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ABSTRACT

General formulas are established for the exciting forces and moments
acting on a ship in arbitrary waves. It is shown that for the diffraction of
waves due to isolated singularities, such as sources, dipoles, pressure
points, etc., the exciting forces and moments depend only on the ship’s
radiation functions, which characterize the wave radiation in a heavy
fluid due to forced oscillations of the ship with unit velocity amplitude
in calm water.

In the case of diffraction of regular progressive wave systems, it
is shown that the exciting forces_and moments, the damping coefficients,
and the estimated wetting of ships in waves can all be expressed in
terms of the asymptotic characteristics of the radiation functions.

The general results obtained are employed to calculate the exciting
forces and moments in specific examples.

1. GENERAL FORMULAS FOR THE EXCITING FORCES AND MOMENTS

In the linear hydrodynamical theory of ship oscillations in the presence of regular
waves of frequency o, the velocity potential ® (2, y, 3, ?) for the motion of a heavy fluid
can be represented in the form!s 2

®(2,y,2, %) = $(2,9,2) eiaot, b= ¢1 V4P, W+ ¢ + &,

io,t lo,t
(V=ve °, Qe ?) [1.1]
where Vad @ are the translational and rotational velocity
vectors,
@, = ¢ exp iyt is the velocity potential of the given incident

wave system, and
the vectors ¢1 =($ 5 $os b3) and ¢2=(¢ 4> Ps5) P) and the function ¢, satisfy the conditions

it n *, pam, 227 %% s [1.2]
am 0 e T T T T ‘
0dm 002 v
P ~ k¢, =0for 2=0 k=7,m=0,1,...,7 [1.8]
9%
lim ﬁ(-ﬁ +ik¢m)-0 R =22+y%3,m=1,...,7) [1.4]
Rooo

1Ret‘c:remms are listed on page 23.



where 71 is the exterior unit vector normal to the ship’s surface S,

7 is the radius vector to any point on this surface, and

g is the gravitational acceleration constant.
The functions ¢, (2, y, 2) exp toy¢(m =1, . . . . 6) represent the velocity potentials for the
motion of a heavy fluid due to the oscillations of the ship with unit velocity amplitude.*
These functions determine the form of the radiated waves in a heavy fluid, and we shall call
them radiation functions. The function ¢, (2, y, 2) exp io,¢ (the scattering function) determines
the solution of the diffraction problem.

For any harmonic function ¢ (2, y, 2) (m = 1, . . . 7) satisfying the radiation condi-
tion Equation [1.4], we have the relation

__ 1 H(aqs”' G aG)ds
¢m—‘z”—s = —¢"'5n— [1.5]

where for an infinitely deep fluid, the source function G can be represented by3

11 X e k2
G= — + — +2ke** | —— dz - 2uik exp k (2 + £) HSD (kry)
rn T o T [1.6]

(F2=r24(2=0% k=124 (2+ O} 12 =(2- )2 +(y - n)?)

with H{? () the Hankel function. For a fluid of finite depth, the source function G is defined
in a somewhat different form.4

From the expression for the source function and the general formula Equation [1.5], we
have the following asymptotic representations, valid when B -+, for infinite and finite depth,

respectively:

W L R ko —i (kR + ZY|+0(2 1 7
¢’"=_(—2-;¥.) n (&, )exp[a-z( +Z)]+ ] (m=1,...,7 [1.7]

g chky(2+h) 1 kg
(

Y 4 1
H, (kqy, 0) exp —i kol + — )+ O = ) (m=1,...,7) L
Sugo,  Chkgh 2nR) n (b0 0) exp z(° * 4)+ (12)('” reees ) 11.8]

o, 1 2kyh
c=—, u,=—ocl1
PRI ( * sh2/c0h) [1.9]

*Translator’s note — The radiation functions correspond to the problem of forced oscillgtions in calm water,
The scattering function corresponds to the problem of wave diffraction by a restrained ship.



where A is the fluid depth,

c and u, are the phase and group velocities, respectively, of a wave with wave number
ky, determined from the equation

ko thkgh =k = aoz/ g, and the asymptotic characteristics
H can be expressed in the form*

[
Hy = . (7 5 " %m an)ds (m=1,...,7) [1.10]

f (k, 0) = exp [kz + ik (z cos 6 + y sin 6)]

chiy (2+h) [1.11]

f (&g, 6) = —0’-"‘0_"—

exp ik, (z cos 6 + y sin 6)

For the determination of the exciting forces and moments in the general case, we have the

following expression for the fluid pressure, giving rise to these forces and moments
. ., dogt
P = — pto, (¢’o + <Fl’7) e [1.12]

where p is the fluid density.

