

The Naval Ship Research and Development Center is a U.S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland and the Marine Engineering Laboratory (now Naval Ship R & D Laboratory) at Annapolis, Maryland. The Mine Defense Laboratory (now Naval Ship R & D Laboratory) Panama City, Florida became part of the Center in November 1967.

Naval Ship Research and Development Center Washington, D.C. 20007

> REPORT COVER NDW-NSRDL(A) 3960/164 (Rev 2, 6/7

ANTISLIME COATINGS Part I - Primary Marine Fouling

By E. J. Dyckman and V. John Castelli

Approved for public release; distribution unlimited.

June 1971

.

ABSTRACT

Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are summarized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings.

iii

ADMINISTRATIVE INFORMATION

This work is authorized under Task Areas SF 11 552 101 and ZF XX_412_001, Task 12874, Work Units 1_937_101 and 1_937_105 as descr'bed in the 1 November 1970 Program Summary. The latter task area is concerned with the development of optical coatings.

F	°a	q	e
	-	_	

ABSTRACT	111
ADMINISTRATIVE INFORMATION	iv
INTRODUCTION	1
MATERIALS AND METHODS	2
RESULTS AND DISCUSSION	3
CONCLUSIONS	5
FUTURE WORK	5
TECHNICAL REFERENCES	5
LIST OF FIGURES	-
Figure 1 - Photograph; Submersible Experimental Unit	
Figure 2 - Drawing; SEU Mooring Buoy Array	
Figure 3 - Map; Carr Creek, Annapolis, Maryland	
Figure 4 - Photograph; Sliming Culture from Glass	
Surface, 5-Minute Submergence	
Figure 5 - Photograph; Sliming Culture from Glass	
Surface, 1-Hour Submergence	
Figure 6 - Photograph; Sliming Culture from Glass	
Surface, 24-Hour Submergence	
Figure 7 - Photograph; Inhibition of a Marine Bacteria	L
Isolate Culture: Determined by the "Ring of	
Inhibition" Method Using Organometallic	
Compounds (Scale 1.2)	
Figure 8 Chart. Pelative Appular Toxicity of Organome	+
righte 0 - chart, Relative Annutar Tokicity of Organome	- L -

tallic Compounds to Sliming Microorganisms

DISTRIBUTION LIST

ANTISLIME COATINGS Part I - Primary Marine Fouling

By

E. J. Dyckman and V. John Castelli

INTRODUCTION

Microorganisms, their viscous bio-organic products and absorbed organic matter, 1-4 constitute a tenacious, opaque slime which forms on submerged surfaces. The initial organisms in this fouling sequence are bacteria⁵ followed by a biotic progression of diatoms, hydroids, algae, bryozoans, protozoans, and finally macrofoulants.⁶⁻¹⁰ Crisp¹¹ has shown that macrofoulants tend to be rugophilic, settling on roughened surfaces in preference to smooth glass and acrylic surfaces.^{12,13} It is thought that primary marine slimes precondition the surface in some manner thus stimulating the settling of macrofoulants.14-18 Skerman¹⁷ demonstrated barnacle settlement is less frequent on clean glass surfaces compared to those covered with emollient films high in particulate matter. This film may provide a physical substrate and/or a nutritive source which encourages the attachment of macroscopic plants and animals.^{15, 18} In order to determine the necessity of bio-organic slimes as preconditioning agents, a controlled laboratory procedure is essential. A procedure for barnacle rearing developed originally by Freiberger¹⁹ has been continued at this activity and will be used in later experiments on marine slimes.^{20, 21} From a practical standpoint, slime films affect the performance of antifouling coatings to some extent by physically overlaying the toxic surface.12,16,21,22 However, specific slimicidal coatings are virtually nonexistent.

Various authors have pointed out the inherent value of organometallic compounds as biocides.²²⁻²⁹ Their studies indicate that toxicities of several selected organometallic compounds are at least an order of magnitude greater than classical copperbased agents. Initial studies to determine the feasibility of optical antifouling agents were limited to bis-(tributyltin) oxide (TBTO). Metzler¹⁰ coated glass slides with this agent,

¹Superscripts refer to similarly numbered entries in the Technical References at the end of this report.

and Muraoka³⁰ similarly treated acrylic polymers, in addition with hydrostatic pressure to increase diffusion of the toxin into the polymer matrix. Samples treated both ways fouled within 3 weeks through rapid depletion of the TBTO. A novel approach undertaken at this activity to increase the long-term serviceability of such coatings is to incorporate the toxin chemically on a synthetic polymer backbone. This provides minimum dissolution of toxin through surface hydrolysis, while hopefully maintaining an effective contact-toxic for primary fouling organisms. Therefore, in addition to increased service life of antifouling coatings, this provides a new generation of coatings which do not represent an input to marine pollution, particularly in harbors where antifouling agents would be concentrated.

