
11111 II1111 1111 II 111 1_________1________1________1P_______ I1
3 9080 02993 0457

V393
.R468 t

'e Tron I

STRESSES IN A SPHEICAL SHELL (DOME)

(Sponnungen in Kugelschalen (Kuppen))

A!OWA~S
Hans Reissner (Aachen)

.. gum'm",s
Translated by Werner B. Hinterthan

Revi.wed and annotted by
John G. Pules

Translation 311August 1963

MAI

I~



This translation may be distributed within the United States and its
territories. Any forwarding of the translation outside this area is done
on the responsibility of the forwarder and is neither approved nor
disapproved by the David Taylor Model Basin.

Ir



STRESSES IN A SPHERICAL SHELL (DOME)

(Spannungen in Kugelschalen (Kuppeln))

by

Hans'Reissner (Aachen)

Sonderabdruck aus der
Muller -Bresl au -Festsch rift

1912, p. 181-193

Translated by Werner B. Hinterthan
Reviewed and annotated by

John G. Pulos

August 1963 Translation 311
S-F013 03 02

II



ABSTRACT

The stress distributions without bending resistance for asymmetri-

cally and symmetrically loaded spherical shells are determined. With

the aid of these limited displacements, the bending and/or torsional

moments are calculated.

Also, the stress distribution is found for the basic problem of a

spherical shell subjected at one boundary to a uniformly distributed

boundary force or to a uniformly distributed bending moment, respec-

tively, without any surface forces.
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STRESSES IN SHPERICAL SHELLS (Domes)

Two extreme, especially elementary cases appear in the theory of

elasticity for thin-walled shells. In the first case, the shell is supported

so that it cannot undergo any inextensional bending; also it is so thin that

the bending moments can be neglected, and thus the stresses can be

assumed to be uniformly distributed across the wall thickness. In the

second case, the shell can undergo inextensional bending, i.e., the length

of the median surface remains constant during bending. The first case is

the more important one in stress calculations of shell structures.

Schwedler, for instance, has calculated the case of symmetrically loaded

spherical arches in this manner. On the other hand, to my knowledge,

the case of asymmetrically loaded spherical arches has not been con-

sidered up to now, and even for symmetrical loading there are no experi-

mental data to indicate when and why the bending stresses may be neg-

lected and what influence the boundary conditions have on the stress dis-

tribution.

Because we exclude the bending stresses, the problem is particularly

simple in that the resultants of the tensile stresses and of the shear

stresses may be obtained from the equilibrium conditions alone without

considering the deformations. In this way, the problem becomes quite

similar to that of statically determinate systems.
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And so we shall first determine the stress distributions without bend-

ing resistance for both cases of symmetrically and asymmetrically loaded

spherical shells. We shall then calculate the bending and/or torsional

moments with the aid of these limited displacements, using them as a

first approximation.

However, arbitrary boundary conditions would not be fully satisfied

by this method. Therefore, we shall finally deal with the case of a shell

whose surface is not loaded, and which is under the influence of edge

forces. This case serves as a supplementary problem leading to a

general solution.

THE ASYMMETRICALLY LOADED SPHERICAL SHELL WITHOUT
BENDING RESISTANCE

If, according to Figure 1, we assume that the bending moments are

initially neglected, the equations of equilibrium for an element which is

bounded by two adjacent meridians and a pair of parallel latitude or

circumferential circles are: 1

,

de

a

Figure 1

1 References are listed on page 22.
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1  1 as
-e + cot 9 (T - T ) + + a= 0
S1 2 sin 9 8

+(2 cot ) S + + aP = 0 .......

- (T 1 + T2) + aP = 0

where T 1 and T 2  denote the normal stress resultants tangential to the

middle surface of a spherical shell along the

meridian and perpendicular thereto, respectively,

S denotes the corresponding shear stress resultants

tangential to the middle surface,

e is the complement of the latitude angle,

a is the radius to the middle surface,

4 is the meridian angle, and

, , and P denote the surface loading per unit area of the middle

surface.

These partial differential equations allow for a simple integration if

the external forces 0, D, and P are considered as trigonometric series

comprised of terms whose arguments are whole multiples of 4.

