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ABSTRACT

Mathematical techniques based on the principles of minimum
potential energy and minimum complementary energy are discussed.
Two numerical examples of practical interest, dealing with the
vibration of nonuniform whirling shafts, are worked out to
illustrate the closer approximations for frequency resulting
from the method based on minimum complementary energy.

**

SUMMARY

The Rayleigh quotient plays an important role in the theory of

eigenvalue problems arising in mathematical physics. In the particular

application of finding approximations to the natural frequencies for

linear, free bending vibrations of slender, nonuniform elastic beams, the

Rayleigh quotient (as it derives from the "principle of minimum potential

energy") has the form

2

-2f EI(x) x)dx 2

2 = min. > (a)
L > 2exact

p(X) y2(x)dx

where EI(x) and p(x) are the bending stiffness and mass distributions,

respectively, along the length L of the beam; y(x) is the transverse dis-

placement due to the vibratory motion.

An important property of the quotient (a) is a theorem, due to

Rayleigh himself, which states that the lowest (fundamental) eigenfre-

quency is given by the minimum of the quotient for all admissible functions

y(x) which satisfy the geometric boundary conditions and are well-behaved

in their continuity and differentiability. For the true eigenfunctions

(natural modes) of the beam, the Rayleigh quotient yields the corresponding

exact eigenfrequencies (natural frequencies).

There was no abstract in the original paper by Movnin and Akselrad;
this abstract was prepared by the translators.

This summary was prepared by the translators.
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In the absence of knowing the true modes, substitution of a trial

function consisting of a single term with one arbitrary multiplicative co-

efficient into Equation (a) will yield a satisfactory approximation w pro-

vided the chosen function closely represents the actual configuration of

the beam, and also if the second derivative is a close representation of

the beam curvature. An important consequence of Rayleigh's theorem is the

principle that the quotient (a) gives an approximation w possessing a

second-order error if the trial function substituted therein deviates by

first-order error from a natural mode.

However, since successive differentiation of an approximation

function perpetuates the inherent error so that although, in practice, it

is possible to choose trial functions which closely resemble the natural

modes, it is not to be expected that they will also satisfy the condition

y" 2(x) approx. ~ [ 2 exact  (b)

The difficulty of satisfying (b) increases the inaccuracy of the Rayleigh

quotient (a).

To increase the accuracy of the frequencies thus computed, it is

possible to consider approximations to y(x) comprised of a linear combi-

nation of several linearly-independent functions from the set of ad-

missibles; this is the essence of Ritz's generalization of the Rayleigh

method. Although such a procedure increases the numerical calculations

necessary to improve the accuracy of the lowest frequency W1, it does

yield approximations to several of the higher harmonics depending on the

number of coordinate functions spanning the Ritz manifold. An alternative

to this so-called Rayleigh-Ritz procedure was first proposed by Grammel

(see Reference 2) in which a one-term representation of y(x) may be taken

as before, but instead of using Equation (a) to determine approximate

values of the frequencies, a modified form of the Rayleigh quotient is

The original paper by Grammel has recently been translated from the

German by the present translators and is available as David Taylor Model

Basin Translation 335 (Oct 1966).
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employed. The details of the pertinent derivation will be indicated for

the relatively simple case of a cantilever beam, say, to delineate the

salient features of the modified Rayleigh quotient.

If we assume that the beam is vibrating in one of its principal

(natural) modes, the differential equation governing the free bending mo-

tions is given by

EI(x)y = W p(x)y (c)

Two successive integrations of this equation from one end of the beam,

x = 0 say, to some arbitrary station x along its length yield

x T1

EI(x)y = 2 p() y( )dE d + [(Ely" )'Ix + [EIy" (d)
SJ x=0 x=0

0 0

Thus, if the beam is free of shearing force and bending moment at its end

x=O, i.e., [(Ey")] x=O = 0 = [Ely"] x=O Equation (d) simplifies to

2 x n

y" (x) - E(x) p() y(E)dE dn (e)

2
If the expression (e) is substituted for the curvature dy in the numerator

dx2

integrand of the Rayleigh quotient (a), the following is obtained:

L

p(x) y2(x)dx

w = mn. _ > 2 (f)
L x (n 2 exact

1 p(E)y(E)ddn L xEI(x) I0 0j
Equation (f) is sometimes referred to as the modified Rayleigh quotient as

it derives from the "principle of minimum complementary energy."