MATERIALS AND METHODS

Standard glass microscope slides were used as test surfaces for slime development. These coupons were exposed on submersible experimental units (SEU), as shown in figure 1. Each SEU can support sixty 1- x 3- x 3/32-inch coupons at any depth and angle. Several SEU's were moored from a buoy array (figure 2) at a depth of 1 to 4 feet in Carr Creek (figure 3), a local estuary with average salinity of 11%. Prior to exposure, all test coupons were cleaned in chromic acid, rinsed profusely in distilled deionized water, and maintained at 110° C until used.* The coupons were mounted on the SEU with adequate precaution taken to prevent contamination of the surface. SEU's were then placed in a sterilized plastic bag for transport to the exposure site. Random samples proved sterile when checked prior to immersion. After varying exposure periods up to 96 hours, the coupons were retrieved and microfouling organisms quantified and isolated. This was accomplished by first rinsing the slides with 30 cc of sterile Carr Creek water, followed by gently pressing the face of the slide on marine agar plates (Difco) for 5 minutes. Then the slide was removed and the inoculated agar incubated for 48 hours at 25° C. Developing colonies were counted when possible. Pure cultures were subjected to cursory identification by standard methods using Eugon Agar prepared with artificial seawater (Rila Marine Mix). These microorganisms were subsequently used for determining the relative toxicity of various organometallics by the "ring of inhibition" method. Candidate compounds (TBTO, bis-(tripropyltin) oxide (TPTO), tetramethyl lead (TML)) dissolved in ligroine (boiling point 35°-60° C), a very inocuous solvent to all the microorganisms

^{*}Abbreviations used in this text are from the GPO Style Manual, 1967, unless otherwise noted.

tested, were used to saturate standard size disks (5-mm diameter) of absorbent paper. These were placed on the surface of marine agar plates uniformly inoculated with one of the slime-associated microorganisms. The extent of inhibition was determined after 48-hours incubation at 25° C.

Two of the above mentioned organometallic compounds (TBTO and TPTO) were utilized in the formulation of experimental antislime coatings. The toxic agents were dissolved in an acrylic monomer solution and polymerization induced with a catalyst. The resultant polymers were coated on glass slides previously treated with a coupling agent to permit adequate adhesion of the polymer to the glass.

RESULTS AND DISCUSSION

During the first 24 hours of sliming on glass surfaces, there was a numerical increase in microorganisms with time, coupled with a decrease in diversity of species (figures 4-6). Of 13 different organisms isolated from the slime and adjacent water, only one (X3) showed repeated dominance after 96 hours. Preliminary characterizations of all isolates are listed in table 1. Biochemical differentiation proceeded with difficulty owing to incompatability between various constituents of the test media and salt water. Since this problem has recently been overcome, however, biochemical tests are presently underway.

	Pigmen_	Eleva_	Agar		
Organism	tation	tion	Stroke	Form	
X2	Orange	Flat	Effuse	Punctiform	
X3	Cream	Convex	Filiform	No individual colonies	
x9	Yellow	Raised	Beaded	Punctiform	
X16	Green	Convex	Beaded	Punctiform	
X17	Red	Convex	Beaded	Circular	
x19	Yellow	Raised	Beaded	Punctiform	
x20	Brown	Convex	Effuse	Circular	
X22	Green	Convex	Beaded	Punctiform	
x25	Brown	Convex	Beaded	Circular	
X27	Green	Raised	Beaded	Punctiform	
x29	Brown	Convex	Effuse	Filamentous	
x30	Black	Convex	Beaded	Punctiform	
x31	Tangerine	Convex	Beaded	Filamentous	

Table 1 Characteristics of Estuarian Sliming Bacteria

Note: Anaerobicity for all organisms is +.

