions, mathematically

equivalent to a double body formed by the body and its mirror image in the water surface and

oscillating in an infinite medium. Hence, the inertia coefficient C, for the submerged part of

the body, has the same value it would have in an infinite medium. Nicholls measured the fre-

quencies of the beam supported at the nodal points for the free-free oscillations both in air

and in water. Later on Lewis explained the difference in frequencies as due to the hydrody-

namic mass of the water which increases the effective mass taking part in the oscillation.

Lewis determined the size and the approximate distribution of the hydrodynamic mass by

means of the coefficients of inertia C (see Sections 4 and 9) and the coefficient of reduction

R (see Section 6).

Moullin and Browne likewise conducted oscillation tests with a beam of rectangular

section on the surface. A comparison shows that their results are in good agreement with the

values calculated by Lewis, the measured values always lying between 90 and 100 percent

of the calculated ones. As long as the length was greater than four times the width of

the beam, the assumption of two-dimensional flow proved to be a satisfactory approximation.

A further means of verifying analytical results is provided by the experiments of Hol-

stein already referred to above (see Section 7). On the basis of extensive tests with a rigid

parallelepiped oscillating normal to the water surface, Holstein obtained values for the hydro-

dynamic mass which are plotted in Figure 32 as inertia coefficients C against the depth of

immersion b in a manner suitable for drawing a comparison. Instead of a single-valued func-

tion the values fall within a strip because of the dependence of the hydrodynamic mass on

frequency which Holstein established conclusively in his experiments for oscillations on a

surface. According to the data of Holstein, the maximum error possible amounts to

A C = ± 0.175; the theoretical curve likewise plotted in Figure 32 would fall entirely within

the strip if its width were increased by this limit of error. Moreover, we have previously

pointed out the moderate rounding off of the corners on the body tested by Holstein. A calcu-

lation based upon the resultant deviation from a sharp cornered profile results in a slight

diminution of the coefficient C. For high-frequency oscillations the dependence on frequency

must be reduced to a minimum (as will be seen in Section 19 later on); this is verified by the

fact that the upper limiting curve of the strip was obtained for the fastest oscillations; it

should be noted in this connection that even for these oscillations the frequency amounted to

oil



Figure 32 - Inertia Coefficients from Holstein's Experiments and from Theory

only about 2.5 hertz so that it lies approximately in the range of the frequencies observed

for flexural vibrations of ship hulls. The condition proved experimentally by Holstein that

at a greater depth of immersion, the hydrodynamic mass increases even though the lower

surface of the parallelepiped acted upon by the water remains the same, is completely con-

firmed by a corresponding rise in the theoretically determined curve (see Figure 32) for small-

er values of the aspect ratio a/b. The change in the field of flow caused by a greater depth

of immersion of the parallelepiped, with the same lower surface normal to the direction of

motion, results in a greater kinetic energy.
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III. HYDRODYNAMIC MOMENTS OF INERTIA

15. HYDRODYNAMIC MOMENTS OF INERTIA ALREADY
DETERMINED ANALYTICALLY

Thus far, hydrodynamic moments of inertia have been calculated only in individual

cases. In addition to the elliptical section dealt with in the textbooks of hydrodynamics (see

also Section 5 of this treatise), only Proudman's solutions for the square 20 and Weinblum's

solutions for the regular octagon 2 2 have come to the attention of the author.

Before we proceed to determine a number of additional moments of inertia, we shall

introduce a coefficient D for rotation which corresponds to the inertia coefficient C for trans-

lation. Since the hydrodynamic moment of inertia for the circular cylinder, in the case of ro-

tation about the axis, turns out to have the trivial value zero, the circular section is ruled

out as a reference cross section. The case of a rotating plate will be used as a reference

section. This case which is the limiting case of an ellipse is integrable in closed form.

Accordingly, the inertia coefficient for rotation D will be defined as follows:

0]"

D = . [55]
Splate

where J'" denotes the hydrodynamic moment of inertia of the section considered and J"plateplate

the hydrodynamic moment of inertia of the plate whose width 2b refers to a given characteris-

tic dimension of the section under consideration. For the denominator we obtain, by the re-

lation already given in Section 5,

1
plate = -- 4 [ 56]

8

Hence, from now on, the hydrodynamic moment of inertia will generally be

D - plate -- D b4 [57]
8

where the length b in the following discussion is fixed in such a manner that in any cross

section considered it has exactly the length of the segment of the y-axis.

The coefficient D will first be used to evaluate the hydrodynamic moment of inertia of

the ellipse as a function of its length-width ratio a/b. From the relations [17] and [57] we

obtain for the inertia coefficient

(fa 2) 4 2 2

D ( (- ) - 1 [58]b4

This function has been plotted in Figure 33.

The inertia coefficient for the square section investigated by Proudman can be obtain-

ed as a special case from the following more general investigation of the rectangular section.

--- -li



6 -For the octagon studied by Weinblum we ob-

tain an inertia coefficient of D = 0.44. In

2t - determining the potential function, Proudman

1,2 and Weinblum also made use of the method

- of direct solution of the boundary-value prob-

Klem. Both authors selected regular polygons

cZ6 8of very particular symmetry characteristics

06_ for their investigation with the result that

the developments required for the solutions

became exceedingly simple.

02

9 a2 9V a.6 ,8 W9 1'2 IV .6

Figure 33 - Inertia, Coefficient for Rotation
of the Ellipse

16. DETERMINATION OF THE HYDRODYNAMIC MOMENTS
OF INERTIA OF RECTILINEAR SECTIONS

First of all, we shall again fix the boundary conditions which a body rotating about

the origin must satisfy. The liquid is assumed to be at rest at infinity. The velocity of the

liquid along the outward drawn normal = -. must coincide with the velocity of the
\an as

boundary itself. In the direction of the normal, the boundary has the velocity or sin a (see

Figure 34); with sin a = dr we have
ds

dr bywo r . ... ._

ds as

from which, by integration along the boundary of the body, we obtain

y)= +- const [59]

wrsincy

Figure 34 - Diagram for the
Derivation of the Boundary

Condition for Rotation

An analytic function which satisfies this condition

along the boundary of the section and which vanishes

at infinity constitutes a solution of the boundary-value
/

problem. There is only one such function and this

function represents the complex potential for the flow.

If we consider once again the rectangular sec-

tion (see Figure 13), we find that, because of the double

symmetry, it is sufficient to study only one quadrant
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(see Figure 35). AB and DE are the potential lines

(€ = constant); on AB and DE the equations

= & = 0 and = - = 0 must apply, respec-ax ay dy ca,

tively, and on the boundary of the rectangle BCD,

the condition [591 or p 12 (0 (x 2 + y 2 ) + const

must be satisfied. In order to find the potential

function, we again map the polygon in the z-plane

into a suitable half-strip in the C-plane by means

of an auxiliary t-plane. The transformation of the

t-plane (see Figure 36) into the z-plane is the same

as the one already used in Section 11.

As a half-strip, we select the one drawn in

Figure 37 which has the width 7r. The transformation

of the t-plane into this half-strip is

S= h arc cosh ( - 21) + h' [60]

with h = 1 and h'= 0. As far as the details of the

calculation are concerned, we again proceed in ex-

actly the same manner as we did previously in con-

nection with the computation of the hydrodynamic

mass. We finally obtain for i on the boundary BD

in the 4-plane, the series

fl= 00

yY ZanCOS n
2 n=1

and for the entire half-strip, the series

00

0 b2 n e- n cos )
2

a

l(.