Suppose we put O = r sin no, (= * cos no, P = p sin n, T 1 = t 1 sin n4,

T = t sin no, S s cos n4, where r, , p, tl, t , s are still functions of
2 2 12

dt t'
9, and further for brevity we put de t', etc., we then obtain total

differential equations, with e as the independent variable, in the form
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t +cot (t - t) +az= 01 2 sing s +a

' n
s + 2cot s + sin +a = 0 ........ [2]

sin 9 2

- (t t 2 ) + ap= 0

The elimination of t 2 by means of the last of the above equations yields:

t + 2 cos 9 t si s =a( cot 9 - ;)

Sn /pn
s + 2 cot 9 s tn -a n +

sinG 1 sin 9

The symmetrical form in which s and tl appear in [3] allows

duce new variables t I + s H u and t 1 - s -v, and to then write

form

...... [3]

us to intro-

[3] in the

sin 9 sin 9

/ n nv +v 2 cot 9 + = a p cot 9 + i )-+±J
sin 9 sin 9

As is well known, the complete integral of each of these linear differential

n
equations of first order with variable coefficients k = 2 cot 8 F sin and

sin 9

disturbance functions

=a [ (cot G T 9

reads as follows:

u or v (respectively)= (c + e dg) e

In this case, e kdG

and finally we obtain:

n 9 -2 n 9 -2
= tan 2 sin 9, and cot 2 sin 9, respectively,2 2

u+v u-v
t= s =

z z
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Thus the general solution for asymmetrical loading is given; furthermore,

the solution is of value only if one makes definite assumptions concerning

the surface forces T, *, and P. For instance, if one chooses n = 1, then

' = = 0, = = p sin e (corresponding to an approximate wind load upon

the spherical shell with pressure on the windward side and negative

(suction) pressure on the lee side) and the results will be:

( 3S + a po cos cos 9 1

v C - ap cos 9 cos 1
2 0 3 1 sin 9 (1 - cos 9)

The integration constants C 1 and C2 in this case have to be determined

from the boundary conditions at one boundary of the spherical zone, and

the solution would seem to lead to infinitely large stresses T 1 , T 2 , and S

if 8 is assumed equal to zero, i.e., the sphere is closed at the apex.

However, this is not the case; on the contrary, it has to be considered

that with a closed sphere, the boundary conditions disappear altogether,

and they have to be replaced by the requirement that the constants C 1 and

C2 are such that there will.be no infinitely large stresses at the apex.

2
It is easily seen that this can be satisfied by setting C 1 = - -aP 0 and

2
C2 = + -a Po; the stresses are then given by

cos ( Z cos 9
T = t sin = ap C - cos 9 + C

sin 3 9 3

.............. [4]

1 2 cos 0
S = s cos = - ap - cos 9 +

si 3  30sin 3 3
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Through series expansions of the cosine and sine functions, it can be

shown that the stresses T 1 and S even become zero for 8 = 0.

A small table will show the distribution of the stresses along an

arbritrarily chosen meridian calculated according to Equation [4]:

St 1  s

aPo a P

00 0 0

300 0.13 -0.14

450 0.156 -0.221

600 0.161 -0.322

800 0,0902 -0.518

900 0 -0.667

This distribution is rather plausible. The horizontal components of the

wind pressure cannot be taken up at the boundary 0 = 90 degrees (hemi-

spherical shell) by the normal stresses which are perpendicular at that

point. On the contrary, they are equilibrated by shear stresses tangential

to the boundary circle since bending moments and transverse shear

stresses are assumed not to occur. Therefore, if we assume e = 90

degrees, T 1 must become zero and S a maximum.

Thus we have solved the problem for a sufficiently thin-walled sphere,

whose supporting boundary, perpendicular to the tangential plane, can

adjust freely in the casq of asymmetrical loading. A later investigation

will establish the influence of wall thickness on stress distribution when

the boundary is fixed. Most likely such an influence, as is shown below

for symmetrical loading, will be noticeable only in the vicinity of the

boundary itself.
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THE SYMMETRICALLY LOADED SPHERICAL SHELL

WITH NO BENDING RESISTANCE

By setting n equal to zero, the case of symmetrical loading can be

expressed as the constant terms in the trigonometric series progressing

as multiples of n. However, it will be more straight-forward to derive

the solutions directly from the conditions of equilibrium which, for sym-

metrical loading, are given by the following:

T 1 + cot (T 1 - T2) + a9 = 0

S +(2cotO) S +a = 0 ........... [a]

- (T 1 +T 2 ) + aP = 0

due to the disappearance of terms differentiated with respect to c. Thus

the equations break up into; (a) two for the normal stress resultants T
1

and T2 and, (b) one independent one for the shear stress resultant S. If

we substitute T 2 from the third into the first of Equations [la] we obtain

for T a differential equation which is entirely similar to that for S,1

namely:

T I +(2 cot 9)T I = a(Pcot 9 -9) ............... [1b]

The integrals of these linear differential equations of the first order with

disturbance functions are:

Sa C + [Psin 0 sin 9] dJ
1 sin 2 2

..... [4a]

S = C 2 - sin 2 0 dO

sin 9
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If the spherical shell is bounded by a pair of parallel latitude circles,

the values of T 1 and S at one of the boundaries may be arbitrarily pre-

scribed, and those at the other boundary are determined as a consequence

of the equilibrium condition, as we can see by the existence of one integra-

tion constant in each of the expressions for T 1 and S. However, if the

spherical shell is closed at the apex, the boundary values can no longer

be prescribed arbitrarily; therefore it appears necessary to determine

the integration constants from the condition that the stresses at the apex

must not become infinite. It seems in fact, and also it is sometimes

stated in the literature, that the stresses T 1 and S become infinite at the

apex. But this is definitely not the case; on the contrary, C 1 and C2 are

to be determined in such a way that T 1 and S remain finite.

A number of important cases can easily be solved directly from the

integrals of Equation [4a], for instance: constant excess pressure,

hydrostatic loading, centrifugal loading of a shell which rotates around

the axis of symmetry, snow loading, dead weight, evenly distributed

forces as well as boundary torsion forces, etc. The case of loading of a

shell by its own weight and with constant wall thickness may be chosen as

an example. For this case we put:

S= 0 ; P = - y cos 9 ; E= + y6 sin 0

where 6 is the wall thickness and Y the specific weight of the material.

It then follows from [4a]:

S0;T 1  [C 1 +y bcos9
sin 2
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Assuming at 8 = 60, i. e., that at an inner circumferential latitude circle

(end ring), T l is equal to zero which means that no boundary force is

applied, then C1 becomes equal to -y 6 cos e0 and therefore

ay 6
S[ cos 9 - cos .................... 4b]

1 sin2
sin 9

This solution is also valid for the shell closed at the apex, i.e., 8 o = 0,

at which point it leads to finite values for T 1 and T 2 , namely

ayS
1 2

At other points the tensile stress along circumferential latitude circles

becomes:
cos 9 - cos 9

T = aP - T - ayb cos 9 + sin2 ....... [4b]
2 1 sin 2

THE SYMMETRICALLY LOADED SPHERICAL SHELL WITH BENDING
RESISTANCE AND MOVABLE SUPPORTING BOUNDARY

The question now is to what extent do the solutions already found re-

quire correction if we want to consider the effect of wall thickness 5, and

the bending and the torsional moments as well as the shear stresses per-

pendicular to the middle surface. To answer this, it is obviously

necessary to find additional equilibrium conditions by consideration of

these forces. For the asymmetrical case, according to Figure 2, we

then have two bending moments G 1 , G2 ; one torsional moment H; and two

shear forces N1 , NZ; that is, five unknown forces, but only two new moment

equilibrium equations. Thus the problem loses the character of static

determinateness, and it becomes necessary to consider the stress
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deformation conditions. The bending moments G 1 and G 2 are assumed

positive if they converge towards one another; the shear force N 1 is posi-

tive if it is directed outward on the side of the larger ( values.

n

N,

u GG

Figure 2

For the symmetrical case, which is the only one to be considered

here, the torsional moment H and one of the shear forces N 2 are elim-

inated, but so is one of the equilibrium equations. It then follows that:

T 1 + cot 0 T 1 -T +N 1 +aO= 0

N 1 +(cot 9) N 1 - (T1 +T 2 +aP = 0 ........ [5]

G 1 + cot G 1 - G 2 ) -aN 1 = 0

If 81 and :2 denote the strain of the longitudinal elements of the middle

surface in the meridional and circumferential directions, respectively,

<1 and K2 denote the corresponding curvature variations, and if D is set

equal to

E 3 1

12

(where E represents the modulus of elasticity and a the Poisson ratio),

10
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then the bending moments may be expressed by the changes in curvature,

and the longitudinal forces by the strains in the following way:2

12D \D
T1 1 1=-D

............. J[6]

T 12D
2 2 2 2 1

if the wall thickness is sufficiently thin and the deformations are small.