Twelve of the thirteen slime-associated microorganisms, tested by the "ring of inhibition" method (figure 7), are susceptible to the toxic properties of TBTO and/or TPTO, whereas all are unaffected by TML (figure 8). These results agree with previous studies23 which showed that the most toxic organometallic compounds are of the type R_zMX, where R is an organic radical, M is the metal atom, and X can be any electronegative inorganic or organic radical (e.g., oxide, methacrylate). The radical X does not affect the toxicity of the compound to any significant degree, whereas the organic radical R has great influence on toxicity.²³ Organometallic acrylic monomers, when polymerized, exhibit satisfactory physical properties for use as underwater optics or optical coatings. These polymers are readily formed into complex shapes, machineable, colorless, transparent, strong, and lightweight. The organometallic polymer can be visualized as a backbone acrylic polymer with side_chain organometals attached, as shown below.

In contrast to the current antifouling coatings, these organometallic polymers are expected to maintain a constant surface toxicity. Toxin is released here by means of metabolic degradation of the polymer upon contact by the sliming microorganisms.

Report 9-66

4

CONCLUSIONS

• The methods developed for the preparation, exposure, and retrieval of test coupons are reliable procedures for studying the progression of sliming by microorganisms on submerged surfaces.

• There is a numerical increase in microorganisms with time, coupled with a decrease in species diversity in the primary fouling sequence.

• Organometallic compounds (TBTO and TPTO) may be used effectively as combatants against microorganisms involved in the sliming of underwater surfaces.

• The physical properties of acrylic organometallic polymers suggests their use as slimicidal underwater optics and optical coatings.

FUTURE WORK

The biochemical differentiation of microbial slime isolates will be completed. The biotic progression of primary fouling organisms will be closely followed, and representative species of each stage in this progression will be isolated and studied. Synthesis of organometallic polymeric materials will be continued and their performance evaluated. Statistical methods of bioassay using barnacle cyprids and microorganisms will be used to evaluate the antifouling performance of the organometallic polymeric biocides. Additional emphasis will be placed on the utility of the "contact toxic" principle for future antifouling coatings in general.

TECHNICAL REFERENCES

- 1 Zobell, C. E., "The Effect of Solid Surfaces Upon Bacterial Activity," J. Bact., Vol. 46, 1943, pp. 39-56
- 2 Sharpley, J. M., "Elementary Hydrocarbon Microbiology," Tech Documentary Rept ASD-TDR-63-752, prepared under Contr AF 33(657)-10865 by Sharpley Labs, Inc., Fredricksburg, Va., April 1964, pp. 15-19
- 3 Corpe, W. A., "An Acid Polysaccharide Produced by a Primary Film-Forming Marine Bacterium," <u>Developments in Industrial</u> <u>Microbiology</u>, Washington, D. C., 1970
- 4 Vind, H. P., "Adhesive Hydrocolloids Secreted by Microscopic Marine Algae," NCEL Tech Note N-1077, Feb 1970

- 5 Zobell, C. E., and E. C. Allen, "The Significance of Marine Bacteria in the Fouling of Submerged Surfaces," J. Bact., Vol. 29, 1935, pp. 239-251
- 6 Strandskov, F. B., "Slime-Forming Organisms," JAWWA, Dec 1948, pp. 1299-1304
- 7 Wood, E. J. F., "Investigations on Underwater Fouling I. The Role of Bacteria in the Early Stages of Fouling,"
 J. of Marine Freshwater Research, Vol. 1, 1950, pp. 85-109
- 8 Jennings, D. M., E. L. Littauer, and J. R. Woodhouse, Marine Fouling and Antifouling Techniques, Lockheed Aircraft Service Co. Marine Research Labs, 1966
- 9 O'Neill, T. B., and G. Wilcox, "The Formulation of a 'Primary Film' on Materials Submerged in Sea Water at Port Hueneme, California," NCEL Tech Note N-894, July 1967
- 10 Metzler, C. V., "Biological Fouling of Transparent Plastics," NAVMISCEN Tech Memo TM-68-9, May 1968
- 11 Crisp, D. J., and H. Barnes, "The Orientation and Distribution of Barnacles at Settlement with Particular Reference to Surface Contour," J. of Animal Ecology, Vol. 23, 1954, pp. 142-162
- 12 Miller, M. A., et al, "The Role of Slime Film in the Attachment of Fouling Organisms," Biol. Bull., Vol. 94, 1948, pp. 143-157
- 13 Pomerat, C. M., and C. M. Weiss, "The Influence of Texture and Composition of Surface on the Attachment of Sedentary Marine Organisms," Biol. Bull., Vol. 91, 1946, pp. 57-65
- 14 Adamson, N. E., Technology of Ship Bottom Paints and its Importance to Commercial and Naval Activities, Bur. Construction and Repair, Navy Dept, Bull. 10, pp. iii-v
- 15 Zobell, C. E., "Fouling of Submerged Surfaces and Possible Preventive Procedures, The Biological Approach to the Preparation of Antifouling Paints," <u>Paint, Oil and Chemical</u> Review, Vol. 101, 1939, pp. 74-77
- 16 Horbund, H. M., and A. Freiberger, "Slime Films and Their Role in Marine Fouling: A review," <u>Ocean Engrg.</u>, Vol. 1, 1970, pp. 631-634
- 17 Skerman, T. M., "The Nature and Development of Primary Films on Surfaces Submerged in the Sea," N. Z. J. of Science and Technology, July 1956, pp. 44-57
- 18 Himmelfarb, P., et al, Relationship Between Bacterial Slime Films and the Initial Stage of Marine Corrosion and Fouling, Arthur D. Little, Inc., Mar 1964
- 19 Freiberger, A., and C. P. Cologer, "Rearing Acorn Barnacle Cyprids in the Laboratory for Marine Fouling Studies," Naval Engineers Journal, Vol. 78, 1966, p. 881