Figure 35 - z-Plane

myt=u--zL-

k

,4 BC D

Figure 36 - t-Plane

=y0oE !P~
[611

[621
Figure 37 - C-Plane

The kinetic energy for the entire rectangle is found to be

T= w 2 b4 (a2 + 2a 2
2 * + an2 )

2

the hydrodynamic moment of inertia is

2T
J/ - -T 4 (al2 -+ 2 a22 - 2)(1212+ 

1a

E
p= consf

z=x+i.y

i X

[631

[341]
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and the inertia coefficient D is
OO

:T e l,4 n a,,2
1 -- In an2 [65]

8

For several aspect ratios a/b, J" or D have been calculated numerically in essentially the

same manner as that described in Section 11 for the hydrodynamic mass. The values found

for J" and D are given in Table 2. Figure 38 shows the coefficient D as a function of the

aspect ratio.

TABLE 2
"I,

126

/".I
"T Of Vt2 3 el' a S 46 7 4 .9 tO

Figure 38 - Inertia Coefficient D for a
Rectangle Rotating About Its Center

Having determined D for aspect ratios in the range 0 - S 1, we know the inertia co-
b -

efficients for all aspect ratios since we only have to take the reciprocal of the aspect ratio

for values of a/b exceeding 1; in the case of rotation, it obviously does not matter in which

direction the longest side of the rectangle runs. While D is nearly constant for a/b < 0.6, J"

becomes practically a parabola of the fourth degree when a/b exceeds - 1.7.

J" 0.15 : e b4  [66]

In this parabola, we naturally have to substitute for b half of the longest side of the rectangle.

In Figure 39, we indicate still another representation of the hydrodynamic components

J"to be added to the moments of inertia of the rigid body. If, for the prism of rectangular sec-

tion and of the same density as the surrounding fluid, we designate the moment of inertia refer-

'ed to the axis through the center of gravity by JP, then the expression (J"/JP) . 100 indicates

the percentage increase of the apparent moment of inertia as compared to the moment of inertia

of the prism alone. This expression has been plotted against the aspect ratio is Figure 39.

These calculations were confined to the rectangular section. In an entirely analogous

manner, the hydrodynamic moments of inertia of any arbitrary section can be determined as

long as it has straight sides; all that is necessary is to set up a transformation which will

J"

k a/b J" D k/8 p b4

0.5 1 0.234 ip b4  1.872

0.52 0.910 0.198 up b4  1.584

0.55 0.788 0.166 irpb4  1.329

0.6 0.652 0.152 rpb4  1.216

0.7 0.3985 0.149 up b4  1.192

0.8 0.2145 0.150 7p b4  1.20

0.9 0.0782 0.144 p pb 4 1.152

, , j "i i-i
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transform the Schwarz-Christoffel representa-

tion in the t-plane into the given polygon in

the z-plane.

The flat plate is the limiting case of

the rectangle as well as of the ellipse. If

in the t-plane we put k = 1, we must obtain

a = 0 and the aspect ratio a/b must also be

equal to zero. While the integration in this

case can be effected in an elementary fashion,

we still want to verify the value

J"- 1/8 bQ

which we know from the investigation of the

ellipse is also obtained as the limiting case

of the rectangle. For rotation about b, we

must have on the boundary segment BD of the

z-plane

120 / _- - -_

60 __, *J

20 2-- 3 €

a

Figure 39 - Percentage Increase of the
Apparent Moment of Inertia by the

Surrounding Fluid

)b
2 t

2

Over the entire half-strip in the C-plane we have

Sarc cosh (1 - 2 t)

1--- 2t -= cos

1 cos r
2 2

0)

y .- b2 e-  cos
4

With the resulting values of q and 0 the energy integral for the whole plate of width 2b

gives

12 T e o2 b4
8

and for the corresponding value of J"1 p b4
8

17. HYDRODYNAMIC MOMENTS OF INERTIA FOR A RECTANGULAR
SECTION WITH BILGE KEELS

The rectangular section with bilge keels may also be regarded as a polygon. By means

of Equation [49] already used above, the auxiliary t-plane is transformed intothe z-plane. As

4-plane we again select a half-strip of width n. The transformation of the t.plane into the

-- .1

0
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Figure 40 - Diagrams Used in Determining

4-plane is given by the function [601 already

used in the preceding section (see Figure 40).

The calculations which are fundamen-

tally the same as those made for the simple

rectangle were carried out for the square with

bilge keels of the same heights as those pre-

viously treated in the case of translation

(see Section 12). The calculation yielded

the values given in Table 3 and Figure 41

in which b denotes half of the length of the

square.

The percentage increase of D was

calculated in comparison to the inertia co-

efficient for the square without keel, i.e.,

s percentage increase of

D D[ with keels - Do *100
O[]

rotential o[ ne otauing Square A comparison of these values with
with Bilge Keels those obtained for translation (see Section 12)

shows that the effect of the bilge keels on the increase of the hydrodynamic moment of inertia

is far greater than it is on the increase of the hydrodynamic mass, a result which is to be

expected on the basis of observation.

V .1a Iu/ go t6 7a11 91, i1.7 g04 R&d

Figure 41 - Inertia Coefficient D and
Percentage Increase for a Square

Section with Bilge Keels of
Various Heights

V20Q,200

120-

no
,9-

A700 -

TABLE 3

-- Z DJ

, 7 /Xercentage Increase of D

d/b J" D Percentage
Increase of D

0 0.234 Tp b4  1.872 0

0.0494 0.2995 np b4  2.395 28

0.123 0.450 up b4  3.60 92.3

0.2278 0.636 rp b4 5.09 172

N
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18. COMPARISON OF RESULTS WITH EXPERIMENTS

Abell 2 1 allowed a square prism standing upright to oscillate freely about its axis in

a tank whose length was six times as long as the side of the square. The flow had been made

two-dimensional by means of the tank bottom and a cover plate which left only a small space

between the ends of the parallelpiped and the walls. Above the cover plate a plate was

mounted on the axis for holding weights used to vary the period. Surface waves could not be

generated since the tank was filled up to the cover plate.

From measurements of the natural period of this system in air and in water, Abell

found that for the prism of square cross section the mass, which is conceived to be concen-

trated at a distance from the axis equal to the radius of gyration of the rigid square, must be

increased by 28.5 percent of the mass of the displaced water on account of the acceleration

of the surrounding fluid. Therefore, the hydrodynamic moment of inertia per unit length

amounts to
1

J" - 0.285 - Q (2 b)4

6

[The moment of inertia of a parallelepiped with side a rotating about the center of gravity

(Hiitte I, 26th edition, p. 247) J = p aL ]
6

or
J" 0.242 V b4

By the analytical method we found*

J" = 0 .234  e b'

which is equivalent to a mass increase of 27.6 percent. The agreement must be regarded as

amazingly good.

In addition, Abell carried out tests with bilge keels along the longitudinal edges of

the parallelepiped. The keels extended over the entire length and the ratio of the height of

the keels to half the side of the square section (d/b) was 0.167. For this form Abell found

an increase of the apparent moment of inertia of 72 percent compared with the value obtained

by oscillating the same body in air, where the density of the body is set equal to that of the

water. By means of a simple calculation we find that the increase of the hydrodynamic addi-

tional moment of inertia due solely to the bilge keels amounts to no less than 152.5 percent

of the value found for the square without keels. On the basis of the theory, we would have

expected an increase of only 127 percent (see Table 3).

*For the case of the square, the theoretical solution was already given by Proudman. 2 0 From Proudman's cal-

culation it follows that I"is equal to 0.232 ir * p b4 .

11111



Among the results of this comparison between theory and experiment three things are

noteworthy:

1. The very considerable increase of the apparent moment of inertia, even by the addition

of bilge keels that are not very high, is confirmed by experiment.

2. The good agreement between theory and experiment. It should be noted, moreover, that

this good agreement exists in spite of angular forms which produce separation, in spite of

large angles of oscillation (up to 30 degrees) and in spite of relatively low-frequency oscilla-

tions (i.e., slow motions, frequency about 1/3 hertz).

3. The measured hydrodynamic moments of inertia are greater than those calculated by

theory.