On this basis, the components of the exciting force vector X,, X,, X; and the
exciting moment vector X,, X, X, are determined in the form

i a¢m
X, = picge ° U(qso +¢) 5= dS (m=1,...,6) (1.13]

We shall utilize the transposition principle, which was proved in References 1 and 2,
ow U
ffua-d3=ffwa—ds (1.14]
s " s "

*The functions Hm (ko, 0) are connected with the functions Mm (ko, 0) of Reference 4 by the equation
H_ (ko 0) ch koh = M, (ky, )

The functions H (k, @) were introduced in the theory of wave motion in a heavy fluid by N.E. Kochin. 5, 6
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and which holds for any two harmonic functions U and W, satisfying the boundary condition,
Equation [1.3], and the radiation condition, Equation [1.4]. Applying this principle to the
functions ¢, and ¢, and imposing the condition of Equation [1.2], we finally obtain

. gyt aql’m a(}50
X,, = pioge (950 Fali P m —5;‘) s (m=1,...,6) (1.15]
S

Thus the exciting forces and moments are completely determined by the radiation
functions ¢, for an arbitrary given incident wave system (¢, exp io¢).

In particular, we shall consider the diffraction of waves around a ship due to the
radiation from a source. Thus the function ¢, takes on the following form

%o

b = - yel G (2, ¥, 2, 2y, ¥y» 2¢) (1.16]

where 2, y,, 2, and ¢ = @, exp 70t are the coordinates and strength, respectively, of the
source.

From the general equations [1.5] and [1.15] with the substitution of Equation [1.16],
we obtain the simple expression

d
Xp=p0, (2, 91,2) = (m=1,2,...,6) [1.17]

dt
Now let us consider the case of a concentrated pressure P = P, exp io¢ at the point
(24 ¥4> 0). Then, using similar arguments,® we obtain

Xy =-kd, (2, ¥4,,00P (m=1,...,86) (1.18]

It is evident that for incident waves radiated from a dipole or higher order singularity,
the exciting forces and moments can be obtained from Equation [1.17] by differentiation. For
the effect of a distributed system of singularities, these forces are obtained by means of
summation from the expressions in Equations [1.17] and [1.18].

In the case of diffraction of a regular progressive wave system, the function ¢, has the
form

¢O=i—g— ro ©xp [kz - ik (z cos € + y sin €)]
o
0

b g chky (2+ k) e ine) [1.19]
0=%— fy ————— oxp - ik, (z cos € + y sin €
% chkyh ‘



for infinite or finite depths, respectively, where 2r, is the incident wave height and e is
the angle between the direction of propagation of the waves and the z-axis. Substituting
Equation [1.19] in Equation [1.15] and utilizing Equations [1.10] and [1.11], we obtain

gt
X, =-pgrohl, (k, etn)e °

[1.20]

ot

i i
X, =—- pgroll, (kg € = m) e (m=1,...,6)

for infinite and finite depths, respectively.

Hence, in the case of diffraction of a progressive regular wave system, the exciting
force and moment can be expressed in terms of the asymptotic characteristics H, of the
radiation functions ¢ . These same characteristics also determine the damping
coefficients, 1+ 2+ 4

The same results hold also in the two-dimensional .case. Indeed, the radiation and
scattering functions ¢, (y, 2) (m = 2, 3, 4, T) can be expressed, corresponding to Equation
[1.5], by the formula’

dé G

1 m

b9 | (5200 gr)a @e2nen  pan
0

where L is the contour of a transverse section of the floating cylindrical ship and G (y, 2,
7, {) is the source function corresponding to the two-dimensional problem, 3+ 7

It follows from Equation [1.21] that the asymptotic representations for y»* « in a
fluid of infinite or finite depth are of the form

¢, =B, ¥ (k) exp k(27 1iy)

chky (2 +h) [1.22]
exp + tkyy

¢, =1 B, *(ky)

2u40, chkyh

where the asymptotic characteristics B, * (k) and B,, * (k,) are determined by the formulas*

*
The values of Bm x (ko) are related to the quantities M, % of Reference 7 by the expression B m Xeh koh =
M %
m



9%, 9o
B, *= .%.3;._¢ ——)ﬂJbM):upk@iiw

™ on

(1.23]
chky(z+h)

fo (ko) = TV

exp ¥ ik,y

Far plane waves progressing in the positive or negative direction along the y-axis,
b = irgfy9/0,. Thus from the general formula of Equation [1.15] and Equation [1.23], it
follows that the exciting force and moment are determined by the simple equation

io,t
Xm = = pgroBm *e o (m = 2, 3, 4) [1.24]

where the upper sign corresponds to waves progressing in the negative direction along the
y-axis and the lower sign corresponds to waves progressing in the positive direction.