- 20 Freiberger, A., "Bioassay of Marine Antifoulants I. Screening of Toxicants," <u>Naval Engineers Journal</u>, Vol. 81, No. 5, Jan 1970
- 21 Freiberger, A., "Bioassay of Marine Antifoulants II. Screening of Shipbottom Coatings," <u>Naval Engineers Journal</u>, Feb 1970, pp. 58-64
- 22 Saroyan, J. R., "Marine Biology in Antifouling Paints," J. of Paint Technology, Vol. 41, No. 531, Apr 1969, pp. 285-303
- 23 Luijten, J. G. A., and G. J. M. Van Der Kerk, <u>Investigations</u> in the Field of Organotin Chemistry, Tiń Research Inst., <u>Middlesex</u>, England, Oct 1955
- 24 Sijpesteijn, A. Kaars, et al, "On the Antifungal and Antibacterial Activity of Some Trisubstituted Organogermanium, Organotin and Organolead Compounds," <u>Antonie van Leeuwenhoek</u>, Vol. 28, 1962, pp. 346-356
- 25 Chalmers, L., "The Chemistry and Applications of Organotin Compounds," <u>Manufacturing Chemist and Aerosol News</u>, June 1967, pp. <u>37-41</u>
- 26 Hopf, H. S., et al, "Molluscicidal Properties of Organotin and Organolead Compounds with Particular Reference to Triphenyllead Acetate," Bull. World Health Organ., Vol. 36, No. 6, 1967, pp. 955-961
- 27 Migdal, S., et al, "Organotin Polyesters and Polyethers -Synthesis and Biocidal Properties," Israel J. Chem., Vol. 5, No. 4, 1967, 11. 163-170
- 28 Carr, D. S., "Organolead Compounds (in Antifouling Paints)," Paint Varn. Prod., Vol. 58, No. 2, 1968, pp. 23-28
- 29 Freiberger, A., et al, "Some New Approaches to the Study of Barnacles," Ocean Engrg., Vol. 1, 1969, pp. 469-474
 30 Muraoka, J. S., "Marine Fouling of Acrylic Plastics Pres-
- 30 Muraoka, J. S., "Marine Fouling of Acrylic Plastics Pressure Treated with Organo-Tin Compounds," NCEL Tech Note N-1020, Feb 1969

Figure 1 - Submersible Experimental Unit

Figure 2 SEU Mooring Buoy Array

Figure 3 - Carr Creek, Annapolis, Maryland

Figure 4 Sliming Culture from Glass Surface 5-Minute Submergence; 10 Diverse Organisms

Figure 5 Sliming Culture from Glass Surface l-Hour Submergence; 6 Diverse Organisms

Figure 6 Sliming Culture from Glass Surface 24-Hour Submergence; Predominantly 2 Diverse Organisms

Figure 7

Inhibition of a Marine Bacterial Isolate Culture; Determined by the "Ring of Inhibition" Method Using Organometallic Compounds (Scale 1:2)