The basic difference between the energy quotients (a) and (f) stems

from the manner in which the potential (strain) energy is expressed in

each. Implicit in finding approximations w using the quotient (a) is the

II I I I



fact that the governing differential equation (c) is satisfied approxi-

mately, but the stress-strain relation is satisfied exactly since the ex-

pression, M(x) = - EI(x)y", is used explicitly to determine the bending

moment by differentiation. Implicit in finding approximations w using the

quotient (f) is the fact that the equilibrium equation is satisfied exactly

since it is integrated directly to determine the bending moment, whereas

the stress-strain relation is satisfied approximately. The nature of the

approximation is thus seen to be different in the two energy quotients (a)

and (f).

It has been shown, from the results of computations stemming from

several independent investigations, that the Rayleigh and Rayleigh-Ritz

methods based on the energy quotient (f) yield approximations w which

are closer to the exact natural frequencies w than the approximations w

based on the energy quotient (a). Movnin and Akselrad give two examples

of application of the modified Rayleigh quotient (f) which further

establishes the validity of this important result.

One such investigation was carried out in 1947-48 by J.G. Pulos under

the direction of Prof. E. Reissner at the Mass. Institute of Technology; it

culminated in an M.S. dissertation entitled, "Coupled Flexural-Torsional

Vibrations of Elastic Beams."
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Simplified Analysis of the Natural Frequencies
for Bending Vibrations of Shafts

by M.S. Movnin and E.L. Akselrad

(Translated from the Russian by B.V. Nakonechny and J.G. Pulos, DTMB)

There are several methods which deal with the calculation of natural

frequencies of vibration. A summary of such methods is given in Refer-

ence 1.

When classifying problems of calculating the natural frequencies

of vibration, with regard to those being the most complicated and which

require the application of the Rayleigh-Ritz method, one considers the

problems of determining the effect of varying rigidity distribution along

the length with the need for including a varying mass distribution or more

than two concentrated masses. As a matter of fact, to this class of

problems belongs the calculation of the natural frequencies of high-speed

shafts and spindles which are characterized by large self-weight as com-

pared to the weight of components mounted on them. For structural parts

of the hanging-support type the inclusion of the mass distribution is al-

ways necessary, because in the majority of such cases the distributions

of mass and rigidity are highly nonuniform.

Thus, approximate methods are very useful in calculating the vi-

bration characteristics of the principal components of machine elements.

Application of the Rayleigh-Ritz method is limited by the fact that

even in simple cases it requires a large amount of involved computations

as compared to some other methods, and in complex cases where the use of

approximate methods is required, it is necessary to have special experi-

ence and a great deal of time for the computations.

One can achieve a substantial simplification in the calculation

of natural frequencies using the Rayleigh method by performing these cal-

culations in general form for basic types of mechanisms.

The analysis of structures shows that calculation of the transverse

vibrations of spindles and shafts of machines is possible to perform since

the majority of cases fall in the category of beams on two supports as

References are listed on page 18.
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shown in Figure 1, where: q(x) is the weight per unit length of the beam,

J(x) is the bending moment of inertia of the beam along its length, and

J(o) is the value of J(x) at a reference section.

The most critical transverse vibrations occur in such machine tool

parts as cantilevers and cross-beams carrying working heads. The compu-

tation scheme for these cases is shown in Figure 2.

Below are shown the simple formulas for direct calculation of

natural frequencies for the typical cases shown in Figures 1 and 2.

For cases which do not fall in the category of the typical ones

shown in these figures, it is recommended that a modified Rayleigh method

be used which substantially reduces the complexity of the calculations.

The starting point in calculating the natural frequencies by the

Rayleigh method is the equating of the maximum value of the kinetic

energy (Tm) of the vibrating masses to the potential energy (nm ) of the

deformed system. For the case of "free" vibrations, and in the absence

of damping, these quantities separately are equal to the total energy of

the system, i.e.

T = n [1]
m m

The appropriate form for this equality can be written as:

( ) 2  M2 (x )

Sq(x) adx = EJ() dx [2]

2
d ym

M =EJ
m dx2

where M (x) is the maximum bending moment at the section, and 8 p(x).

For small bending vibrations the defl'ection of the beam, which vi-

brates in a principal mode, is given by the expression

y(x,t) = 8(x) sin wt; dy\ = w-(x) [3]

max

The principal mode of free vibration is that for which all points of

the system vibrate with the natural frequency w.