For the diffraction of disturbances radiated from two-dimensional singularities, and for
plane waves, the expressions for the exciting forces and moments retain the same form as in
the three-dimensional case. For example, the source and concentrated pressure point results
are given by Equations [1.17] and [1.18].

Analogous results can be found for the case of diffraction of oblique waves around a
moving cylindrical ship. In this case for the pressure, giving rise to the exciting forces and
moments, we have the expression

p = - pioy exp i (of ~ kz cos €) (Y, + ¢,) (0 = 0, - ku cos €)

where o is the frequency of encounter,
u is the forward velocity of the ship,
Y, is the function representing the incident wave, and
¥, is the function corresponding to the scattered wave.

The exciting forces and moments acting on a section of the cylindrical ship are given, analo-
gously to Equation {1.15], by the formula

. : W g
X, = piog exp i (ot - kz cos €) (¢0 — —-)dl (m=2,3,4) [1.95]
. an on
0

where . (m = 2, 3, 4) are the radiation functions characterizing the radiated waves in a heavy
fluid due to bending oscillations of a cylindrical ship with unit velocity amplitude.



For plane progressive waves, the function ¢ is given for infinite and finite depth of
fluid by the expressions

g g chky(2+h)
U, =%t — r, exp k(2 - iy sin =f — 1 —————— - tk,y sin €  [1.26]
o o o ©Xp k(2 - iy €), Yy=1¢ o0 o ohlegh exp - tkyy

and corresponding to these we obtain the equations

X, = - pgry exp i (ot - kz cos €) D, * (k)

. + [1.27]
X, =-pgroexpi(ot-kyzcose)D = (ko)
where D denote the asymptotic characteristics of the radiation functions y
a‘bm af 1
Dmi=j(f1E—"¢m _5;)41 (m=2,3,4 [1.28]
Lo

fy (k) = exp kz X ik,y (k, =k |sin € ])
chkg (3+A) [1.29]

fy (k) = exp L ik)y (k, =k, |sin €])
chkyh

The plus sign is to be taken for sin € < 0 and the minus sign for sin € > 0.

Thus, if one finds simply the radiation functions or their asymptotic characteristics,3: 8—11
then the general damping coefficients and the exciting forces and moments are determined
simultaneously. Furthermore, we note that the above-mentioned results can be extended to the
case of arbitrary irregular waves by means of operational transforms.?

2. APPROXIMATE DETERMINATION OF THE ASYMPTOTIC CHARACTERISTICS

In practical calculations of the mechanical characteristics of ship motions, it is of
interest to determine the exciting forces and moments due to the diffraction of plane progres-
sive waves.

In order to determine the approximate asymptotic characteristics of the functions ¢
and thus the exciting forces and moments, we shall employ the method of averaging which is
applied to the two-dimensional case in Reference 7. We note that the value of the functions
¢, on the surface of an ellipsoid with the three axes L, B, and T situated in an infinite
fluid can be represented in the form 12



1=-013 Py=-03Y, H3=-c32

. 2.1]
b4 == C4y2, 5 =-Cg53%, ¢g=-Cely
where
Kij Hag 1+87 Hss S5 +1
cj=—(]=1’2’3)’ Cyp= — 2’ Cg = — N
pD pl,, 1-38 plyy 8, -1
2 1 [2.2]
Fee 83 * 2T 2T L
C¢ = — I e R T R Y
P’zz 832 -1 B L B
Here piji= 1,...6) are the coefficients of added mass,
D is the volume of the ellipsoid, and
I, l”, and I, are the moments of inertia of this volume, with respect to the z, y,
and 2 axes.

By the argument stated in Reference 7, in order to approximate the functions H , we
shall make use of the relations in Equation [2.1], but substitute for ¢; (7 =1,...6) the values
appropriate to the given ship surface S. Specifically, for the value of C we have

Bss
cg = —p;— , I= J.j zz (2 cos (n, ) ~ z cos (n, 2)) dS = [ -1,
S
[2.3]
DT? DL?
JS = —— y J&) I e—————
3 (3 - 2x,) 12 (3 - 26,)
where J, is the moment of inertia of the waterline,
I, is the moment of inertia of the midship section,
Xo and ¢, are the corresponding coefficients of vertical and longitudinal fineness,
and

L, B, and T are the length, beam, and draft of the ship.
Substituting Equation [2.1] in Equation [1.10] and using the Gauss theorem, we can

then approximate all the functions H,, (m =1,...6) for any %.
Thus, for example, for a ship with longitudinal symmetry, the functions

