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I. Previous attempts at a solution of vibration problems of ship hulls.

Knowledge of the natural frequency of ship hulls in advance of the construc-

tion is at the present time of increasing practical importance. Particularly in

motor ships and in ships of special construction, cases have increased in which, as

a result of resonance between periodic forces and the natural frequency of the hull,

annoying and dangerous vibrations have been observed. In most cases it is a ques-

tion of vertical vibrations, especially of the fundamental type, which in themselves

also cause the most violent shocks. Because of the predominating importance of

vertical vibration this type will be dealt with exclusively in this paper.

The researches of 0. Schlick (1)* have furnished us with basic information

concerning the nature and significance of the elastic natural frequencies of ship

forms. The well-known Schlick formulas give even today useful values for the types

of ships investigated by him under loaded conditions. In the case of unusual ship

types and of ships under ballast the empirical formulas of Schlick are no longer

applicable.

Therefore, it has been attempted to solve the problem theoretically. As far

as the.calculation of the natural frequencies of ship forms based on the free-free

rod with non-uniform distribution of mass and moment of inertia in undamped vibration

is concerned this part of the problem can be considered theoretically solved. We

might mention in this connection the exact analytical method of A. Kriloff (2) and

C. E. Inglis (3) as well as the exact graphical method of L. Guembel (4). The

methods of Kriloff and Inglis presuppose an extensive mathematical knowledge which

the _practical operating engineer usually does not have at his disposal, whereas

Gumbel's method is quite tedious. Therefore numerous methods have been proposed for

shortening the computations by such men as Akimoff (5) Pawlenko (6) Cole (7) Tobin

(8) and Nicholls (9). The analytical methods of Akimoff and Patlenko are likewise

tedious and in part depend upon the assumption of a parabolic form for the mass

and moment of inertia curves especially in cases where the Schlick formulas are

inadequate and not applicable. The graphical methods of Cole, Tobin, and Nicholls

give questionable results since the end conditions for the free-free bar, namely

resulting inertia force and resulting mass moment equal zero, are not simultaneously

satisfied.
The graphical methods of J. L. Taylor (10) and F. Horn (11) are based on

the familiar method of Stodola (12) for the determination of the flexural critical

speeds of rotation for shafts with two bearings. Whereas in the case of a shaft

with two bearings the nodal points are known at the outset, in the case of a ship

they must first be determined by fulfilling the end conditions. F. Horn satisfies

the end conditions in the assumption that the neutral axis of vibration must be the

* Numbers refer to bibliography on page 48
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principal axis of inertia of the vibrating system and makes its previous determina-

tion prerequisite. It is precisely in this, however, that a practical difficulty

in the rapid execution of the method is evident. Although J. L. Taylor gives

several directions regarding methods for meeting the end conditions nevertheless

the application of the formula offered by him for fulfilling the second end condi-

tion might not lead to the desired result.

Of the other common methods for the determination of flexural critical speeds

in machine construction such as those of 0. Foppl (13), S. Dunkerly (14), A. Morley

(15) and G. Kull (16) hitherto no application to ship hulls has been made with the

exception of Morley's method. The methods of 0. FSppl and S. Dunkerly are scarcely

to be considered here since they give incorrect values for beams with considerably

overhanging ends which are under heavy loads. W. Dahlman (17) has attempted to

apply to ship hulls Morley's method which by the way is identical with that of 0.

Kull. Since Dahlman's solution is based on various false assumptions (load equals

difference between weight and buoyancy; points of support of the ship form at the

ends) it is superfluous to go into it in greater detail. Fundamentally Morley's

method is probably less accurate than Stodola's when we are dealing with projecting

ends ip some cases under heavier loads.

In spite of the works already mentioned, it has not yet been possible to

predetermine the natural frequencies of any desired type of ship hulls as they occur

in practice, with an accuracy essentially greater than that of the well known Schlick

formula. As reasons for this we must consider the imperfect knowledge of the elastic

behavior which manifests itself in actual flexure, and the ignorance of the damping

resistance to which the ship is subject during vibration in water.