Thus the changes of curvature <1 and x2 are positive in the diverging

direction (aiming away from one another). On the other hand,. the defor-

mation components 81, 2' 1<1, and <K2 can be expressed in the following

form in terms of the displacements u along the meridian and w along the

radius, and their derivatives with respect to E, i.e., u , w , and w :

2 11 I
a = u +w; a = w -u

a = u cot 9 +w ; a 2 = cot 9 (w - u)7

In this way we have as many equations as we have unknowns.

These equations are not to be integrated immediately; instead, a

successive approximation is attempted utilizing the solution of the pre-

ceeding section. In doing so, we proceed to calculate the displacements

u and w from the values of T 1 and T 2 derived by neglecting the bending

moments and to calculate from these displacements the corresponding

bending moments G 1 and G2 . These values of G 1 and G 2 are then con-

sidered as external forces and are employed for the calculation of

corrections to T1 and T 2 . The procedure is justified if these corrections

are small and become increasingly smaller with each further iteration.

Yi
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Hence, if we first calculate the displacements u and w from the simple

differential Equations [7], we obtain:

u = a sin d c ; w a 2- cos s n d+c) [8]u = a sin 0 1 sin (

If we insert these values into the right-hand expressions of Equations [7] ,

we obtain the following values for the curvature variations r1 and <2:

a 11 = F- I- F 2 cot 9 + l 2) sin2

a = 2cot - - 2 cot2

Now, E , E2, and their derivatives can be obtained from Equations [6].

It follows, for the above case of a spherical shell under the action of its

own weight and closed at the apex that with the values of Equations [4b] for

T 1 and T 2 , we obtain for the bending moments G 1 and G2 the extremely

simple result:

3 (1 + 0)(2 + 6)
G1 2 - 2  cos .................. [10]

1-d

The bending moments were neglected in the calculation of the longi-

tudinal forces T 1 and T 2 , and it can now be determined how justified this

approximation was. The best criterion is probably given by the ratio of

the bending moment to the longitudinal force, which indicates the amount

of eccentricity between the line of action of the resultant force and the

middle surface of the spherical shell.

It follows:
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G 2
1 5 (1 + d)(2 + 0) 2 9

- = - cos 9 cos -
T I  6a - 6 2  2

1 26
If we assume the Poisson ratio 6 = - and take for cos 8 cos - its largest

4 2

value corresponding to that at the apex, the largest eccentricity of the

pressure resultant will be

G 2

G 1 G1
For instance, for a wall thickness to radius ratio of - = -- becomes

a 40 T 1

equal to -, i.e., an eccentricity which in practice could not be represent-
80

ed graphically at all. The shearing stress N 1 perpendicular to the middle

surface, which influences a circumferential element, becomes according

to the third of the equilibrium Equations [5]:

G 31 3 (1 + d)(2 + 6)
N - = ( sin 9
1 a 12a 2

This value of N 1 can now be used as a correction and yields for T 1 ,

according to Equations [lb] and [5], the differential equation:

T +(2 cot )T= - aO +(cot g)aP +(cot 9)N1 + N 1 cot 9 1)......[]

1 1 1If we set T1 equal to T1 + t and consider T1 to be the solution of the

differential equations [la] , in this case [4b], and if we consider t to be

the correction and subtract Equation [lb] from Equation [11] then we

obtain for the correction t the differential equation:

III,



t + (2 cot 9) t = (cot ) N I + cot2

cos2 ± cos 2  - sin
sin 9 sin 9

Z cos2 9 - sin2
=m

sin 9

if, for brevity, we put:

ya3 (1 + d)(2 + ) _

12a 1- m

The correction tl is obtained from this by integration:

Ct = m cos + c
1

sin 9

If this correction for 8 = 8 0 is also to disappear, then c must be equal

to - m cos 60 sin2 6 o

Hence,

c = 0 for = 0o

It then follows from the second of Equations [5] that

t l U t 2 = m cos 6

The relative values of the corrections are obtained as:

t 2
1 20S = --- cos cos -
T 2 2
1 2a

t 2
2  2 1
2 1+

29

The largest relative values of the corrections are obtained for 6 = 0

namely,

I ill L Il u
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t1 62  2 2

To 2 2

Thus for = , for instance, we obtain the extremely small values
a 40

1 1
- and- 1
3200 9600

We could pursue this method of successive approximations to even

greater accuracy, but we find that at least for the case of dead weight

loading calculated in detail here, the accuracy obtained already satisfies

all technical requirements. Thus we conclude the following:

For a spherical shell under the action of its own weight

with a supporting boundary which is free to move in a

normal direction, the stress condition may be determined

with great accuracy as a pure longitudinal stress without

taking into consideration the bending moments. In other

words, we obtain a pure longitudinal stress condition with a

concentric pressure area, and we obtain it solely from the

equilibrium conditions as a statically defined system.

Similarly, it would be necessary to develop a correction procedure

also for the asymmetrical cases treated above in a purely statical manner

and decide to what extent the concentrical pressure area is admissible.

THE BENDING-RESISTING SPHERICAL SHELL WITH ARBITRARY

AXISYMMETRIC BOUNDARY FORCES

All cases considered so far had in commonthat at the boundary no shear

forces N 1 normal to the boundary and no bending moments G 1 could exist

_ __I ~ _^''.1I
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owing to the support line which is free to deflect without resistance. If

the boundary is firmly supported or even clamped, the previous solutions

do not satisfy the boundary conditions. To satisfy these a further

correction must be added, i.e., transverse forces N 1 and, in the case of

the clamped boundary also bending moments G 1 , of such magnitude that

the displacements u and w, or the tangential rotations u dw, respec-
a dO

tively, which result from previous solutions, are cancelled. It is obvious

that to satisfy the later consideration of a supported boundary for sym-

metrical cases, the following basic problem has to be solved:

A spherical shell is subjected at one boundary to a

uniformly distributed boundary force or to a uniformly

distributed bending moment, respectively, without any

surface forces. The stress distribution is to be found.

Lateral forces and bending moments are obviously the important

components here, and they must not be determined as correction terms.

Instead we must start from the complete system of Equations [5], [6],

and [7] and try to integrate them.

In the absence of surface forces, Equations [5] simplify to:

T + T -T ot = - N

1 T 2 =N' + (cot 9)N . . . . . . . . . . . .[5a]

G + G - G cot9 = aN
1 z 1

I I - II I 1.



These equations simplify even further if the shell is either closed at the

apex or if one boundary line is loaded normal to the axis of symmetry.

In that case also the other boundary line and, in fact, each circumferential

latitude circle has only resultant stresses perpendicular to the axis of

symmetry; this immediately suggests the following as an integral of the

equilibrium equations:

N 1 cot 6 - T 1 sin e = 0

The three equilibrium equations then become:

N 1  T 1 tan e

T2 d (T tan) [5b]

G1 + (G - G2 cot 9 = aN 1

The governing differential equation in terms of a single dependent variable

shall now be established on the basis of the observation that on one hand,

the bending moments G 1 and G 2 may be expressed in terms of the change

of curvature Kx2 alone, whereas on the other hand, T 1 can also be ex-

pressed in terms of <2, in the following manner:

From Equation [7]

<1 d'r tan 9

and therefore

d(2 tan 9) d( r tan 9)
G =-D + r 2 G D + r

1 2 2 ddO 2

----- -~1111111 ill
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The third of Equations [5b] then becomes

aN 1 = -D
d@ ( Ica

tan ) +

d
+ (1- 0) cot 0

- (1 - 0)
12 cot 9 .......... [12]

On the other hand, we obtain according to Equations [9 ]

a C2 tan 0)
- 2) cot 9

and by Equations [6]

2 T

2 D 1- -

E1 - '2 =

2

12 D(1- ) ( T

If according to Equations [5b], we express T 2 in terms of TI, and T 1 in

terms of N 1 we obtain:

1 d N.
E 68 2

de

d(N, cot 9)

dO
+ (1 + ) (cot 9)

- (1 + 0) (cot2
9 Nl

dN 1

d.