Figure 8 Relative Annular Toxicity of Organometallic Compounds to Sliming Microorganisms

```
DISTRIBUTION LIST
```

```
NAVSHIPS (SHIPS OOV1K) (10)
NAVSHIPS (SHIPS 2052) (2)
NAVSHIPS (SHIPS 031) (2)
NAVSECPHILADIV (2)
NAVSEC (SEC 6101C) (3)
NSRDC (Code L42) (2)
CNM
CNO
COMNAVAIRSYSCOM
NAVORD
NRL (4)
Naval Undersea R&D Center
   San Diego (Code 504)
     (Attn: Mr. Owen Lee)
   Pasadena
   China Lake
NSRDL, Panama City
NAVELECSYSCOM
ONR (Ocean Science & Tech Group) (2)
Special Projects Office
NWL
NAVMISCEN
Civil Engrg Lab
   Port Hueneme, Calif.
NAVOCEANO (2)
NOL, Corona
NOL, White Oak
USL
Naval Underwater R&E Station, Newport
OER&E, Secretary of Defense
ONR
Report 9-66, June 1971
```

A.

١

1

۲

Υ.

1

•

•

DOCUMENT CONTROL DATA - R & D	Security Classification Unclassified					
Anapolis, Maryland 21402 Anapolis, M	DOCUMENT CONTROL DATA - R & D					
Naval Ship Research and Development Laboratory Unclassified Annapolis, Maryland 21402 The GROUP Antislime Coatings The GROUP • Determine Notes(Dyperiod Preval and nother dates) Part I - Primary Marine Fouling • Automatified mass, much and nother dates) Part I - Primary Marine Fouling • Automatified mass, much and nother dates) Intermetics • Automatified mass, much and nother dates) Intermetics • Automatified mass, much and nother dates) Intermetics • Statemetic Date Intermetics • Mark Units 1.971 Intermetics • Backet Mark See SF 11 552 101 and 9-66 • Statemetic Dates SF 11 552 101 and 9-66 • Mork Units 1.937-001 and 1-937-105 Intermetical value date makes tassigned Approved for public release; distribution unlimited. Intermetical value date date date date date date date dat	Security classification of title, body of abstract and indexing a 1. ORIGINATING ACTIVITY (Corporate author)	annotation must be entere 2a.	REPORT SECURITY CLASSIFICATION)		
Anapolis, Maryland 21402 Anapolis, Maryland	Naval Shin Bogoargh and Dovolonment	Tabawatawa	Unclassified			
Antislime Coatings Antislime Coatings Constraints and V. John Castelli Constraints and I-937-105 Co	Annapolis Maryland 21/02	Laboratory	GROUP			
A DESCRIPTION FINAL Antislime Coatings 4 Orean Market Notes (The of report and mechanise dates) Part 1 - Primary Marine Fouling 4 Orean and V. John Castelli A definition of the second of the field of the second of the sec				·····		
Antislime Coatings + DESCRIPTIVE NOTES (Pype of report and uncluive dates) Part I - Primary Marine Fouling + Altrosevert (Furshame, and date millable for and exception of the set of the	J REPORT HILE					
descriptive works (Type of repair and methods work data) Part I - Primary Marine Fouling submetry Marine Fouling submetry Marine Fouling submetry E. J. Dyckman and V. John Castelli intervent and the method of the submetry E. J. Dyckman and V. John Castelli intervent for the submetry Marine Fouling intervent for submetry intervent for submetry intervent for submetry during for the submetry for the submetry is officient and the submetry during (slime generation) on submetry during fouling (slime generation) on submetry during fouling (slime generation) on submetry fouling (slime generation) on submetry during sufficient and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymetry as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors)	Antislime Coatings					
descriptioner works (//pare of remost and inclusive dates) Part I - Primary Marine Fouling Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) E. J. Dyckman and V. John Castelli Autronal (First name, muldie minds, hash name) Autronal (First name, muldie minds, hash name) Approved for public release; distribution unlimited. If SuperLeventary nores Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic arrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors)						
Part I - Primary Marine Fouling S. AttroBAST (Free name, widdle mindle has name) E. J. Dyckman and V. John Castelli Construction of the second	4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	······································				
E. J. Dyckman and V. John Castelli * MENON DATE June 1971 13 20 10. CONTRACTOR CRANTICE * MERCENTRACTOR CRANTICE * MERCE	Part I - Primary Marine Fouling					