Hy (k, 6) =~ Hyq (K, 6) and H, (k, 0) = Hgo (k, 9) are determined in the form



S o 4 .
0 L n
Hyqo (K, 0) = e {— J; !: ek: (Z'(z) X (%)cos P+ key yS;inpo )cos gz dz dz} [2.4]

0 1 :
‘py 2 zL sin
Heo (K, 0) = zB2L j I ekz (Z'(z) X (—2—-)3: cos p + kegz ” sinpe )sin gz dz dz
~-T o
0 1
. - kz Sin ]
+tk (1 + ¢g) BL cos 6 2e"% cos gz - de dz (2.5
y sin
-T o
kL 0 kB P X (zL) . 6)
=—cosb,y=—",p= —_
(o= F con v - s p=vz(a x () sin
where S, is the waterline area,
o is the waterline area coefficient, and

y =Y BZ(2) X(2) is the equation of the ship’s surface.

If X(2) and Z (2) are given in analytic form, then the functions H,,, H,, and the remaining
functions H _ can be calculated for any 6 and k. In particular, to within a term containing
Bp2, we obtain from Equations [2.4] and [2.5]

Hyo (ky 0) = =8, [k, (KT) - kT8¢ 3Kq (7)1 K, (9) [2.6]

Hgq (k, 0) = ik cos 01, [xy (KT) + kTBosky (KT)) Ky (q) -

[2.7]
= (1 +cg) Db oyxq (RT) K, (g)}
where B is the coefficient of area of the midship section and
is equal to y, in the case considered,
ly is the moment of inertia of the waterline area about
the y-axis,
by is the depth of submergence of the centroid, and

the coefficients Ky K3y ky9 K9 and x4 are given in Reference 7.

Corresponding to Equation [1.20] for the exciting force X; and moment X, we have
the expressions



X30 = p970Se Ixg (KT) - KTBe s, (kD K, (g¢) € © [2.8]

Xgo = pgik cos € U, [xy (kT) + kTBcsky (kT) K3 (g,) -

. [2 9]
i L
= (1 + ¢c5) Dbyky (KT) K, (q‘)ie %0’ (q‘ = ];— cos e)

which are valid with the above indicated accuracy and, in the case € =0 or € = n, are in
agreement with the results implied from Equations [2.4] and [2.5].

If we set ¢; = 0 and ¢4 = 0 in Equations [2.8] and [2.9], then we obtain the values of
the exciting force X 3?0 and moment X ;’0 corresponding to the hypothesis of A.N. Krilov (the
hypothesis that the wave is not influenced by the presence of the ship). For the ratio
£=X3/X5, we find

é‘ Kz'(kT)
(14 ¢3) k, (kT)-cy

1
( xy(kT) = IH’E [1-«, (kT)])

Figure 1 shows the dependence of £ on T/A (¥ = 2n/)) for the ship model 813 in two
cases: the dotted line corresponds to the calculation for ¢; = ¢; (=), 4.e., where u,, (k) is
replaced by the limiting value p,,(~), and the solid line is obtained from the computed value
of p44 (k) for this model.!}® The same graph shows the individual points plotted from the
experimental values of £ taken from Reference 13. Note also that for the model considered,
L/T = 16. Thus the relatively long waves (A > L) are more favorable for the Krilov hypothesis.

The graph in Figure 1 shows sufficiently good agreement between the theoretical and
experimental values of the variable £, Furthermore it follows that even for favorable values
A > L, the Krilov hypothesis is subject to a significant error since ¢ differs from unity by
40 percent.

The fact that in utilizing the relations of Equation [2.1], we take the real part of the
values of the functions ¢ on the ship surface S means that for calculating #,,, the approxi-
mation takes into account only the inertia effects and completely neglects the damping effects
in a heavy fluid. It is evident that such an assumption is valid for very small and large fre-
quencies, for which the effect of radiated waves is insignificant. This is obvious from the
above comparison of theoretical and experimental values of the exciting force X,. In the
case of intermediate frequencies of oscillation, significant radiation of waves takes place in
a heavy fluid and thus for the approximate determination of the functions H,, (%, 6), it is
necessary to consider also the imaginary part of the functions ¢, on the surface S.