.... ... [13]

Hence, N 1 may be expressed in a similar manner in terms of -I2, and vice

versa.

Equations [12] and [13] can be given in a still more symmetrical and

clearer form if the following notations are introduced:

d( 2 tan 0)

d9-

tan 9

~T---- I I I I I I I
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122 2 K2 tan 9 K; N 1 N

Equations [12] and [13] then take the following form:

X2N= K +K cot 9 - K ot2 + ................ [12a]

X2K = N +N cot 9 - N cot2 9 - ................. [13a]

The next step is to introduce the value of K from Equation [13a] into

Equation [12a] , or the other way around, N from 12a] into [13a] and

thus obtain a fourth order linear differential equation with variable

coefficients of rather unconventional form. The form of this equation

would at first suggest integration with the aid of series-type solutions

which progress according to powers of 9 or sin 8. However, the conver-

gence of these series will be so slow because of the magnitude of the

coefficient X, that it is impractical to obtain numerical results.

The reason for this phenomenon is probably based on the fact that we

are dealing here with the determination of a stress condition which is

considerably influenced by the lateral forces and the bending moments

only in the vicinity of the boundary, and which effects must decrease

rapidly towards the apex, similarly as in the case of the well-known

stress condition for a cylindrical shell that is loaded by transverse

boundary forces. 3

The large value of the "parameter" X, which prevents an elementary

power-series solution, now leads to the so called asympototic integration

~



with the aid of a series that progresses by descending powers of X; the

origin of this series is due to O. Blumenthal. 4

The large factor X2 on the left-hand side of Equations [12a] and

[13a] shows that N and K must be functions of 6 whose derivatives must

be large compared to N and K themselves. This observation makes it

advisable to start with e as a factor. Furthermore, Blumenthal proves

that it is appropriate for the desired series development, useful for

large values of X, to eliminate the first derivatives on the right-hand

side of Equations [12a] and [13a]. This is accomplished by the intro-

duction of the new variables K 's7inOe and N sinO . It thus follows that

for N and K themselves, the following expressions must be set up:

Pe Ie sm/2 1 2-+ + ..

S= ve sin + 1/2 + . . .

where fl, f1 ' 2 ... etc., represent functions of 8, and v and xj repre-

sent constant values. If we introduce these values for N and K into

Equations [1Za] and [13a] and arrange the terms according to descending

power.s of X, we obtain, by equating each coefficient to zero, the following

relations which may be shown here only up to the values of fl and 41:

~ I II IIII I I I I I r~U.



v=K; f 4 4 -f =25
1 1' 2 2

d = - + cos sinin ) + cot ) + cot in

etc.

In this manner fl, f2 1 2, etc., will at first be determined to within

one integration constant each. The integration constants appearing in fl'

f2' 1l' 2 ... can be chosen arbitrarly; as a matter of fact, if these

constants are chosen differently, the asymptotic integrals differ only by

constant factors as indicated by Blumenthal. Thus, corresponding to the

four (complex) values of > we obtain four asymptotic particular integrals

independent of one another which can be made real by appropriate combi-

nation in the usual manner. Of these integrals, two become small near

the apex; the other two assume large values there. Since the latter are

excluded from the present problem, the corresponding integration

constants v and i must disappear, as can easily be proved, and thus there

remain only the constants of the other two integrals for the satisfaction of

the boundary conditions at the outer edge. These boundary conditions, in

the problem considered, are: For 8 = 81 the transverse lateral force N 1

and the bending moment GL are assumed to be given, where G 1 may again

be expressed in terms of <2 or K, respectively, in accordance with

Equations [6a].

The method described above readily provides a solution to problems

where the usual power-series development fails completely. For the

- ---- 1 11

"~~~~



proof of the asymptotic convergence of the method the reader is referred

to Blumenthal's paper. 4

A numerical calculation and representation of the characteristics of

this stress condition, which is important both in practice and in principle,

will be published elsewhere.
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