Thus, for ship vibrations of all kinds, corrections not only for the hydrodynamic

masses, but also for the hydrodynamic nthoments of inertia can be introduced into the calcula-

tions with a good degree of approximation.
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IV. EFFECTS OF THE FREE SURFACE, LIMITED DEPTH, FREQUENCY,
AND MOTION OF ADVANCE ON HYDRODYNAMIC MASS

AND HYDRODYNAMIC MOMENT OF INERTIA

19. INFLUENCE OF A FREE SURFACE

In all of the investigations described thus far, the cross sections were surrounded on

all sides by fluid. For problems of ship theory, however, it is important also to know the

effect of a free surface on hydrodynamic masses and on hydrodynamic moments of inertia.

The boundary condition for the pressure at the free surface is p = constant. The mo-

tion is assumed to be irrotational and to possess a potential. Then for a fixed coordinate

system the general Bernoulli equation [3] for flows which include static forces but neglect

values of the square of velocities reads

p e= - -gy + F(t)

Since the pressure is constant, the following relation holds for a particular time t and a sur-

face elevation designated by 77:

Sg + P- constat

= [ -t] + const
g a I y =2

If we assume the surface elevation to be small, we may writeL 0 1
g at y = 0

where the constant is included in €. The error introduced by defining the derivative at y = 0

is kept within the limits of the order of magnitude to be neglected. The consequence of limit-

ing ourselves to small wave heights, will be that the angle .L which the surface makes with
dx

the horizontal will remain small. The condition to be satisfied that normal component of the

fluid velocity at the free surface must equal the normal component of the velocity of the sur-

face itself, thus yields the relation

an 
ay 

y= 0
at ay 0

By eliminating q at y = 0 we obtain from the last two equations

2 g =0
at 2 by

- -1



We now assume that the surface is to undergo wave motions. For the case of a simple har-

monic oscillation of the fluid with the time factor e i(a t +E)* the following condition must be

satisfied:

a2 99 = 9 q9 [67]

Up to this point, the ideas set forth were essentially in line with those given by Lamb (see

Chapter IX).

If we now write the condition at the surface

9 - g * - -[68]

and if we first consider oscillations of high frequency, then the expression on the right side

becomes small and we obtain an approximation if we set 0 = 0.

Moullin 1 9 has experimentally determined the flow about a parallelepiped oscillating at

high frequency normal to the free surface by means of photographs, see Figure 42. It is clear

from the streamlines which impinge normal to the surface that the surface indeed constitutes

a potential line.

Moreover, the condition V 0 is satisfied for heaving oscillations in a direction normal

to the water surface (see Figure 17 where DE represents the surface) and likewise for rotation

oscillations for which the axis of rotation lies at the surface (see Figure 35 where AB repre-

sents the surface). It is possible, therefore, to apply the results obtained above for a medium

Figure 42 -Photograph of the Flow Pattern, by Moullin

* o = circular frequency, e = phase angle.
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unlimited in all directions directly to these cases. It is true that at first this condition holds

true only for high-frequency oscillations such as those which occur as elastic vibrations

of ships. For low frequencies-which are important in general oscillations of the ship as

a rigid body in the surrounding medium-a dependence of the oscillations on the frequency

appears. In the vicinity of the ship there are generated standing waves as well as progressive

waves of various sizes which depend upon the exciting frequency. The progressive waves

produce an energy loss which together with the friction causes a damping of the oscillations.

In the frequency range in which the standing waves show relatively large amplitudes, the

kinetic energy of the flow in the vicinity of the oscillating body also assumes a greater value

and vice versa. Hence, in the frequency ranges of large standing waves there is an increase

of the hydrodynamic mass. A more detailed investigation of these phenomena would lead us

far afield into the theory of surface waves. A comparison between the experimental results

(Figure 32) and those calculated for an unlimited medium, values which at high frequency

were found to apply even for bodies which move normal to the surface, show that we can ex-

pect the following result which is important for our purposes: the variations in magnitude

resulting from frequency dependence become less important than the absolute value of m"

and hence may be disregarded in so far as the accuracy needed for determining ship vibrations

is concerned. Let us point out also that the variation with frequency becomes smaller, the

greater the depth of immersion of the parallelepiped as compared to its width, i.e., the greater

the distance of the center of pressure is from the surface (see Figure 32). It would seem that

we are justified in applying this line of reasoning to the case of rotational vibrations. Thus,

in actual practice for both of these cases, we simply assume an infinite medium and take

half the value of the hydrodynamic mass or the hydrodynamic moment of inertia of the double

cross section, obtained by reflection in the free surface. The pressure distributions are like-

wise those already computed in Sections 3, 5, and 13 above.

For the case of horizontal oscillations in the direction of the water surface where

waves are also generated, 0 = 0 is likewise the condition to be satisfied at the surface.

Also with these oscillations, for which the author knew of no experimental investigations, we

expect standing and progressive waves to be generated as well as a variation of the auxiliary

hydrodynamic quantities with frequency. Nevertheless, here also we may assume that the

condition 0 = 0 at the surface will satisfy actual conditions better and better with increasing

frequency. It is to be noted, however, that for this case the solutions obtained for translation-

al motions in Part II cannot be used since the boundary conditions to be satisfied are now

different; when a free surface is present, the motions perpendicular and parallel to the surface

are no longer mathematically equivalent.

If we limit ourselves to the parallelepiped, the first step to be taken will be to find

the potential for the quadrant of the z-plane for which the boundary conditions shown in Fig-

ure 43 hold. A solution for this case may again be obtained by mapping an auxiliary t-plane

into the z-plane and into a suitable half-strip of the C-plane (see Figure 44). The t-plane is
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Free Surface
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Figure 44 - Mappings for Horizontal
Oscillations at a Free Surface

Figure 43 - Parallelepiped in the Surface

mapped into the z-plane by means of the transformation

1 1 1
z - c \ (-<t)-i (k-t) (1- t)- dt + c' [69]

with c'= -aand c =-.

k
If0

The aspect ratio is found to be

a k

b k

0The transformation for mapping the t-plane into the -plane is
The transformation for mapping the t-plane into the 4-plane is

.- = It are cosh (1-2 t) + h'

[70]

[71]

with
h -1 and h' -0

These transformations have already been investigated in detail in Equations [30], [31], [32],

[33], and [60]. By developing ft/f k into a cosine series for the half-strip we again obtain
0 0

the kinetic energy for two quadrants

2 T = U b ( 2a2 +- ....... .a2)

!E
-= const.

z--x,!- q

Free Surface
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and the hydrodynamic mass is found to be

b27T b' (a + 2a ........- 'ta ) Free Surface

Thus, for the square cross section of length 2b im-

mersed to a depth b, we obtained

m" 0.254 • b2

Previously (Section 11), for a square cross section of a -

length 2b moving in a medium infinite in all directions,

we obtained

" 1.512 7a b2

2
or m"= 0. 7 56 r pb for two quadrants. Thus the ratio

of the hydrodynamic mass of a body moving parallel to the

free surface to its value in an infinite medium is 0.337.

The rectangular cross section moving horizontal-

ly in the direction of the free surface was also investi- - 9b d,2 0,4 £6 #,8
gated experimentally by Koch, by use of an electrical

analogue (see Figure 12). From Koch's experiment -a -Z

with the square we obtain the value 0.286 for the ratio Figure 45 - Pressure Distribution
of the hydrodynamic mass moving in the direction of of a Parallelepiped Oscillating

the surface to its value in an unbounded medium. in the Direction of the
Free Surface

In a manner similar to that described previously

in Section 13 for cross sections surrounded by the fluid on all sides, it is also possible to

determine the acceleration pressures for the case of the parallelepiped at the surface oscillat-

ing in the direction of the surface. Written in nondimensional form, we obtain

k

2 1 1 n,m = co

PB 1 dm" 0 (-- ) 2 (1 - t) 2PB1 .rd sin ()( )Sl sillnn n m a, sin ll ?n [72]
QbU Qb dy sin 17

(k -t)2 , = 1

For the case of the half-submerged parallelepiped, the calculation yields the pressure distri-

bution indicated in Figure 45. At the surface the acceleration pressure must be zero because

of the condition p = constant. The point of application of the resultant of pressure lies at a

distance of y = -0.568 b from the surface.