In order to consider more completely the inertial and damping effects, we substitute
the value of ¢, from Equation [2.1] in Equation [1.5] and thus we find a first approximation

10



to the function ¢,. Repeating this process, we can obtain the second and higher approxi-
mation. Using this method, we shall compute the first approximation to the imaginary part of
the function ¢, for an infinitely deep fluid. From Equation [1.6] we have

ImG = - 2ak exp k (2+ () Jy (k) =

tw [2.10]
- kek GO f exp - ik [(2~-§) cos u + (y-7) sin u] du

-

Using this relation together with Equations 12.1] and [1.5], we obtain

+n

k
Im ¢, = o f exp k (z-iz cos v — iy sin w) H_, (k, v) du [2.11]

-n

Substituting this expression and Equation [2.1] in Equation [1.10], we find the second approxi-
mation for the functions H,_ (k, 6)

+n
k2

H_(k, 6) = H,_o (k, 0)-%7- f H_o (ks u) N (k, 6, v) du [2.12]
-

where

So 0 1 2L
=Y f e2kz 77(3) X(—2—) cos p, €cos g,z dz dz +
-T o
0 1 :
sin p, cos ¢,z
+ k [cos (6 - v) ~ 1] f f e2kz - ° - "  dzds [2.13]
T % y (sin 6 - sin u )

(Po = yZ (2) X (4 2L) (sin 6 - sin w), g, = % kL (cos 6 ~ cos u), y = % kB)

Within the accuracy of terms containing Bpg, Equation [2.13] takes the much simpler
form

N =-8, lky (2kT) + kT Bk, (2kT) [1 - cos (6 - W} K, (g,) [2.14]
which is correct for elongated ships.

11



Similar expressions can be obtained for the two-dimensional asymptotic character-

istics B, %, For example, using Reference 7 and taking into account the approximate inertia
effects in the form shown in Equation [2.1], we find for B,, t (%)

sin y, Y sin [yyZ (2)]
Byo X (k)=-1b -k(1+cy) fe"‘——dz
Yo r Y [2.15]
( kb . M3z )
= —, C, = =——
Yo 2 3 pwg

where y = £ 1/ bZ (2) is the equation of the section Ly, and w and p, are, respectively, the
area of this section and its added mass coefficient.

In the special cases 8 =1 and 8 = 0.5, the integral in Equation [2.15] can be evaluated*
and thus we obtain

sin y,
Byot(k)=-b e T (Leef-cefT)y (B=1)
b sin y,
Byy (k) = - — (yZ - (kT)? ¢3) — kT (1 + ¢) (e *T — cos y,)]
Yo + (~T) Yo
(ﬁ - 0.5) [2-16]

For normal values of a,, the expression in Equation [2.15] can be evaluated from a
power series in @ . With an accuracy of degree y04 we have

2
Yy
Byo X (k) =-b {Kz (kT) - kTBe Jxy (kT) - -63 [k (KT) - kb,c ks (kr)]}

(ks (kT) = ;2_1 ( T (kr)) (”1 ) fo 23 (3) dz) [2.17]
T

where the coefficient «3 (kT) is given in Reference 7.

*
Translator’s note — By ﬁ =1 and ﬁ = 0.5, the author implies rectangular and triangular sections,
respectively.

12



In a similar way we can calculate the values of B, %, which are pure imaginary for
sections symmetrical about the z-axis. Accounting for the damping effects leads to com-
paratively simple formulas. We have

B, =B, * [1 + % (kbx, (2kT) + sin kb)]
. [2.18]
B,t=B ,* [1 . % (kbx, (2kT) - sin ch)] (m =2, 4)

From Equations [2.17] and [2.18] we find that with an accuracy of yJ (kcy is of the
order of y,), the asymptotic characteristics B, % can be represented in the form

2
4 yo
B, t=- b{Kz (T) ~ kTBejxy (KT) —— &3 (KT) +

[2.19]
+iyg [1 + ky (2kT)] [ky (2kT) - kTBc jk, (IcT)]}

For two-dimensional problems, with an accuracy of yg‘, we have

“ 4
Bsi=—b(1+z‘kb—k —) [2.20]

Taking into account the values of u.’y for small £b and a flat plate,”s 14 it follows that
Equation [2.20] is consistent with the value of B, * which follows from the exact solution, 14
The approximate asymptotic characteristics D, % can be calculated by the same

method to determine the exciting forces and moments for diffraction of oblique waves past a

moving cylindrical ship. Using Reference 7 we find, analogously to Equation [2.18], the
formulas

- . i sin k,b
st =Dy t(R) 41+ m["bxz(%“* e
k (4]
- k_ f  gin [£,bZ (2)] dz]}
Dt N - i sin Iczb
mE 0 =Dy (B 1+ g [ka2 OHT) -

13



2k2 9
+ — f 2%z gin [£,0Z (2)] dz]}
k, I

(m=2,4,k =k|cos €|, k, =k |sine |)

[2.21]

which reduce to Equation [2.18] for € =11 n.
However, in the case considered here, the radiation functions ¢ are not harmonic,
and for an infinite fluid, they satisfy the conditions

oy 8%y 92y
— = kg, =0forz=0, — + —— —k2y, =0 [2.22]
dz ayz 922
.k + - +
U, =t = D, *(k)expkz¥ikyyfory-=<e (m=2,3,4) [2.23]
2
I, Iy, M,

—~ =cos (n,y), — =cos (n, 2, —— =1y cos (n, 3) -~ zcos (n, y)on L, [2.24]
an on an

Thus the coefficients Cm(k), characterizing the inertial effects, are not known precisely.
These coefficients can be found from numerical analysis of the exact solutions® or from
special experiments in which cylindrical bodies are given oscillatory deformations.