E. J. byckman and V. John Castelli Also of PAGES In NO OF PAGES John Of PAGES June 1971 13 30 As contraction GRANTNO Sec. Online Arter Structure Sec. Online Arter Structure Structure Transk Areas SF 11 552 101 and C ZF XX 412 001 Task 12874 9-66 9-66 * Work Units 1-937-001 and 1-937-105 Difference of the mark be easily only other numbers that may be easily only other numbers that numbers that numbers that numbers that numbers that may be easily only other numbers that may be easily only only other numbers that may be easily only only other numbers that numbers that numbers that numbers that numbers that numbers that may be easily only only other numbers that numbers that numbers that numbers that numbers that numbers that number	5 AUTHOR(5) (First name, middle initial, last name)					
E. J. Dyckman and V. John Castelli (* NEPONTOATE June 1971 13 20 ** CONTRACT ON GRANT NO ** CONTRACT NO ** CONTRACT NO ** CONTRACT NO ** CONTRACT NO ** CONTRACT NO ** CONTRACT NO ** CONTRACT ** CONT						
ABOD TARK 100 OF ADDES JUNE 1971 JUNE 1971 JOURD STATEMENT PROJECT NO TASK Areas SF 11 552 101 and . ZF XX 412 001 TASK 12874 a Work Units 1-937-001 and 1-937-105 JOURD STATEMENT Approved for public release; distribution unlimited. If SUPPLEMENTARY NOTES JOURD STATEMENT Approved for public release; distribution unlimited. If SUPPLEMENTARY NOTES JOURD STATEMENT Approved for public release; distribution unlimited. If SUPPLEMENTARY NOTES JOURD STATEMENT Approved for public release; distribution unlimited. If SUPPLEMENTARY NOTES JOURD STATEMENT Approved for public release; distribution unlimited. If SUPPLEMENTARY NOTES JOURD STATEMENT Approved for public release; distribution unlimited. JOURD STATEMENT	E. J. Dyckman and V. John Castelli					
During 19/1 12 30 b: CONTRACT OR GRANT NO 9-66 9-66 b: Task Areas SF 11 552 101 and c. ZF xx 412 001 9-66 Task 12874 9-66 d: Work Units 1-937-001 and 1-937-105 9-66 Distribution statement 90-66 a: Work Units 1-937-001 and 1-937-105 9-66 Distribution statement 9000000000000000000000000000000000000	6 REPORT DATE	78. TOTAL NO OF PA	AGES 7b. NO OF REFS			
b. FRONKET DECEMBEN Task 12874 c. ZF XX 412 001 Task 12874 c. Work Units 1_977-001 and 1_977-105 v Origination statement Approved for public release; distribution unlimited. 11 supportereation 12 sponsoning with a statement NAVSHIPS 13 ABSTRACT Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors)	June 1971	13	30			
Benefice No SPECIFIC NO S	08. LUNINALI UN GMANT NO	98. ORIGINATOR'S RE	PORT NUMBER(5)			
Task Areas SF 11 552 101 and ZF XX 412 001 Task 12874 900 * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1-937-001 and 1-937-105 * Other numbers that may be assigned * Work Units 1 * Other numbers that may be assigned * State 1 * Other numbers that may be assigned * State 1 * Other numbers that may be assigned * Other numbers that may be assigned * Other numbers that may be assigned * Other numbers that may be assigned * Other numbers that may be assigned * Other numbers	6. PROJECT NO		0_66			
2	Task Areas SF 11 552 101 and		3-00			
A Work Units 1-937-001 and 1-937-105 Approved for public release; distribution unlimited. IT SUPPLEMENTARY NOTES IT SUPPLEMENTARY NOTES IT SUPPLEMENTARY NOTES IT SUPPLEMENTARY NOTES IT SUPPLEMENTARY NOTES IT SUPPLEMENTARY NOTES IT ADSTRACT Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified Security Classification	$_{c.}$ ZF XX 412 001	9b OTHER REPORT N this report)	NO(5) (Any other numbers that may be as	signed		
Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. It supplementary notes It sup	Task 120/4	. ,				
Approved for public release; distribution unlimited. II SUPPLEMENTARY NOTES I2 SPONSORING MILITARY ACTIVITY INAVSHIPS IS ABSTRACT IN ABSTRACT	a WOLK UNITS 1-937-001 and 1-937-105					
Approved for public release; distribution unlimited. It supplementation works It supplementation on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are summarized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD 1000 1000 (PAGE 1) Unclassified DUCLassified DUCLassified						
11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY INAVSHIPS 13 ABSTRACT Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. Implication (Authors)	Approved for public release; distr	ibution unli	imited.			
It SUPPLEMENTARY NOTES It SUPPLEMENTARY NOTES IN AUXILITARY ACTIVITY NAVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS IN AVSHIPS It SPONSORING MILITARY ACTIVITY NAVSHIPS IN AVSHIPS IN						
NAVSHIPS This is a destract Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD 100 100 100 (PAGE 1) Unclassified Secury Classification	11 SUPPLEMENTARY NOTES	12 SPONSORING MILL	TARY ACTIVITY			