For the same ratio of width at waterline to depth of immersion, bodies of different cross-

sectional shapes probably show a decrease in hydrodynamic mass due to the free surface of

approximately the same magnitude as the square.

IN
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Figure 47 - t-Plane and 4-Plane in Reference

Figure 46 - Heaving Oscillations for the to Figure 46

Case of Limited Depth and a
Free Surface

20. EFFECT OF FINITE DEPTH

Any boundary in the fluid formed by a limited depth or side walls (quay walls, for in-

stance) is sure to have an effect on the flow and consequently on the hydrodynamic masses,

the hydrodynamic moment of inertia and the distribution and magnitude of the acceleration

pressures. Our investigation in this connection will be confined to the case of a parallelepi-

ped in a medium of limited depth oscillating in a direction perpendicular to the rigid bottom

(see Figure 46). We shall include the effect of a free surface which is no longer mathemati-

cally equivalent to the case of the parallelepiped oscillating in an unbounded medium. In

the absence of a free surface the line EF cannot be a potential line due to the asymmetry of

the field around the parallelepiped with respect to the y-axis.

The auxiliary t-plane and the half-strip in the 4-plane are represented in Figure 47.

The transformation for mapping the t-plane into the z-plane is

t1 1 1 1
z - c (-h -)- (-)- 2 (k-t) 2 (1-)- 2 d t c' [78]

0

-h

Pib e 0.
with c'= -a and c e k k for the ratio of the depth below the bottom of the

0 0
o o 1a k

parallelepiped to its half-width and = - k for the aspect ratio. If we again con-
b k aancn

0

fine our numerical calculations to the case of a square section, we have as a necessary

condition to be satisfied

11 1
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1 Ik

[74]
k o

The mapping of the t-plane into the C-plane has already been dealt with before (see Section 11).

We finally obtain once more the hydrodynamic mass

in - b2 (a'±2a +.....+nan) [75]
2

In the numerical calculation for the square it is first of all necessary that the relation [741]

for an arbitrarily prescribed h be fulfilled which can be done only by repeated choices of k

and by graphic integration and interpolation. From Equation [73], it is seen that for a different

h, for a different depth under the bottom e, a different value of k is obviously needed to satis-

fy the condition [74] so that the interpolation process must be repeated for each value of h

chosen. The calculations involved were carried out without great accuracy; the cosine series,

for instance, was limited to six terms. In this manner we obtained Table 4.

The percentage increase of C was deter- TABLE 4

mined in comparison to its value for the paral-

lelepiped oscillating in unlimited water. The
e/b m " C Percentage

results obtained are in good agreement with Increase of C

those found by Koch by means of the electrical 1.51Z .pb 2  1.51 0
experiment. For application of these results, 2

we call the reader's attention especially to the 2.565 1.67'.p.b2  1.67 11
2

data plotted in Figures 11 and 12. 1.78 1.77 -L.p.b 2  1.77 l18
2

21. EFFECTS CF FREQUENCY AND ADVANCE

The effect which the frequency of the oscillations has on the hydrodynamic masses and

moments of inertia has already been discussed repeatedly in connection with wave formation

in a free surface. A certain dependency on frequency resulting from the appearance of vor-

tices must be added to this, because vortices require a certain amount of time for their forma-

tion and are likewise affected by the periodicity of the motion. It may also be assumed in this

case that rapid oscillations produce a flow in the real fluid which may be closely approximated

by potential flow.

It is to be expected that the results obtained by calculation are affected by the presence

of a boundary layer on the surface of the oscillating body, though this effect is kept within

very moderate limits due to the small thickness of this layer.

The objection raised occasionally that the added hydrodynamic masses calculated for

a ship which is rolling or vibrating with no translatory motion do not apply to the case of a

ship underway is unfounded. If the speed of advance is assumed to be constant, obviously
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no hydrodynamic mass has to be added either in the direction of advance or in the opposite

direction; hence, the values calculated at right angles to the direction of advance represent

the entire hydrodynamic mass. At most, perhaps a slight effect could be expected to result

from a variation of the vortex formation and the boundary layer and also from the generation

of waves. It is presumed that as long as the speed of advance is moderate, i.e., as long as

no great change occurs in the surface due to the generation of waves, the ship motion is

favorable rather than unfavorable for the potential flow representation on which our calcula-

tion is based. It has been confirmed by experiment again and again that while the damping

of oscillations is largely dependent upon the speed of advance, the periods of rolling and

elastic oscillations measured with or without any speed of advance are practically the same.
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V. APPLICATIONS OF THE HYDRODYNAMIC MOMENTS OF INERTIA

22. TABULATION OF THE AVAILABLE VALUES.
ADDITIONAL CALCULATIONS.

Figures 10 and 48 contain just about all the values for the hydrodynamic masses and

hydrodynamic moments of inertia that have been calculated for two-dimensional motion up to

now. With these values a good many problems of the ship theory in which accelerations or

decelerations play a part can be dealt with quite accurately. Three-dimensional flow about

a solid may be determined by means of Lewis's coefficients of reduction (see Figure 5).

By the previously described method for the calculation of the added hydrodynamic

quantities, practically all angular cross sections can be handled. We can now replace every

curve or every transverse section by a number of straight line segments which make it amena-

ble to calculation. At the suggestion of Professor Horn, one of his assistants, Dipl. Ing.

Fatur, undertook this work for a trawler in 1942. Unfortunately, this work which had already

progressed quite far was destroyed in an air raid. I should like to express my appreciation

to Professor Horn as well as to Professors Weinblum and Ebner for making a number of sug-

gestions and for giving me their encouragement in the pursuit of my investigations.

23. APPLICATION TO ELASTIC OSCILLATIONS

A satisfactory pre-determination of the natural frequency of the vertical flexural vibra-

tions, also called elastic oscillations or vibrations, is possible only by increasing the mass

of the ship by the hydrodynamic mass. The mathematical data for such a determination of the

hydrodynamic mass was given by Lewis in 1929 and has been discussed by Professor Horn

in his lectures ever since that time. Lewis proceeds as follows: To the weights of the ship

plus its cargo, the "weight of the hydrodynamic mass" must be added. The hydrodynamic

mass is determined by means of the inertia coefficients C given by Lewis for curves similar

to transverse sections. Thus, the ship hull is considered as being made up of cylindrical

segments of different transverse sections, each of which is assigned an inertia coefficient C

obtained by comparing the given contour with Lewis's curves. Then we multiply by 1/2 g R

(We multiply by 1/2 because a free surface exists, i.e., because only half of the double

cross section on which the calculation is based is submerged; by g in order to obtain a

"weight curve of the hydrodynamic mass," and finally by the coefficient of reduction R for

two nodes (see Figure 5) in order to take account of the three-dimensional flow about the

solid.) Thus we obtain the bell-shaped curve in Figure 49 which resembles the displace-

ment curve. (Incidentally, the displacement curve might be used as a first approximation.)