As an approximate estimate of the influence of inertial effects, we examine a simple
case: let us take a circular cylinder of radius a, the axis of which is submerged at a suffi-
ciently large depth A, such that the influence of the free surface can be neglected. Then,
taking the origin of coordinates on the cylinder axis, we can approximate the value of the

vector ¥ (¢, ¥,, ¥3) at points on the surface with the following expressions’

" Kl (n)

=-c(n)ae,e, = rcos 0 + ksin 0, c(g) = = [2.25]
-7 pra?  qKo(n) + K,y (1)

where @ is the polar angle and X o and K, are the Bessel functions of imaginary argument
(n = k,a).

On the basis of Equation [1.27] - Equation [1.29], we obtain the vector of the exciting
force:

14



=~ pgroa exp ~ kh, +

+r
+ ¢ (ot - kz cos €) f exp & (sin 0 - ¢ sin ¢ cos 6) €,d0 + [2.26]
-
a +n
+ 8o () o [ f oxp 8 (sin 0 — i sin € cos 6) e,do] (5 = ka)
-

In order to proceed further, we expand

exp - iw cos 0 = J, (w) + 2 E (=)™ J_(w0) cos mf (w=05sine) [2.27]

m=1
and use the following formulas

m

1
-1 1,, )= - f ch (8 sin ) cos 2nzdz,

[2.28]

1
(1" Iy (8 = —

w
f sh (8 sin 2) 8in (2n + 1) zdz
(i

where J, (w) and I, (8) are the Bessel functions of real and imaginary argument, respectively.

Carrying out the necessary reductions, we find

4ni = .
X, = —g—z pgroa oxp [~ khy + i (of = kz cos €)] 2 , {J2"+1(6 sine)l,, (5
n=0

d
+ 8¢ (1) = (Jyp, (8sine)ly .y (8)]}

X, = ~ 2npgroa exp [~ khy + i (ot ~ kz cos € )] E A, {Jzn (6sine)1,, (9) [2.29]

n=0

+ 8¢ (1) 55 [J,, (Bsine)/,, (’o‘)]}

(o=1, 1, =2)
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For €=0 or €= n, Equation [2.29] takes on a simpler form. We then have

dVOz dVO
X2=09X3=2I‘(0)<(8)_dt_, dt

f .- od to exp [ kA + i (ot F kz)]

[(2.30]

1 o
¢(®) = 516Ky (8) + K, (8)] ' #(0) = mpa

where dV,, /d¢ is the vertical component of acceleration of the incident wave at the cylinder
axis.

Figure 2 shows the dependence of £(ka) and for comparison also shows (by the dotted
line) the dependence of £, = I, (ka), characterizing the influence of inertial effects from the
theory of an unbounded fluid (¢ = 1). As is shown, accounting for these theoretical inertial
effects overestimates the values of the exciting force X 3¢

In the case of a thin cylindrical ship of small beam b, one can approximate the
_asymptotic characteristics D, ¥ with full regard to the inertial and damping effects. Indeed,
from Equations [1.28] and [1.29] we find the approximate expressions

0
Dy, t(k)=- b{xz (kT) - k& f Y3 (0, 2) ¥ [Z (2) + k sin?e Z (2)] dz} [2.381]
-T

which are correct to an accuracy of order 3. The function ¥3(0, 2) is easily found from the
source function for this-problem.” We have

4]
b
¥, 0, 8) = — Z°(¢) Kolkl (z- Q)| "’Kolkl (z+ Q)|+
2n r

[2.32]
x

k
+ Okeks f e %Y Kok, (v + &)|dv - 2mi — exp k(s + {) pd¢
2

Equations [2.31] and [2.32] determine the values of D, (k) for a thin .cylindrical
ship, and in particular

2

| sin € |

Im(D, (k)] = - Ky (KT) [k, (2kT) + kTR sin? ¢ «, (2kT)] [2.33]

as can also be obtained from the general formula Equation [2.21] for small k.
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The results obtained above are easily generalized to the case of finite depth of fluid.
From Equations [1.28] and [1.29] we have