I
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Using Eq uations [2] and [3] the Rayleigh quotient, which relates

other function dax), we obtain the following value, which according tothRaylegh's principley withll be larger than the naturalprincipal mode of vibration cy:(x), is-2 .L EJ(0" ) 2 dx

fp(x)0 2dxIf iTranslator'hs Note: Strictlyrmula we substpeakingtute, in place of the function (x),(x) must be ofmethe (essention (xally) admissible type obtain the followsense that they, which accordingt least, satisfy

the geometric boundary conditions of the beam.
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In order that w be as close as possible to the natural frequency

w, the function e(x) should accurately represent the form of the de-

flection of the beam, corresponding to the principal mode of vibration

e(x), i.e., e(x) " e(x), and the squares of their second derivatives

should be approximately equal, i.e., (0'") 2 - (e")2. The difficulty in

choosing the function e(x) so as to satisfy these conditions increases

the error inherent in Equation [5].

In the theory of Rayleigh's principle the method of successive

approximations is proven. In accordance with this method of successive

approximations, Equation [5] gives the zero-th approximation to w.

Consequently, the first approximation can be obtained by replacing

the function e(x) in Equation [5] by the function 61 (x) which is equal to

the deflection of the beam under the action of the distributed loading

q = p(x)O(x)

Equating the energy of deformation of the beam to the work of the

loading which caused this deformation, i.e., f EJ(0 1"')
2dx f q 0ldx,

L L
we can then write the equation for the first approximation in the follow-

ing form:

fL q01 (x)dx fIL el d x
--2
W = [6]

pe 2 (x)dx pe 2 dx

In a similar manner we can develop the second approximation, after

having found the deflection e2 (x) from the loading which is given by

q;,= p(x) e l ( x ) , ..... etc.

The Rayleigh method is especially applicable to the calculation of

shafts having variable rigidity, for which the representation of the

elastic line (the determination of eI) requires considerable graphical

work.

Hence, in many cases one is restricted to the zero-th approximation

even though Equation [5] doesn't give the desired accuracy.
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As was already mentioned, the inaccuracy of Equation [5] is caused

by the presence in the numerator of the square of the second derivative

of the arbitrarily chosen function e(x), and by the difficulty in calcu-

lating the first approximation from Equation [6]--due to the necessity of

calculating the deflection of the beam under the complex loading q =

p(x) O(x).

Let us derive a formula which does not contain the second derivative

of the arbitrarily chosen function and which doesn't require the calculation

of the deflection due to the loading q .

For this purpose let us turn to the expression which deals with

the potential energy due to bending deformations. If the beam is vi-

brating in a mode givenby the function

y(x,t) = e(x) sin wt [7]

then the motion of the beam due to the action of the inertia loading

dy 2
p(x) d2 p(x) O(x) sin wt [8]

dt

can be determined.

Let us denote the bending moment at a cross-section by M (x), which

is due to the transverse loading qe = p(x) O(x). It is evident, that the

maximum value of the bending moment at the section is calculated from the

equation

M (x) = 2 MO(x) [91

Substituting the expressions given by Equations [7] and [9] into

Equation [2], we get the following formula for determining the approximate

value of the natural frequency: 2,3

fL p(x) 2 (x)dx

W2 = [10]

SEJ(x M (x)dx
LEJ (x)0
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For calculation purposes it is convenient to modify this last ex-

pression by introducing nondimensional quantities and by separating the

concentrated masses, i.e.,

=2 v2 L[ x) 2 (E)dE + --! (i [ Jx) ()d - 2 -] [11]*
Po

EJ
where v2 = - is the length between supports or the length of the

cantilever (see Figures 1 and 2); E = x/k is the nondimensional coordinate

for a transverse cross section of the beam or shaft; p 0() is the non-

dimensional bending moment of the beam in terms of the longitudinal co-
m.

)X + i1
ordinate = - = 1, due to the nondimensional loading -- e( + - );

p0 and J are the values of the mass per unit length of the shaft and mo-

ment of inertia at some reference cross section, respectively; mi' Ei de-

note the i t h mass and its corresponding coordinate; and for a shaft with

p(x) = 0, we take p 0 = m .

Example 1. Using Equation [11], let us calculate the natural fre-

quency of vibration for a whirling shaft (Figure 3); this problem was con-

sidered in Reference 1.

Figure 3

1 -i -- J

Translators' Note: x
The variable of integration is the nondimensional quantity E = so that

J
(x) p() and- 1- in the equation. Also, the limits on the inte-
p J(x) J()

grals of Equation [11] over the length of the beam should be 0 to 1.