As far as the elastic behavior of ship forms in vibration has been considered

the calculation has been confined to the determination of the shear deflection un-

der the assumption that only the web takes the shearing stresses (Tobin, Nicholls,

Taylor) unless it was considered preferable to introduce a modulus of elasticity

precisely suited to the individual case in order to bring into agreement calculation

and tests.

Thus far little has been actually known about the magnitude of the damping

resistance. Whereas L. Gumbel regards this effect as of only secondary importance,

H. W. Nicholls has proved by model experiment with rectangular and triangular beams

that the natural frequency decreases in water by about 10 to 20 per cent. Because

of the limited scope of these experiments and their restriction to straight-sided

forms no conclusion as to the magnitude of the damping resistance of ship hulls

can be drawn. To the mathematical methods of F. M. Lewis (18) and J. L. Taylor

(19) is to be attributed no more than theoretical significance.

In view of this state of our knowledge the chief task is to provide a basis

for clearing up mathematically the hitherto observed disagreement between calculation
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and experiment. We attempt to achieve this end by application of the knowledge of

the elastic theory of thin-walled box girders to vibration processes and by experi-

mental determination of the laws governing damping resistance. Besides this, there

is the problem of setting up a method for computing the natural frequency of un-

damped vibration of non-uniform bars which can be carried out so quickly and simply

under rigid fulfillment of the end conditions that its practical application offers

no difficulty. Since the calculation of the theoretical frequency forms the founda-

tion, we take this for the starting point of our investigation.

II. Calculation of the natural frequency of undamped vibrating rods.

1. Influence of mass and moment of inertia distribution in a free-free

vibrating rod.

The fundamental differential equation for the motion of translation of an

undamped vibrating rod:

yields by the substitution yy,.ftA oe wherey, is a function of X only,

the total differential equation:

/he (e:o .....
Where:

C= modulus of elasticity of the material of the rod.

t/= distribution of moments of inertia as a function of

S= amplitude of vibration at any point on the rod at a
the origin of coordinates.

V7= distribution of mass as a function of the length.

= time.

4o = circular frequency.

Since the ship represents a free-free rod the solutions

tial equation must satisfy the following end conditions:

f 4j

the length.

distance x from

of this differen-

1'
0z

Equation (1) becomes by a fourfold integration

Equation (3) is satisfied when the assumed amplitudes )/, of the vibration

curve under the integrals are identical with the calculated amplitudes y on the

cj ~Vil-
, IA*' ', . .
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left side of the equation and W is properly chosen at the start. Assuming this

agreement for the time being the end conditions in equation (2) become:

Z4, ow
...... .'X

F A'/~4- '~dA~$~O

For the general solution of the vibration calculation we make use of the

method of Stodola with the change suggested by J. L. Taylor that the integrations

be carried out as in the usual longitudinal strength calculations of ships.

The satisfying of the end conditions is of the greatest influence on the

form of the amplitude curve to be assumed. In what follows we will presuppose

that the assumed frequency 4, y r Jec-

If we further set *rO)= ! the first end condition in equation (4)

reads z

/ d6 /,'

As a first approximation for the amplitude curve j, we may take that of a

uniform bar. Equation (4a) means that there can remain no resultant inertia force,

that is, that the center of gravity of all accelerated parts must always remain

at rest. From this it follows that the axis of vibration must be the gravity axis.

We must, therefore, first find the center of gravity of the vibrating system and

shift the axis of vibration to it. The magnitude of the shifting is given by:

In order to permit a comparison of the change in form of the amplitude curve

the ordinates of the first assumed curve (but taken from the shifted base) are

divided by the forward end ordinates Yg , #Ys whereby the amplitude curve

satisfying the first end condition is obtained.

The second end condition: Z
46

o
means that the mass moment at the end of the rod must vanish. Since according to

the first end condition the axis must pass through the center of gravity, the only

possible way to satisfy the second end condition is to rotate the base. The magni-

tude of this rotation is to be calculated.