The area under the curve, "weight of the hydrodynamic mass," represents the weight of the

entire added mass. In the case of this ship, the latter is greater than the weight of the ship

itself (1650 tons as compared to 1360 tons).
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Figure 48 - Tabulation of Hydrodynamic Masses, Hydrodynamic Moments of Inertia, and
Inertia Coefficients As Calculated by [1] Lamb, [2] Lewis, [3] Proudman,

[4] Weinblum, [51 Wendel, [6] Determined Experimentally
(Electrical Analogue) by Koch
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Weight Curve of The inclusion of this added weight
Hydrodynamic Mass therefore more than doubles the weight of the

Weight Curve ship. The frequency at which a bar oscillates

decreases as its mass increases. Doubling

the mass gives a reduction in frequency by

a factor ---1 = 0.7. An accurate treatment of
V/2

the vibration calculation does not usually

give exactly this value for the reduction
CWLW/ factor because the mass distribution over

0 lIthe length changes also. In the resulting

curve, representing the weights of the ship

plus the weights of the hydrodynamic masses,
Length overall= 94.3 m the weight is concentrated more toward the
LBP = 91.5 m

Beam = 9.0 m middle of the ship,which again increases the

Draft = 2.9 m frequency somewhat. The nodes also move
Displacement = 1360 t more toward the middle which produces greater

Figure 49 - "Weight Curve" of the amplitudes at the stern and bow. Comparisons

Hydrodynamic Mass between measured periods and those calculat-

ed by this method show very good agreement.

Bilge keels having a height of 1/40 of the (ship) width bring about an increase of the added

mass of about 6 percent. Consequently, the frequency is thereby reduced by about 3 percent.

In the case of horizontal flexural vibrations, the hydrodynamic mass to be added amounts

to only about 1/3 of that needed in the case of the vertical flexural vibrations. The total mass

therefore is considerably less; the elastic restoring forces, on the other hand, are greater be-

cause the moment of inertia, referred to the vertical axis, is greater in most cases. Hence,

horizontal vibrations will be executed at a considerably higher frequency. This has been con-

firmed by measurements. Likewise for torsional vibrations, the hydrodynamic component to be

added is considerably smaller than it is for vertical flexural vibrations. With these two types

of vibrations, bilge keels will also reduce the frequency to some extent.

24. APPLICATION TO HEAVING

The effect of the hydrodynamic mass on heaving is similar to its effect on the vertical

flexural vibrations. The period of heaving oscillations of the whole ship regarded as a rigid

body is proportional to the square root of the entire oscillating mass. Here as in the case of

flexural vibrations there is a hydrodynamic component to be determined which differs from the

other in that the coefficient of reduction for heaving oscillations must be used. Here also is

to be expected an approximate doubling of the mass and consequently an increase in the period

by a factor of 2 1.4 or about 40 percent. Bilge keels increase the period by about the same
1

percent as in the case of flexural vibrations.
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25. APPLICATION TO THEORY OF ROLLING

Until very recently, the theory of rolling was based on the assumption that though the

fluid had the property of buoyancy, it had neither mass nor viscosity. All research workers,

including Daniel Bernoulli, W. Froude, Bertin, Kriloff, etc., until recently followed the exam-

ple of Euler, the founder of ship dynamics and the first to treat the free vibr-Ation of ships in

his work, "Scientia Navalis," published in 1749. C /)Tv

In 1861, W. Froude not only dtveloped his well-known theory of rolling in a seaway

which took the form of the exciting surface waves into consideration, but he also pointed out

that corrections are necessary in the equation for the rolling motion and indicated the numeri-

cal values to use. 4 In accordance with this, two corrections are required:

1. An apparent moment of inertia which considerably exceeds the calculated moment of

inertia of the rigid ship.

2. A term which summarily takes into account the damping of the oscillations due to wave

and vortex formation as well as friction.

In a fundamentally analogous manner successors of W. Froude (especially Bertin, Kriloff

and R.E. Froude) also dealt with the rolling motion and the general oscillations of a ship con-

sidered as a rigid body (Kriloff).

A number of problems, some of which are important, cannot be solved, however, if the

forces due to inertia and viscosity are neglected, for example: the magnitude of the apparent

masses and apparent moments of inertia which actually determine the period of oscillation,

the location of the instantaneous axis of rotation about which the rolling motions occur, the

effect of changes in form of the submerged portion of the ship on the natural period, etc. In

more recent times, investigators have undertaken to introduce these forces into the differential

equation of free rolling, not only in the form of correction terms or correction factors to be de-

termined empirically, but also as hydrodynamic terms to be added to the dynamic terms. In

doing so, however, they at first confined themselves to very particular floating bodies.

Baumann,23 for instance, investigates the motions of the circular cylinder, taking into account

the hydrodynamic inertia forces and viscosity forces,while Brard 1 1 treats the elliptic cylinder,

taking the hydrodynamic inertia forces into consideration.

In the following discussion, we shall indicate several formulas by which the effect of

the hydrodynamic inertia forces can also be determined for cross sections which more closely

approximate actual ship forms.

We consider a body at the surface whose mass distribution though not homogeneous is

symmetrical with respect to the y-axis (see Figure 50)* and we wish to calculate its center

*In view of the example treated at the end of this section, a rectangle has been used as the cross section of

the body in Figure 50.
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of rotation and apparent moment of inertia for small oscillations neglecting the dissipation

of energy. We make use of the following notations given in Figure 50:

M the metacenter,

_ _ x_

Figure 50 - Free Rolling Motions in an
Inviscid Fluid

G the center of gravity,

Ox the point of application of a single force
in the x-direction which results from
the hydrodynamic water mass,

C€ the geometric center of the rectangular
section consisting of the cross section
under water and its reflected image in
the water surface (thus this point always
lies on the surface of the water),

R the "apparent" center of mass (center
of rotation in the absence of dissipation
forces).

The distances c, d, a, and b are to be taken positive if the points M, G, C , Cx, and

R are located in the order shown. If G lies above the water line, then d becomes negative,

and similarly a becomes negative when Cx lies above G.

The kinetic energy of a rigid body moving both in translation and in rotation about R

from its initial position is

2T = m (I R2 + 9R2) - [JG+ m (a-b)2 ] q2 [76]

In order to determine the kinetic energy imparted to the flow by a solid body moving in

translation and rotation, we first calculate the momentum and moment of momentum vectors

for the motion produced by the combined effects of translation and rotation. The momentum

of the translational motion becomes

;-- ex/-" + -my" [77]

where x and y denote the velocity of any arbitrary point on the body. The moment of momentum

for rotation about C0 becomes

- Jr" [781]

In Equations [77] and [78] m "' and J" represent, respectively, half the hydrodynamic

masses and hydrodynamic moments of inertia of the double body which includes the portion

formed by reflection in the water surface; mx" is the hydrodynamic mass applicable to motion

at and parallel to the free surface.

The free motion from a heeling position would correspond to a rotation of a massless

rigid body about a point Cx . The momentum for this motion is given by [77] while the moment

of momentum assumes the value

I
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[- //r-- m 2" (a + d)2  [791

For rotation about another point on the symmetry axis it is necessary to add another moment

of momentum for the hydrodynamic mass m x considered to act at the point Cx; thus we obtain

-- [Jc" - rex" (a + d) + mx" b 2 ] [80]

The kinetic energy of the motion consisting of the translation of R and rotation about R, is

obtained from the scalar product of the momentum quantities and the corresponding velocities:

2T" m " + my" yR J" 2- m" (a + d) 2  2  mx-4- " b2  2 [81]2' PI'-R*+My R C X

For the total kinetic energy of the conservative system consisting of the rigid body and the

surrounding fluid, we obtain by adding [76] and [81]

2T' 2T + 2T" = (m + mx") R2 + (m + my") R2 + (JG J") [82[82]
+m (a-b)2.2 ' (a + d) 2  2 + lx" b" 02

The kinetic energy for free rotation of the entire system must be a minimum; this includes

motions arising from external moments provided the moment vector is free. Since b is the

only free variable in [82] (R must obviously lie on the axis of symmetry), the differential

quotient
dT' = - n (a-b) + mxr" bdb

must vanish at the center of rotation. Hence it follows that

b = - a [83]
m + m"x

whereby the center of rotation R for the conservative system is determined since the positions

of Cx and G are known.