I _ I I I



We determine the numerator and denominator of Equation [11], using

intermediate results from Reference 1, by taking as in Reference 1,

e(x) = sin L - x sin L

From Reference 1,

2 24.95 kg-cm2

L g

The denominator of Equation [11] can be found by numerical inte-
Ax. J

i o
gration and using the values of S. = (M + M )  and J(xi)S i given in1 i 1  2 J(xi)

Table 23 of Reference 1; i.e.,

f 1 1o Si

EJ(x) x)dx Si J(xi) Ax.LEJog 1 1
L 0

After substitution and summation

L1 2 0.565x10 2 kg-cm

EJ(x) )dx = 
2 kg-cm

Putting these values into Equation [10] we get

w = 2040 sec-1

This approximate value for the frequency is more accurate than that
-i

obtained in Reference 1, e.g., w = 2125 sec ; the difference between

these two values can be explained as due to errors arising from the

graphic integration used in Reference 1.

At the same time, the amount of numerical work involved in using

Equation [11] is much less than that required when using Equation [6],

since in this case there is no need to calculate the deflection of the

beam under the action of a complex loading distribution.

Let us develop the formulas necessary for calculating the natural

frequencies of shafts with variable rigidity distribution along their

I I I



length and with cantilevered sections as shown in Figure la. In this

computation a linear variation of the quantity Jo/J(x), which is the in-

verse of the moment of inertia of the shaft cross-section in bending, is

assumed. Also a linear distribution for the mass over the span, and an

arbitrary distribution for the overhang are assumed.

To include the masses which are on the overhang portions of the

beam, we can reduce them to a single mass by using the formula of Refer-

ence 1, which, with the notation of Figure 4, can be written as follows:

m = m' + m" ( 1 + [12]

mn" m

X"

Figure 4

The compliance to deformation for each portion of the shaft (see

Figure la) can be approximated by a linear relationship, i.e.

i + jx , for the length I
J(x) 1 + jl x , for the length £1(= X1 )

i 2 + j 2 x, for the length X2 X2t)

Now we assume the following form for the elastic line:

e(x) = 3(x2-x)

After calculation using Equation [11], we get

2 + 1 2 2
8 = m1 X 2(3 2X1) m2 X2(3+2X2) + 0.30 [13]
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2/2 2 2 i i
2 = p - J2 + -- +- - +

+ il 4 1 3+ 12 1 +2 + +

+ I + 2  0 + 1.5 2 + + 0.031 (i + 0.9j) [14]

where
G.

m - a , = ml X (3 + 2 = m2 2 (3 + 2q1 1 2 2 (3+2X 2)

Now we will consider an example which demonstrates the reduction in work

which results by using Equation [11] as compared to the calculations with

the Rayleigh method.

Example 2. Using Equations [11], [13], and [14], let us calculate

the first natural frequency for a whirling shaft (see Figure 3).

As can be seen from Figure 5a, the distribution of the moment of

inertia along the length of the shaft is variable, which fact substantially

complicates the analysis. As was already mentioned, a quite complicated

analysis based on graphical methods for determining the elastic line H1(x)
is given in Reference 1. Calculations using Equation [11] are con-

siderably simpler; however, even here a substantial amount of work is re-

quired in calculating the quantities a and 8.
At first glance the plots of Figure 5 show that Equations [12] to

[14] may not be applicable since the function J /J(x) is not linear and

the weight of the shaft per unit length q = YF is not constant along the

length.

However, a closer examination shows that it is possible to apply

these equations. Let us construct on Figure 5b a set of straight lines

i + xj and i- + xj , representing upper and lower bounds, respectively,

to the bending-compliance characteristics of the shaft, and then determine

the corresponding values of the parameters i-, j , i , j .

~__~~1 11_~1 __~~_1__ 1___1_ __I_ ~_ ~__ __~__~^___1~_____~__l_____1yll___l__rrr _1_/11_ _~_ ___I ~_IT_ ~_~___~_1___1____11____I----I___~ICT..~-



Figure 5

The mass distribution of the shaft can be considered to be uniform.

(Note: a portion of the mass which is located near the support has a

small influence on the vibration characteristics.)

We now obtain the parameters for the approximation to the shaft

rigidity (Figure 5b). For the lower-bound distribution of compliance we

get, i = 0.72; j = - (0.72-0.15) = - 0.57; i 2 +2 = 0.35; j2 = 0.35-

0.15 = 0.20; and, for the upper-bound distribution we get,
+ .+
+ = 2.25; j = - (2.25-0.15) = - 2.10; i 2 = 1.10; 2 = 1.10--0.15 = 0.95.