According to a familiar law of mechanics the axis of vibration must coincide

with the principal axis of inertia. This as is known is determined by the fact

that it passes through the center of gravity of the vibrating system and that the

ilUI~ -------- 1111 1 11111
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5,

centrifugal moments of the masses referred to this axis must vanish. If it is as-

sumed that the transfer of the base has already been made, the centrifugal moment

C isgiven by reference to Fig. 1:

A9 . / - Oiasvi ,,f Com.,putf/of

• ,IL IL

J6 67rrj Se

Y Z/4yr =/yd -J = 0
Ci

From which it follows that
,qL'

Since now

-2 -

,fY

#C t

46-BZ

1S

the rotation of the base at the forward perpendicular (V.P.) is found to be-

In order now to be able to make a comparison of the change in form of the

amplitude curve according to end condition II, the amplitudes already corrected by

end condition I are measured from the rotated base and divided by the end ordinate

at the forward perpendicular.

MU111MIMM 9111j
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The preceding method requires the construction of the amplitude curve twice,

fulfilling both end conditions. There remains the problem of setting up a formula

by which it is possible to obtain the amplitude curve in a single step without

intermediate calculations.

The residual moment contained in equation (6) can be written

Here /Y, gives the ordinate of the free-free uniform bar. Equation (6)

then becomes:

The second double integral of the latter formula is the static moment of

the weight curve referred to V.P. which can be written
I

(G = total weight) and with the use of equation (5) we obtain

For simplicity we designate:

= Residual moment of the inertia forces referred to the forward perpen-

dicular which are obtained by multiplication of the ordinates of the

weight curve by the amplitudes of the vibration curve of the uniform

bar.
14P

4iS, = Residual shear force of the same inertia forces.

The desired rotation can then be written:

The rule of signs to be observed is:

1. The area below the base is negative.

2. The shifting of the base / is given the negative sign when it is

downward.

3. The residual shear force is to be made negative when the lower parts
of the dnmcla uv l
of the dynamic load curve , are greater than the upper.

4. The residual moment will be negative when the dynamic mass moment

curve ends below the base assuming that its ordinates at the aft

perpendicular take an upward course.



5. The rotation of the base must be made upward (counter clockwise)

at the forward perpendicular when the residual moment is negative.

After making both base corrections the vibration calculation can be carried

out as already indicated. This gives for the final integration curve the computed

deflection line multiplied by the modulus E:

In order to be able to compare the form of the computed bending curve

with the assumed values , , the curves are superimposed and the line joining the

end points of the assumed ) curve is chosen as a basis of comparison. If the

peak value of the §vz curve =X ' , and that of the curve =/c , .

in the graph the scale of superposition is found to be:

/,W=04 / = X/, ,,',.

The ordinate of the superimposed/ curve is measured from the base at the

forward perpendicular and we will let it be Z 'c/ n on the graph; then the compara-

tive deflection value at the forward perpendicular will be found to be =

Z14-z in meters.

Since the vibration frequencies are inversely proportional to the square root

of the deflections, we get:

The theoretical frequency per minute is then:

77-

The application of the method described makes it possible to carry out a

vibration calculation for general cases in a short time and in a simple and practi-

cal way. The use of the integraph is especially recommended for carrying out the

graphic integration by means of which it is possible, as soon as the weight and

moment of inertia curves are known, to complete the vibration calculation in k few

hours.

2. Influence of the position of the nodes investigated in the case of

uniform bars supported at two points and with overhanging ends.

The changes in form of the amplitude curve are especially characterized by

the shifting of the nodal points. The effect of this shifting will be examined

III



in the case of a uniform beam with two supports and overhanging ends of any desired

length.