In order to calculate the apparent moment of inertia, we introduce the expression [83]

for b into the relation for the kinetic energy [82]. Then the total kinetic energy of the body

rotating about R becomes

2 T' (m + mix") R 2 + ( + M") 2 + (JG + Jcr") 2
[84]

+ m ax" 2 2 )2 2
(m n m 9x()+

ly



The potential energy of the heeling and heaving ship is

2 U = mgcf 2 + y By 2  [85]

(B = ship breadth, c = metacentric height.)

Since the moments of the masses and moments of inertia are divided by L on account

of the two-dimensionality, so has the second term in [85] been divided by the length L.

By means of the general form of the Lagrange equation of motion

d / T \ 6
( - (T - U) - 0 [86]

dt Oqi aqi

in which the qi-quantities represent the generalized* coordinates while T and U denote the

kinetic and potential energy of the entire system (here, T = T'), we now set up the equations

of motion in generalized coordinates which for this case are obviously x, y, and 0. Thus we

obtain the following relations:

(m + m"x) xR 0 [87]

from which it follows that no transverse oscillation occurs.

(m m"y) yR + y By - 0 [88]

for the heaving oscillation, wherein the mass must be increased by the hydrodynamic mass of

water for motion in the y-direction. Finally

rnrX a2  ,x a  )] mgccp--0 [89]

SJo J"c+ a2 - Mx (a +d) 9 Mg C 0 [
n + m"x

from which the apparent moment of inertia J' for the rolling oscillation takes on the value

i' JG + J1c x + a [90
-xGJc+ mf1 a 2 - m (a + d1)2  [90]m m"x

The terms following the first term JG , taken together, represent the added hydrodynamic

moment of inertia.

*Generalized coordinates are coordinates which can be varied independently of one another without violating the

conditions to which the system is subject. As for the rest, we call the reader's attention to the comprehensive

textbooks of Mechanics.
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For the circular cylinder, we specifically obtain J = 0 and -a = c = d; the apparent

moment of inertia thus assumes the value

J' JGm"x

m + mn" x

which was already indicated by Baumann. 2 3

As illustration, the position of the center of rotation, the added hydrodynamic moment

of inertia, and the apparent moment of inertia will now be calculated for a simple numerical

example. The immersed part of the (infinitely long) floating body which is assumed to have

the form of a parallelepiped is to represent one-half of a square. By reflection in the surface,

therefore, a whole square is obtained. We furthermore assume that MG = c =- B. For MF *

we obtain MF=B 2  B = 0.167 B, thus d = K - KG = 0.167 B. From Section 19, it fol-
12T 6

lows that a + d = 0.284 B, or, with the value for d, a = 0.117 B, and for the hydrodynamic

mass m - 0.0636 a . p • B 2. From Section 16, we know that J" = 0.117 p = 0.023 p B 4 .
XC 16

With this, it follows from [83] for the location of the center of rotation R that b = 0.714 a =

0.0835 B. The center of rotation R thus lies 0.201 B below the waterline and 0.034 B below

G. These distances have been plotted to scale in Figure 50. The added hydrodynamic mo-

ment of inertia amounts to

J +J m " X a 2 - m" x (a + d) 2

m + m"x

J" 0.00859 • e " B 4

With JG = m . i 2 and for i = 0.35 B, we obtain

Jg- 2 - B 2 - 0.123B 2 = 0,0613 .-e B4
2

For parallelepipeds having dimensions like a real ship, beam B 12 m, draft = 6 m, Cx lies

3.40 m below the waterline and R lies 0.41 m below G if KG = 4 m. The added hydrodynamic

moment of inertia amounts to 14 percent of the moment of inertia of the rigid body referred to

the axis passing through G; the radius of gyration of the rigid body was assumed to be 0.35 B

in this case. For models of merchant ships, Weinblum and Block obtained experimental values

between 12 and 15 percent.

*F is the center of buoyancy for no angular displacement. From standard texts in Naval Architecture

MF moment of inertia of the waterline area

volume of displaced liquid
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In expression [90] we found a relation which permits us to calculate the apparent mo-
ment of inertia. With the aid of the added hydrodynamic quantities indicated and the pressure

distributions, the apparent moment of inertia can also be determined approximately for usual

hull forms. To this end, the hull forms will be treated in the following manner: The body of

the ship, in the longitudinal direction, is assumed to be composed of cylindrical elements

whose length corresponds to the selected frame spacing and whose cross section is the trans-

verse section at the middle of the element. The cylindrical elements are now conceived to

be surrounded by a two-dimensional flow; hence, we can use the expressions for the hydro-

dynamic masses and moments of inertia derived in Parts II, I, and IV of this paper. If we

are dealing with transverse sections which vary greatly from those treated before or in the

available literature, the transverse section can be approximated by a polygon in most cases.

The calculation of the hydrodynamic masses and moments of inertia can then be accomplished

without any fundamental difficulty by following the method described in detail in Sections 11,
12, 16, 17, 19, and 20. The results are not affected materially by the corners which occur in

this case. If approximations through the use of polygons are not satisfactory, it will be neces-

sary to seek suitable transformation functions, by a method of trial and error, proceeding per-

haps in the manner indicated in Sections 8 and 9. In the case where we are dealing with

simple experimental bodies having the shape of parallelepipeds with an aspect ratio B/T = 2,
the indicated values already suffice both for the hydrodynamic mass in translational motion
in the direction of the surface and for the hydrodynamic moment of inertia, too.

On the basis of the investigations of Sections 12 and 17, the effect of bilge keels can

likewise be taken into account without further calculation. Thus, with the aid of Figure 41,

the percentage increase of the inertia coefficient D for a square section will be determined

first. This percentage increase can also apply to underwater sections which do not vary
too greatly from the half-submerged square. The hydrodynamic mass in translation in the

direction of the surface can be determined in an entirely analogous manner; in this case, the

percentage increase required because of the bilge keels will be added to the hydrodynamic

mass which is already reduced because of the surface (see Section 19).

On account of the bilge keels, the point of application Cx is moved downward and

thereby mx'" and IC" become considerably larger. As a result of this, the center of rotation

R also moves downward and the total added moment of inertia becomes larger. For the exam-

ple (keel height 30 cm), R moves down about 25 cm and the added moment of inertia becomes

approximately 16.5 percent of the moment of inertia of the rigid body. The often-observed

increase of the period of roll by the presence of bilge keels is thereby explained. There is

but a slight increase, however, since the hydrodynamic component of the moment of inertia is

very small compared with the total moment of inertia.

For translation in the y-direction, the masses and moments of inertia calculated for

the elementary cylinders are then to be multiplied by the coefficient of reduction R 1 , corre-

sponding to the length-width ratio of the ship, and for translation in the x-direction and for
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rotation away from the initial position, they are to be multiplied by a second coefficient of

reduction R2, corresponding to the length-double draft ratio. Finally, the reduced values ob-

tained for the individual cylindrical elements are to be summed up.

It remains to determine the point of application Cx of the hydrodynamic mass x" For

the half-immersed square moving in translation in the direction of the surface, the point of

application Cx was determined in Section 19. For other polygons, we have to use fundamen-

tally the same procedure. For rough calculations, the point of application Cx can, in many

cases, be estimated with good approximation with the aid of the calculated pressure distribu-

tions. In this connection, it should be noted, however, that for motion in the direction of the

surface, the pressure at the surface must always be equal to zero. Moreover, it ought to be

pointed out in particular that the pressures must always be normal to the surface of the body.

From this it follows that for each circular segment of the underwater section, the point of

application must lie at the center of curvature and that for the horizontal half-submerged

ellipse, the point of application must lie above the water surface. The point of application

of the entire hydrodynamic mass mx" for the whole length of the ship is then obtained by

means of a simple moment equation.