2 shky (2 + B)
Dsi(k0)=—b{;<2'—k0 f 1/13(0, 2) Z'(Z)Tkoh—-—+
-7 [2.34]
chky (2 + R)
+ kg sin2e Z(z) ———— | dz
ch kyh
0
chky(2+h)
Ky = f Z2’(8) —————— dz [2.35]
ch kyh
-T

The function ¢, (y, 2) can, as above, be obtained from the corresponding source function,
but it is considerably simpler to use the method of othogonal functions. Since Us(~y 2) =
¥3(y, 2), it is sufficient to determine the function ¥ for the domain y 20and -A<2< 0,
while satisfying for y = 0 the condition

1
CI7N -5 2@ (-T<2<0) [2.36]
9y o (-h<z2<-T)

For the solution of this problem, we consider the system of solutions

cos ¢, (2 + A)
b, = prw— exp-yvVgli+k? (n=0,1,2,...; k, =ky|cos €|) [2.37]
n

which satisfy Equations [2.22] and the condition §¢,/92 = 0 on 2 = ~ &, where ¢, is the root
of the equation ¢, g ¢, 4 = - k, with ¢,, ¢,, . . . real and ¢, = ik, (k, is the wave number of
a progressive wave.)

It is easily seen that the functions ¢, (0, 2) (n =0, 1, 2, .. .) form a complete set of
orthogonal functions in the interval - 2 < z < 0. Thus the function Y5 (y, 2) can be expressed

in the following expansion as a series of the functions ¢ :

Yy (y, 2) = z a,b, (¥, 2) [2.38]

n=0

Imposing the condition of Equation [2.36], we obtain
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b 0 cos ¢, (2 + h)
a, = f Z'(g) ———————dz
-T

2
2d Vg5 + k12 cos ¢, A
[2.39]

0
d, = f $2 (0, 2) dz =

- [h (k2 + ¢2) - k]
" h 29,

Equations [2.38], [2.39], and [2.34] determine the values of the asymptotic character-
istics D I (k,)-

3. THE APPROXIMATE EVALUATION OF THE WETTING OF SHIPS IN WAVES

The characteristics of wetting of ships in waves depends on the level of the fluid
along the length of the ship, according to the following formulas

1(o® oo
e | — ~u — ={, - 3.1
3,=95-¢, %= g(at u a‘”\),=o’ {, =&~ Yo% + 0oy [3.1]
where ¢, is the total vertical displacement of a point on the waterline,
% is the vertical displacement of the centroid of the waterline,

and 6, are the angles of pitch and roll, respectively, and
0 (i} g p
3 is the free-surface elevation above the plane z = 0.

The value of 3, for elongated ships’ is obtained from the formula

» (o) =~ ’170 [”2¢2 (v, 0, v) + ”3¢3 (¥ 0, v) + ”4?54 (y, 0, V)] 't -

io 2 [3.2]
0 g
- —;— (Yo (v, 0, k) + ¥y (3, O, k)] exp i (ot ~ kz cos €) - {, ( =_g—)

which, obviously, is valid for average frequencies of roll of thin ships, and where v,, v, and
v, are the complex amplitudes of the translational and rotational velocities.

It is evident from Equations [3.1] and [3.2] that for a complete evaluation of the wetting
of the ship in waves, it is necessary to know the values of all of the displacements as well
as the radiation and scattering functions. Consequently the complete determination of the
value of »_from the Equation [3.2] can be found only with the help of the results of the
explicit solution.® 2 Nevertheless, we can try to estimate the value of 2, based on the
approximate expressions for the velocity potential of the fluid motion.

Numerical analysis of the solution of the corresponding plane diffraction problem
shows 15+ 16 that for comparatively small distances from the obstacle, upon which the regular

18



wave system is incident, the asymptotic formula for determining the free-surface elevation
becomes valid very quickly. Similar properties hold also in the three-dimensional case.!?
Therefore one can suppose that the application of the asymptotic formula will lead to an
approximate evaluation of 3 in which, to some degree, the hydrodynamic interaction is
accounted for. On the other hand, application of the Krilov hypothesis of penetration of waves
and calculations of the initial elevation for a ship moving in calm water do not lead to affirma-
tive results!® when compared with experimental values.

Using these arguments in Equation [3.2], we have the following approximate expression
for a fluid of infinite depth:

3 () =ryexpilot -k (zcos e +ysine)l + % (v,B, 2 (v) + v3B5 £ (v)

(3.3]
%
+v,B, T (v)] exp i (0¢ F vy) - > iC L exp i (ot - ke cos € T kyy) - £,

where C I are the asymptotic characteristics of the scattering function ¥q, (¥, 2 k).