' We will start with the fundamental differential equation for a uniform bar:

4e Z .

with the solution:

Z = W .&A rz~ 8 c os 4X* C4J,4';Z'
Substituting Z from equation (9a) into equation (9b) gives:

By setting up the differential equation (9b) for each section of the beam

AI

and determining the constants from the end conditions and after several inter-

mediate computations, we obtain the periodic equation in simplified form for rodswith equal overhanging ends. This reads:

The analysis of this equation gives the values for t'/ shown in Fig. 3 asa function of the position of the points of support.Ore,

Fig. 3 shows that the natural frequency has a maximum value when the dis-
Z,/, a "V7mdewams IV11h XiWO se&AOpepf 4v9Wance of the porminin ts of supportants from the end conditions and after several inter- case

equals 4. 730.Frmediate compu the comparison withn the corperiodic equation in simplified form for rodsee

bar it follows toverhangingt the free-free bar has a maximum frequency above all others,-A (/ .$ csr( c,& S %f/~l d$~S'

which agrees withf thise general principal that: "The natural periods of a system

a funclfill the maximum position of the pointns ofand the greatest of the natural periods

Fig.exceeds any3 shows that can bthe natural frequency has a maximum value when theory ofdis-tance of the points of support from the ends is /I =Z~Z4/; or/n this caseequals 4.730.From the comparison with the corresponding /4' values for the free-freebar it follows that the free-free bar has a maximum frequency above all others,

which agrees with the general principal that: "The natural periods of a system

fulfill the maximum or minimum conditions and the greatest of the natural periods

exceeds any that can be obtained by a variation of type." (Rayleigh, Theory of

iiil-~ 111 1 11~1-ln 1- ~ 1 11 11 1-11-1 -
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Sound, Vol. I, p. 287).

If the points of support of the bar with overhanging ends are considered as

the nodes we come to the conclusion that every approximate method that fails to

consider or considers only in part the end conditions always gives too low values

of natural frequency, since the nodal points do not correspond with their position

in a free-free bar. Since on the other hand the elastic behavior of a ship hull

considered as a box girder as well as the influence of the vibrating water always

lowers the natural frequency, the peculiar fact is found in the method of T. C.

Tobin for example that in certain cases it yields results approximately in agreement

with actual conditions although neither the end conditions are fulfilled nor the

influence of the water vibrating with the ship is taken into account. The validity

of the above derivation has already been established by Mallock (20) by purely ex-

perimental means.

3. Examples of calculations and experimental check of results.

In the following are given the results of various vibration calculations

which have served as a theoretical basis for comparison between tests on models

and measurements on board ship. The calculations apply to the following special

ships:

(a) Motor tanker of about 11,000 tons light displacement with cylindrical tanks

for transporting lubricating oil. Type - Isherwood system with gusset plates

Ship Data

Overall length . . . . . . . . . . .
Length at water line . . . . . . . .
Length between perpendiculars . . .

Moulded breadth . . . . . . . . . .
Moulded depth from main deck . . . .

Loaded draft . . . . . . . . . . . .
Displacement loaded in sea water

Coefficient of fineness .....

Moment of inertia of midship section

including longitudinals . . . .

without longitudinals . ...

Distance of the center of gravity

from the after perpendicular . .

. . . . 140.65 m

. . . . 136.53 m

S. . . 134.11 m

. . . . 19.51 m

.... 10.744 m

S. . . 8.230 m

(about) 16,900 tons

... 0.762

4
.... 36.159 m

S. . . 29.965 m

.... 72.76 m

The calculation for the fully

an amplitude curve is assumed having

loaded condition

the ordinates of

(fig. 4) follows. First

a uniform bar, the amplitude

at the forward perpendicular )Y, . , being set at 1 m. (curve C ) The ordinates

of the weight curve (A) are multiplied by the assumed amplitude taking Wt kAf$f/sec

,I, IMYll m I
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Gem C t3cm

A WElGKT CURVE (I CM. - 5.0 /M
a MOMENT OF INERTIA CURVE (I CM. 1.0 M

4 )

C, CURvE OF VALUES OF Y, WITHOUT FULFILLMENT OF ENDCONDITIONS (I CM. = 0.025 M.)