We now determine the mass of the shaft. The actual distribution is

shown in Figure 5c. The distribution used in the analysis (Figure 5d) is

divided up into a uniform loading (YF)o = 0.125 kg/cm between the supports,

and a loading which is taken into account by the concentrated mass

7.5 22.2+ 32 - 12.5 0.01 1.10 kg

M - __ - -1



. The relative magnitude of this concentrated loading is

m (F)o 0.374
1AB = (YF) 0.

The loading on the shaft overhang is reduced, by using Equation [12],

to a single mass m2 at the cross-section where the concentrated weight

G2 = 15 kg:

[ 32(23+3) 8(23+8)

m2 = 0.374 5 + (0.302 + 0.26)2 3(23+3) + (0.125)6. 8 2(23+8) 5.28
112(23+11) 11 (23+11)

Evidently, one does not need to include mlAB since mlAB << m2 '
Let us calculate the natural frequency corresponding to the upper-

bound rigidity distribution (i , j ). After substituting into Equations

[13] and [14], m = 0; = 0; 2 = 0.48, we obtain l = 0; -2 = 4.83;

8 = 19.40; a = 3.15 and the upper-bound value of the natural frequency is

found to be

+ 2Y -1
= 2 = 2720 sec

Let us calculate the natural frequency corresponding to the lower-

bound rigidity distribution. After substituting in Equation [14] the
+ + -1

values of i+, j , we obtain a = 6.95, w = 1760 sec.

The exact value of the natural frequency is close to the arithmetic
+ - -1

mean of - and w-, i.e., W 1  2240 sec.
-1

After extensive calculations in Reference i, the value w = 2125 sec

was obtained. The difference with our result is 5.4 percent, i.e., the

approximate analysis gives quite satisfactory accuracy.

For the case of the shaft shown in Figure lb, using the deflection

function 9(x) = 3 (x2 - x), we obtain from Equation [11]

2 2 m f
S= ml1 22 o o

a = yl 2 Y321 3S ( + Y2 Y3(h )2 ) Y3 0

--In these expressions

- .--~.~-I~ ..---T- ~-----~- ----- --- I- .--.--I ~------ ---------r----n--l L~. c~ ~--~i ----~- ----~--.--~--~ .-1. - ~-----~--~-~.----------~- ~~-i7nl^~-~-P~



G1  Gm =- + A m = - + A2
qT 1 ' 2 qL 2

fl =32 2 3( 2  o = X(3+3X)

Y =X I 2 +  P2 I + X) ]2 (i + Xllj)

Y2= LI( I-I + U2 + x 2  (i + X2 j)

2 + ) ;

Y = o( i  +  ) ; Y3 0  o(o + 1 = m 1

2 = m2f2X2(1-X2); P1 = m f 2(1-12 o o

where m. is the weight concentrated at the points i = 1, 2 divided by the
1

weight of the shaft between the supports (ql); A1, A2 are the portions of

the shaft weight reduced to the values G1 , G2. If ml+m 2 < 1, i.e., the concen-

trated weight of the span is smaller than the weight of the shaft, then it is

imperative to use the computation scheme which we considered earlier (see

Figure la), including concentrated masses by increasing the mass of the

shaft.

The reduced mass of the overhang resulting from Equation [12],

located at the distance Xt from the support, is m0 = Go /q.

The formulas given above could be generalized to include a large

number of masses G1, G2, G3,...etc.

The natural .frequency of the cantilever beam shown in Figure 2 is

determined in an analogous fashion. Taking the deflection function to be
2

e(x) = x , we obtain approximately

( 1 4 n G.
p + jm.a. ; pm. -

n =  In n o qo0

202
a = in kjn ma 2  kn Pk

n J kn

The coefficients kjn , Ykn are determined from the following table:

~1 111 __ I I I I I I



Coeff. = 0 n- = I n --- 2 3

Vin

70n

72n

73n

0.55 a V j

0,224

0,162

0,127

0,104

0,29 a 2

0,091

0,07

0,056

0,046

0. 18 a

0,0487

0,0387

0,032

0,027

0,13 a

0,03

0,025

0.022

0.018

The calculation of the natural frequency for a milling-cutter shaft

possessing the unusual distribution of mass and rigidity considered in
-1

Reference 1 is here found to be w = 300 sec. This result, obtained by

using i = 0.14 + 1.16x ; pO = 20; p1 =-20; m1 = 2.68; m2 = 1.5; aI = 0.82;
1

a2 = 1i, is 22.5 percent smaller than the value w = 387 sec given in

Reference 1.
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