ID ABSTRACT Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are summarized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors)		NAVSH	IIPS			
Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD INOV 651473 (PAGE 1) Unclassified						
Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors)	13 ABSTRACT					
Initial investigations on primary fouling (slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified DI 2014 6600						
<pre>(slime generation) on submerged surfaces and the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. DD FORM 1473 (PAGE 1) Unclassified DI 2014 6600 Security Classification DE Classification Security Security Security Security Security Security Security Security Sec</pre>	Initial investigation	s on primary	fouling			
the development of a transparent antifouling coating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified DI 2014 6600	(slime generation) on subm	erged surfac	es and			
COating system for submerged optics are sum- marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. DD FORM 1473 (PAGE 1) Unclassified Security Classification	the development of a trans	parent antif	ouling			
Marized. The chronological succession of bacterial sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. DD FORM 1473 (PAGE 1) Unclassified Div 2014 6600	coating system for submerge	ed optics ar	re sum_			
DD FORM 1473 (PAGE 1) DD FORM 1473 (PAGE 1) DIO2 0114 6600 Dacterial Sliming on submerged-glass coupons has been recorded. Pure bacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. Unclassified Security Classification	marized. The chronologica	L succession	of			
<pre>In the second definition of the pacterial cultures isolated from these slimes have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified Security Classification</pre>	bacterial sliming on submerged-glass coupons					
<pre>bisitive filles filles have been subjected to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified Security Classification</pre>	nas peen recorded. Pure bacterial cultures					
to preliminary identification and their response to several toxic organometallic compounds has been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified Security Classification	to proliminary identification and their up					
been tested. The facile synthesis of various organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and coatings. (Authors) DD FORM 1473 (PAGE 1) Unclassified Security Classification	to several toxic organometallic conservate bea					
DD FORM (PAGE 1) 0102 014 6600 DECEM CODECCE. The factle synthesis of valious organometallic acrylic monomers suggests their polymers as foremost candidate materials in the search for antifouling underwater optics and (Authors) Unclassified Security Classification	been tested. The facile curthesis of marine					
DD FORM 1473 (PAGE 1) 0102 014 6600 Unclassified Security Classification	Organometallic acrulic monomers suggests their					
DD FORM (PAGE 1) 0102 014 6600 LINCE AN INCLUSIVE CONDICATION IN THE SEARCH INTERS IN THE SEARCH IN THE SEARCH IN THE SEARCH IN THE SEARCH INTERS IN THE SEARCH IN THE SEARCH IN THE SEARCH INTERS IN THE SEARCH IN THE SEARCH IN THE SEARCH INTERS INTO A SEARCH	polymers as foremost candid	date materia	le in the			
Coatings. (Authors) DD FORM (PAGE 1) 0102 014 6600 Unclassified Security Classification	search for antifouling underwater ontice and					
(Authors) DD FORM 1473 (PAGE 1) 0102 014 6600 Unclassified Security Classification	coatings.	ermater optio				
(Authors) DD FORM (PAGE 1) 0102 014 6600 Unclassified Security Classification						
DD FORM (PAGE 1) 0102 014 6600 Unclassified Security Classification		(Authors)				
DD FORM 1473 (PAGE 1) Unclassified 0102 014 6600 Security Classification		(
DD FORM (PAGE 1) Unclassified 0102 014 6600 Security Classification						
UD INOV 65 IA INOV 65 0102 014 6600 Security Classification						
0102 014 6600 Security Classification	$DD_{1 \text{ NOV 65}}$ 14/3 (PAGE 1).	τ	Unclassified			
	0102 014 6600		Security Classification			

•

	LINK A		LINK B		LINK C	
KET WORDS	ROLE	wт	ROLE	wт	ROLE	wт
				1		
Slime						
Bacteria						
Diations						
Hudroida						
Algae						
Bryozoans						
Protozoans			•			
Macrofoulants						
Barnacles						
Emolient films						
Coatings						
Biocides						
	L					