In particuiar, we shall consider longitudinal oscillations ({, = {; —"2y) with € = 0 or
e = n. In this case the effective radiation of the scattered wave is insignificant, and we can
assume that C £ ~ 0. Furthermore, using the above statements, we find

X3 (v @)=~ pgoroBs t (v) €%, 067" =0, (, =1y (Fy-2Fy) 't [3.4]

Here F ¢ and F'/, are the transfer functions of the mechanical characteristics of ¢, and
Y, determined from the complete dynamical equations for these motions, and X, (v, 2) is the
exciting force acting on a section with abscissa z for incident waves of wave number v=02/g.
Substituting Equation [3.4] in Equation [3.3] we finally obtain

>, (2) = 1o exp i (ot T ka) - £, - :lg (Fz~ aF 4) X3 (v, 2) exp - iyé (2)
_ vB
(- %)

where y = £ ¥ B £ (2) is the waterline equation.

[3.5]

Equation [3.5] provides an approximate expression for the relative wave elevation,
valid for the longitudinal oscillations of a thin ship at normal frequencies, at least for
y > 1. For these values, the asymptotic formulas are known to be valid. For the bow and
stern parts of the waterline, Equation [3.5] is unsuitable, since the influence of the bow and
stern is a three-dimensional effect.

19



In the absence of ship motion, it is easy to estimate the three-dimensional effects,
using the asymptotic formula

35 ="y expilogt - kR cos (0 - €)] +

0

o [k \" ) 0(1)
—_ ] t~ kR + — —
+ 7 \2nr H (k, 6) expi |0, + " + =

6

I (k, 0) = 2 v H_(k, 6) + H, (k, 0)

m=1

[3.6]

Substituting R = L/2 and 6 = 0, we obtain the approximate value of 3, in the vicinity of the bow.

For longitudinal oscillations of the ship and €= n, we have

kL i”o(k)‘ﬁl:“o %
3=r.expi (ot +— | ~—|— — FyX, (k) +— F; X. (k) -
0= To &P (0 2\) g \nL P9 ¢3 P9 s (3.71

. iaot
~iH, (k, 0) e

where X, (k) and X (k) are the exciting force and moment, and using the source approximations,
the function H_ (%, 0) is given by the formula

H_ (k, 0) = doyroSyK | (KL) [3.8]

For wave lengths of order L, the value of K 1 (kL) is very small and the hydrodynamic
interactions in Equation [3.7], in the bow, are determined from the values of X 3 and X..

The relations in Equations [3.1] and [3.8] determine the approximate value of the trans-
fer function for the wetting of ships in waves. For longitudinal oscillations of thin ships (and
for €= 0 or € = n), the source method or the method of orthogonal functions permits the determi-
nation of more accurate formulas for these functions in the general case involving a moving
ship and finite depth of fluid. With the help of these transfer functions, the statistical char-
acteristics of the exciting forces can be obtained for ships in irregular waves, examined as a
stationary random process!? in a similar way as for calculating the characteristics of oscillating
mechanical systems.

Along with the linear characteristics, we can also find the approximate value of the
nonlinear characteristics of the wetting of ships in waves. Accounting for second-order
quantities, the free-surface elevation is given by the formula?
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2 2

2
1)9,0(2,,0,0 92, 1 (aq: ) (ad») (aaao)
== = + 30 + — + | — +

g o¢ a2 2| Vor/,_o \Noy/,_, at
9 9 d )
% " Yam [3.9]

where 3, is the elevation of the free surface as obtained from the linear theory.

Equation [3.9] permits us to express the average value of the expression for » in a
period of oscillation by means of the value determined from the linear theory. From the
asymptotic expression’ valid for normal frequencies of motion of a thin ship, we obtain

" = ’l + ,2’
agkr
- sin € (sin € ¥ [sin € |) Re [iC * exp ¢ (ky sin e T k,y)]
g
o 0a,
=" Re< |, (v+k-—(1isin¢) - [3.10]
29 g

[+{4

i 0
i = Ci(v+lc-— (1+|sin¢|))] B texp L i (vy - k,y) - ik cos e
g g .

t+T

('—1 )tdtT—g'-)
7[ @b T=3

For longitudinal oscillations of a thin ship (and for € =0 or €=7) (C* = 0), we find

00, .
?* (2) = - —;— vt (v + k- —gg) Rc[p—zg (FC— zF¢) X5 (v, 2) exp ¢ (ot - y (2) t lcz)] [3.11]

In the three-dimensional case, on the basis of Equations [3.6] and [3.9] we have

% k. \)* :
e — - - ix
» 29 kr, (2"3 [1 -cos (0 - ¢)] Re [H (%, 6) €'*] -

(x=kr[cos(0-c)-1]+%)

. . . me ® .
In a similar manner we can also find » ~ in the other cases.
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