26. EFFECT OF LIMITED DEPTH OF WATER ON ROLLING OSCILLATIONS
AND ON VERTICAL FLEXURAL VIBRATIONS

A limited depth of water or a quay wall running close to the ship exert a similar influ-

ence on the period of roll as the bilge keels. Hereby, the hydrodynamic moment of inertia is

increased and, indeed, quite considerably so under certain circumstances. The period becomes

greater than that for the ship carrying the same load in open deep water. This is of importance

if any conclusions are to be drawn from a rolling test with respect to the existing metacentric

height. 1"Pmay assume three to four times its value in open water. Let us assume four times

the value, for example, which is somewhat extreme. In that case, the natural period will be

about 1.15 times as great as in deep water. If we now calculate the metacentric height from

this period measured by the clock, as is customary in rolling tests, then the metacentric

height will be too small by about 30 percent. With this error we are on the safe side, however.

Particularly noteworthy is the effect of a limited depth of water on the frequency of the

vertical flexural vibrations which has already been pointed out by Schnadel. 2 5, 26 We have

already seen that by taking the hydrodynamic mass into consideration the entire mass is, in

general, more than doubled. If a ship with a draft of 8 m travels in water which is only slight-

ly deeper, say 2 m of water under the keel which may occur at the mouths of rivers, its hydro-

dynamic mass will be tripled. The frequency is thereby reduced to about 0.7 of the original

value; thus we have a reduction from say 100 oscillations per minute in open water to 70.

It is common knowledgethat resonance occurs whenever the frequency of the vibration-

exciting forces from the engine or propeller coincides with the natural frequency of the ship.

Hence, if a ship's course is over a region of limited depth, the resonance frequency will
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decrease quite considerably in some cases. Thus a ship which ordinarily travels along with

practically no oscillations in deep water may be set into resonance vibration at a constant

RPM of the engine by coming into shallow water.
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DISCUSSION

Professor H.E. Dickmann, Dr. Eng., Karlsruhe

The subject presented by the lecturer has a particular practical importance. The appli-

cability of the results has been discussed at great length for the field of ship theory which

includes ship motions and oscillations. Over and beyond this, however, the problem is also

of particular significance for marine engineering. Wherever engine parts or surfaces of iron

or other material come into contact with liquids and are apt to be set into vibration, the vi-

bration of such structural parts can be predicted, hence the determination of their natural fre-

quencies, above all, can be made with accuracy only if the associated hydrodynamic masses

and moments of inertia are taken into consideration. The torsional vibrations generated by

propeller shafts serve as an example in which not only the mass of the metal propeller, but

also the hydrodynamic pressures of the surrounding water must be taken into account.

The pertinent literature on this subject is widely scattered and since the end of the

war has frequently been inaccessible. The lecturer therefore deserves a great deal of praise

for having compiled a survey of all relevant investigations on this problem and for having

supplemented these by extensive calculations of his own.

To one of these recent contributions I should like to raise a modest objection. In the

example of the body oscillating horizontally at the free water surface, a hydrodynamic pres-

sure distribution has been plotted in Figure 45 which, decreasing slowly in an upward direc-

tion, reaches atmospheric pressure at the surface of the water. It is true that this limiting

condition seems to be very plausible. I surmise, however, that in the case of transverse os-

cillations the resulting hydrodynamic pressures will have considerably greater amplitudes and

that-in a first approximation at least-they will conform to the pressure pattern which would

result in the case of a plane surface of separation with a reflected double body. It is true

that the necessary limiting condition at the surface is at first not fulfilled if this assumption

holds good. It will be satisfied only by a primary wave formation, i.e., by vertically acceler-

ated motions, which, in my opinion, must not be neglected even in a first approximation. This

will perhaps come about in such manner, that as a result of the horizontal oscillation of the

ship-like wall of the oscillating body, local elevations and depressions of the surface occur

which may take the form of spray.

In closing, I should like to say a word in favor of the expression "covibrating water

mass" (mitschwingende Wassermasse). The lecturer, to be sure, has demonstrated quite cor-

rectly that the phenomena investigated are produced by hydrodynamic pressures which act on

the surfaces of bodies in nonuniform motion. He accordingly recommends that the designation

"covibrating mass" no longer be used. There exists, however, a cause-and-effect relationship

between these pressures and the physical phenomenon in that throughout the entire field of

the surrounding fluid particles of water must likewise be accelerated. These particles are

accelerated with larger or smaller amplitudes, according to the distance from or the location
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of the particles with respect to the disturbance created by the body. This, obviously, is the

only basis on which we can explain the fact that the total effect of the hydrodynamic pressures

can be described so clearly by the simple concept of an apparent increase in the mass or mo-

ment of inertia of the body which is independent of frequency. Naturally, it must be kept in

mind that the concept of a limited mass of water taking full part in the ship motion is purely

fictitious. For this reason, it is also referred to as a "reduced covibrating water mass."

Professor H. Ebner, Dr. Eng., Hamburg

1. Hydrodynamic masses and moments of inertia of ship theory also play a role for ships

making turns as mentioned by Dr. Wendel in his discussion. In the case of the steady motion

of a ship in a turning circle, the centrifugal force is not only influenced by the mass of the

ship, but also by the "mass of water accelerated by the ship's motion." In this connection

it should be noted, however, that the accelerated water mass in contrast to the mass of the

ship has a direction associated with it and therefore, since the centrifugal force arises from

the rotation of the momentum vector which acts in the longitudinal direction, it is the acceler-

ated water mass for the longitudinal and not the transverse direction which is to be consider-

ed. As in the dynamics of rigid bodies, the motion of bodies moving in the water or on the

surface can be determined from the general equations of motion of -the dynamic system con-

sisting of the body and the fluid set into motion. These equations differ from the usual funda-

mental dynamic equations only by the addition of the vector product of the velocity vector and

the momentum vector which have different directions.

2. Some time ago, in order to clear up the question of how to determine the masses of

water near a free surface which are accelerated by the lateral motions of floating bodies, we

perfqrmed experiments in which the bodies were set into vibration about a longitudinal axis

which lay above the water surface. The three models used had semi-circular, rectangular,

and triangular cross sections. It was found that to obtain a center of rotation which agreed

with experiment, the ratio of the accelerated water mass of the floating body to that of the

body completed by reflection in the surface, i.e., the fully submerged body, is about 0.50 for

the circle and rectangle but 0.85 for the triangle. The differences between these values and

those obtained on the basis of the potential theory probably arise from the formation of the

surface waves.

3. In the case of unsteady motion of bodies in water, it is necessary to add to the impul-

sive pressures arising from accelerated water mass, buoyant forces for which quasi-stationary

assumptions will usually be made.

For the two-dimensional plate we can replace the quasi-stationary assumptions by exact

ones in the form of unsteady circulation forces arising from the shedding of vortices. In the

same way the stability and course of the unsteady motion in water of bodies behaving like

plates can be determined. Further details are contained in an unpublished paper.
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Ministerialrat (ret.) 0. Schlichling, Berlin

The ideas presented by the lecturer were on a high plane which is not easily accessi-

ble to the practical shipbuilder and constructor. For this reason I may be permitted to warn

against a conclusion which might be drawn from a statement contained in the paper to the

effect that the hydrodynamic mass of the water accelerated by the bilge keels in rolling mo-

tions is the same, no matter whether the ship is underway or not. The stabilizing effect of the

bilge keels on rolling motions is governed not only by the hydrodynamic mass but also by

the speed of advance. This effect, which is probably evident by intuition and has been dis-

cussed in the Transactions of Naval Architects, is considerably greater for a ship underway

than at rest.