C, CURVE OF VALUES OF Y, WITH FULFILLMENT OF END
CONDITIONS (I CM. = 0. 025 M, ASSUMED DEFLECTION)

D, CURVE OF INERTIA FORCES WITHOUT FULFILLMENT OF EiD
CONDITIONS (I CM, - 5 T/M)

D3 CURVE OF INERTIA FORCES WITH FULFILLMENT OF ENDCONTONS ( I CM. - sT/M)

E CURVE OF MASS SHEARING FORCE (I CM. 0 0t)
F CURVE OF MASS BENDING MOMENT (1 CM. 1 I000 M.T.)
H CURVE OF Ml7 VALUES CM. - 2, T/Ml

)

K CURVE OF INTEGRAL OF Mg . DX VALUES (I CM. - 200 T4)
L CURVE OF COMPUTED 1/2 .E VALUES (I CM- 50,000 T/M)L, CURVE OF COMPUTED DEFLECTION SUPERIMPOSED

( CM. = 000165 M, CALCULATED DEFLECTION)

FIG. 4 VIBRATION CALCULATION FOR A TANKER WITH CAPACITY OF 11,000 T.
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which gives the dynamic load curve D . By integration we obtain the residual dy-

namic shear force at the forward perpendicular /f', #, = -3586.20 t and by

integration of the dynamic shear force a residual dynamic moment t?, A -" =

-223,900 tm. With these values the shifting of the base is found directly to be:

% =S, Vi/ 6 = -0.212 m and with %i = 17,044,500 tm2 and 1. = 67.89 m. the

rotation of the base according to equation (7) is )'V0  = 0.0652 m. After dividing

the amplitudes measured from the shifted and rotated base by the ordinate at V.P.

the vibration curve (C3) is obtained the end conditions being fulfilled. The fur-

ther computation is carried out in the familiar manner by four-fold integration.

For the moment of inertia the computed value including the longitudinals was in-

serted. Finally we get for the end ordinate of the superimposed curve (L,) y2 =

0.06445 m. From this we obtain the theoretical number of vibrations per minute:

30 967

(b) Suction dredge of 1000 m capacity with diesel electric drive.

Ship Data

Length over all . . . . . . . . . . . . . 85.78 m

Length between perpendiculars . . . . . . . 82.70 m

Moulded breadth . . . .......... 15.20 m

Moulded depth from the main deck . . . . . 6.00 m

Draft loaded with 1900 t dredging

equipment .. ... .............. .. 4.15 m

Displacement loaded . . . . . . . . . . . 4,250 t

Displacement without dredging

equipment .... .............. . 2,350 t

Moment of inertia of midship section . . . 3.64 m4

Distance of center of gravity from

after perpendicular loaded . . . . . . . 40.87 m

Distance of center of gravity from after

perpendicular unloaded . . . . . . . 38.30 m

Since the dredge seems especially adapted as an example of the effect of

weight distribution on the natural frequency because of the concentrated heavy load

in a relatively short length of ship (see Fig. 9), the computation was carried out

for both the loaded and unloaded conditions. Simultaneously it was intended to

investigate whether under extreme loading conditions a repetition of the vibration

calculation is necessary. For the fully loaded condition a theoretical frequency

of 138.20 min.-1 was obtained by a single computation.

Since the comparison of the assumed and computed amplitude curves shows a

certain discrepancy in the after part of the ship, the whole computation was

101
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U-0

6'
t

A WEIGHT CURVE (I CM. 0.5 "
B MOMENT OF INERTIA CURVE (I CM. 0025 M")
C, CURVE OF VALUES OF Y WITHOUT FULFILLMENT OF E1D

CONDITIONS (I CM. - 0.025 M.)
C, CURVE OF VALUES OF Y, WITH FULFILLMENT OF END

CONDITIONS ( CM. - 0.025 M., ASSUMED DEFLECTION)
D, CURVE OF INERTIA FORCES WITHOUT FULFILLMENT OF END

CONDITIONS (I CM.- 1.5 .)
D, CURVE OF INERTIA FORCES WITH FULFILLMENT OF END

CONDITIONS (I CM. = 0.5 Ymi
E CURVE OF MASS SHEARING FORCE (I CM. = 2.0 T)
F CURVE OF MASS BENDING MOMENT (I CM. 25 MT)
H CURVE OF M/T VALUES (I CM = 25 T/M')
K CURVE OF INTEGRAL OF MA - DX VALUES (I CM.- 500 TMa)
L CURVE OF COMPUTED /Z2*E VALUES (I CM. = 10,000 T/M)
L, CURVE OF COMPUTED DEFLECTIONS SUPERIMPOSED (I CM. -