Professor F. Horn, Dr. Eng. h.c., and Dr. Eng., Berlin

The paper of Dr. Wendel represents an excerpt from his comprehensive doctoral disser-

tation which was written about eight years ago. The complete text, which will be published

later in our annual publication, places considerably higher demands on the theoretical know-

ledge of the reader than the excerpt presented here would indicate. It contains, as a matter

of fact, a distinctly elegant theory. That this theory is nevertheless truly down to earth can

be seen from the fact that results obtained on purely theoretical grounds are in most cases

in very good agreement with experimental results, as demonstrated by the lecturer in several

examples. In addition, however, it should also be noted here that we are dealing with a theory

which is of great practical importance especially as applied to oscillation phenomena which

are greatly influenced by the hydrodynamic masses and moments of inertia. Although the

comprehension of this influence has already become widespread in the application to heaving

and pitching oscillations as well as to elastic vibrations, there are much greater difficulties

for the case of rolling oscillations where the particular hull shape must be considered to some

degree. It is in this particular direction that the work of Dr. Wendel opens a promising avenue

of advancement. It would be very desirable if the lecturer could, after the lapse of so many

years, resume again and complete the calculations which he intended to carry out at that time

and which would enable a comparison to be drawn with available test results.

I am very happy that the very valuable dissertation of Dr. Wendel which treats this im-

portant subject in the field of naval architecture in a coherent and systematic form for the

first time and thereby fills a gap that has been widely felt until now, will soon be published

in the Jahrbuch der Schiffbautechnischen Gesellschaft and will thus be made accessible to

the profession at large.

Eng. F. Judaschke, Hamburg (submitted in writing)

In his investigations, Dr. Wendel justly emphasizes the point about which the ship ro-

tates in its motions which are produced by the oncoming flow of the water. This point varies
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in each case according to the load condition ot the ship, i.e., the displacement curve and the

weight curve change and thereby alter the character of the ship.

I cite a case from my own experience which deals with this problem. Approximately

a year and a half ago, the ship "Wasserschutzpolizei 26" was remodeled in such a way that

the boiler feed water which had previously been carried at the bottom of the ship was now

stored on the sides of the ship alongside the lateral coal bunkers; in addition, the ship was

provided with bilge keels. Both of these changes henceforth gave stability to the previously

unsteady motions of the ship. For one thing, by removing the boiler water which had been

moving about more or less freely at the bottom and by putting it into elevated tanks, the cen-

ter of gravity was fixed to greater advantage. On the other hand, the bilge keel exerted its

beneficial effect in turning maneuvers and in pulling alongside other ships. The ship, 24 m

long, was of slender form and it had a relatively large top weight since it had previously

been used by the Hydraulic Engineering Department as an inspection service craft. After re-

modeling it proved to be very useful to the harbor protection police operating on the broad

Elbe River until it was finally destroyed during an air raid.

Closing Remarks by Dr. Wendel

Professor Dickmann presumes that in the case of transverse motion at the surface (see

Figure 45), the hydrodynamic pressures do not show a sharp decrease in the direction of the

surface. As a result of this, the hydrodynamic mass should also have approximately the same

magnitude as it would in the case of the reflected double body, and not 1/3 of this magnitude,

as my own calculations indicate. Professor Dickmann has here hit upon the one particular

result among those I calculated theoretically which, more than any other, needs to be verified

by experiment. At the conclusion of my calculations in 1942, I immediately set up a testing

program which, unfortunately, could not be carried out due to the unfavorable conditions of

the time. Simple horizontal oscillation tests are presently being made with a beam at the

Research Laboratory for Naval Construction of the Hamburg School of Engineering. The beam

is being investigated deep under the surface, in air and at various intermediate positions, in-

cluding a position at the surface. As far as the first tests indicate, there actually occurs a

very great decrease in the hydrodynamic mass for the case of partial submergence. This is

in agreement with my own values determined theoretically. The above-mentioned tests, once

they are completed, will be published in the journal "Hansa."

The term "hydrodynamic mass" did not come to my mind until it was time to find a title

for my investigations. To avoid speaking of "covibrating moments of inertia" and to avoid

colorless expressions as far as possible, it does not seem far-fetched to use the terms "hydro-

dynamic mass" along with "hydrodynamic moment of inertia." Since I did not wish to revise

the existing nomenclature, I myself have used both terms, "hydrodynamic mass" and "covi-

brating mass," side by side. The covibrating mass is to be introduced in the case of all

types of accelerated and decelerated motions, even if we are not dealing with oscillations.
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In the latter case, one would probably speak of "comoving mass" (mitbewegte Masse), but

this expression can easily lead to misunderstandings.

The expression "covibrating mass of water" incidentally is only found in naval archi-

tecture and it presumably originated in the fundamental works of W. Froude and Kriloff. Quot-

ing from these authors, we find:

W. Froude, "On the Rolling of Ships," Transactions Institute of Naval Architects

(1861), page 188:

"And indeed if the mutual relations of the body of a ship and the contiguous masses

of water be duly considered, it is sufficiently obvious that such a difference (between the

period of a round-section vessel and the period of a ship with a sharp bottom and a very deep

keel, Wendel) must arise in ships of such form; because independently of the resistance which

the form must offer to the freedom of oscillation, we see that the resisting areas must put in

motion large masses of water which will continue to accompany them inertly, as if forming

part of the body of the ship herself."

A. Kriloff, "A General Theory of the Oscillations of a Ship on Waves," Transactions

Institute of Naval Architects (1898), page 173:

"The moment A thus obtained, is the moment of inertia of the ship, together with that

mass of water which takes part in her motion, making, so to say, a single body with her."

It is hardly likely therefore that the line of reasoning expressed by Professor Dickmann,

which is in complete harmony with my own ideas as set forth in my paper, contributed in any

way to the origin of the concept and expression "covibrEiting mass of water."

The statements made by Professor Ebner in regard to a ship's motion in turning inciden-

tally confirm the fact that it is quite important to form a clear picture of the actual nature of

the covibrating masses. These statements are very important for the investigation of the ma-

neuvering of ships and it is to be hoped that he will soon publish them in more detailed form,

suitable for practical application in naval construction. Point 2 has already been discussed

above. I do not believe that free-oscillation tests, designed to determine the center of rotation,

are the simplest and most reliable way to verify the theoretically obtained values for the hydro-

dynamic mass in the case of horizontal motion.

The statement made by Ministerialrat (ret.) Schlichting hasreally nothing to do with

the subject under discussion. The forward motion of the ship indeed exerts a great influence

upon the damping, i.e., the energy-dissipating effect of the bilge keels, but not on the increase

in the moment of inertia tobe introduced into the oscillation equation.

I should like to express my appreciation also to the other speakers who contributed to

the discussion, among them especially Professor Horn, and to thank them for the interest taken

in my lecture. Professor Horn recognized at once that it would be a very useful contribution

to ship theory if the problems discussed were made the subject of a thoroughgoing investiga-

tion. At the suggestion of Professor Horn, the determination of the hydrodynamic mass and

of the hydrodynamic moment of inertia of an actual ship was carried out according to the method
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indicated in Parts II, III, and IV. This work, which was already in an advanced state of

completion, was destroyed when the Institute of Technology in Charlottenburg was devastated

during the war.

Professor G. Schnadel, Dr. Eng., Hamburg

Dr. Wendel has discussed an important field of ship theory. The problem presented by

the lecturer reaches back very far; it goes back to the establishment of the first formulas which

Otto Schlick set up for the vibration of ship hulls in 1884. It is particularly important that the

calculation of the reduced mass of water which has a decisive influence on the oscillations

has now been definitely cleared up. Nevertheless, I should like to point out one more thing:

The role of the water mass influenced by the oscillation has been previously treated

by Koch, Ingenieur-Archiv 1933, Vol. 4, page 103. Koch determined the effect experimentally

with the aid of the electrical analogue and has drawn up graphs of the results.

I myself used Koch's investigations later on for the determination of elastic oscilla-

tions in connection with the launching of the "Caribia" (see Jahrb. d. STG., Vol. 35, 1935,

page 87).

It is very gratifying to know that Dr. Wendel has now succeeded in carrying out the

mathematical determination of the hydrodynamic masses for a limited depth of water which

had been determined experimentally by Koch.

I should like to express my very keen appreciation to Dr. Wendel on my own behalf

and also in the name of the Schiffbautechnische Gesellschaft for his interesting exposition.
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