0.000257 M CALCULATED DEFLECTION)

LENGTH BETWEEN PERPENDICULARS - 50.15 METERS
MOULDED BREADTH = 3.50 METERS
DEPTH = 4.15 METERS

FIG. 5 VIBRATION CALCULATION FOR A CABLE-LAYER
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repeated by starting from the vibration curve obtained in computation I. There

was obtained with good agreement between assumed and computed amplitude curves a

frequency of 138 min.-1 Therefore the frequency showed practically no alteration

after the first calculation.

The vibration calculation for the unloaded condition gives Nth = 164.3 min. - I1

If we now wish to represent both conditions of louding by Schlick's constant, we

get for the loaded condition C = 3,750,000 and the frequency for the unloaded con-

dition would be 186 min.- I in contrast with the exactly computed value 164.3 min.-1

It is evident therefore how dependent these constants are upon the load distributton,

disregarding for the moment the elastic behavior and the virtual mass. In certain

cases, therefore, Schlick's formulas are not applicable. Even with ships of normal

weight distribution they can only give useful values for the loaded condition.

(c) Cable layer of 481 Br.-Reg. tons with Diesel-electric drive.

Ship Data

Length over all . ................ .55.05 m

Length between perpendiculars . . . . . . . 50.15 m

Moulded breadth . . . . . . . . . . . . . . 9.50 m

Moulded depth from main deck . . . . . . . 4.15 m

Mean draft without keel . . . . . . . . . . 2.88 m

Loaded displacement in sea water . . . . . 846.50 t

Coefficient of fineness .. ......... .59

Moment of inertia of midship section . . . .936 m*

Distance of center of gravity from

after perpendicular . . . . ........ . 23.41 m

With E = 2.1 x 106 kg/cma and the moment of inertia calculated with no

deductions we get after carrying out the base corrections (Fig. 5), Nth = 299 min. - I

The results of the computations have been checked by model experiments.

The experimental arrangement is shown in Fig. 6. The models were set on knife-

edges at the mathematically computed nodes, and set in vibration by electromagnetic

impulses on the principle of the self-interrupter and these vibrations transmitted

through a system of rods were measured by means of a Geiger vibrograph.

111i
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FIG. EXPERIMENTAL SET-UP

First an experiment was undertaken to test the experimental reliability.
The model hull consisted of a machined piece of iron bar measuring 1000 x 75.1 x
13.1 mm. The weight including the 80 gram interrupter disc amounted to 7.800 kg.
The position of the supports was varied from 0.1 1 to 0.35 1 from the ends and the
accompanying natural frequencies measured. The corresponding theoretical natural

frequencies are found by means of the formula:

where the value of c' can be determined from Fig. 3. E was assumed to be 2.1 x
106 kg/cm. Figure 7 gives the computed and measured natural frequencies. We
perceive the rapid falling off of the natural frequency beyond the position of
the nodes for a free-free bar (0.224 1) and in general a very good agreement be-

tween theory and experiment.

1111... 1
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COMPUTED
70 FREQUENCY

30
I- f

o MEA~URED FREQUENCY

0o 01 0 z 03 0, 41 L ,5
- DISTANCE OF SUPPORT FROM ENDS

FIG. 7 COMPARISON OF MEASURED AND CALCULATED
FREQUENCIES5 FOR A UNIFORM BAR SUPPORTED
AT TWO POINTS, AS A FUNCTION OF DISTANCE
OF NODES FROM THE ENDS.

No additional determination of the modulus E by tensile test was carried

out since with E = 2.1 x 106 kg/cm2 good agreement was found between theory and

experiment in all cases.

The value of E = 2.1 x 10 kg/cm2 was therefore retained as a basis for all

experiments.

VIBRATION MODEL FOR A CABLE LAYER

I..

FIG. 8



In order to test the accuracy of the method of computing non-uniform bars,

the vfibration models of the cable layer and the suction dredge were set up with

steel plates and lead weights in the manner employed by C. Henderson (21). The

method of designing the models and the computation of the natural frequencies to be

expected are given in the appendix. In table I the model data are tabulated. (See

Figs. 8 and 9.)

In carrying out the experiment the knife-edge bearings were placed at the

computed nodes. The measured frequencies for the cable layer model fluctuated be-

tween 70 and 71.5 sec-1 . The average value was 70.6 vibrations per second. Com-

parison with the computed Value of 71.1 shows very good agreement. For the dredge

model the measured frequencies with loading amounted to 37.7 sec
- and without

loading 44.7 sec- 1. Compared with the computed values of 38.1 and 45.1 the dif-

ference resulting in these cases also is very small.

FIG. 9 VIBRATION MODEL FOR A SUCTION DREDGE

Table I. Model Dimensions

Cable Suction Drede

Layer loaded light

Length overall in cm.

Greatest Moment of Inertia cm4

Weight in kg.

Form constant C = N/J7I

Frequency per second computed

110.10

9.48
52.00

3,650,000

71.1

114.37

3.00
66.00

4,150,000

38.1

114.37

3.00

37.00

3,675,000

45.1

Next the change in the natural frequency of the loaded dredge model due to

shifting of the supports (nodal points) was determined in order to get an idea of

the magnitude of the error which would result from partial or entire neglect of

First, keeping the after nodal point fixed at the computed position the for-

ward nodal point was shifted forward one cm. (model length) corresponding to .75 m.

ship



length and then was shifted the same distance amidships and the accompanying fre-

quencies measured. The after nodal point was then shifted the same distance with the

forward nodal point in its calculated position. The results are given in Fig. 10.

It is evident in both diagrams that the maximum natural frequency occurs

in the case of the computed nodal position; moreover we see how sensitive the

natural frequency is to a shifting of the nodal points and what significance is

attached to the rigorous fulfillment of the end conditions.

Comparison of the computed and measured natural frequencies shows that the

proposed method of computation, notwithstanding its simplicity, gives correct

values. Therefore, it is unnecessary to use more complicated methods which require

a much greater expenditure of time.

Let us briefly take up the experiments of C. Henderson (21). Henderson

attempted without previous vibration calculations to determine the modulus of

elasticity of the ship's structure by comparing the measured model frequencies with

the natural frequencies observed on board ship. Since the nodal points were de-

termined, obviously without a knowledge of the law, merely by strewing sand which

appears impracticable at least for two-noded vibration because of the identity of

the points of support with the nodes, it is to be assumed that as a result of the

incorrect placing of the supports the measured model frequencies were too low. This

SFREQUENCY PE; WECD V FREQUENCY' PER SECOND
S-FOR D NODE CONSTANT REU E CON

REAR VARIAL FOR'D VARIABLE

jar M
oMEASURED VALUES 3 oMEASURE VALUES

REAR NODE L-FOR'D NODa-ICALCULATED VFR' ND
CALCULATED CALCULATED

37- 37

-, oo L 0 7V *aqV ooa75L T -4,0.7TSL
DISPLACED DISPLACED
TOWARD TOWARD

REAR - A-.)MIoIP MIDSHIP -.- ---- FORWARD

FI. 10 EFFECT OF POSITION OF NODAL POINT
ON FREQUENCY OF THE DREDGE MODEL

assumption is confirmed by the relatively slight difference between the measured

model and ship natural frequencies (for the Pathfinder 127/106; for the Lusitania

- M
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74.6/65). For this reason and particularly in consideration of the following in-

vestigations of the elastic behavior of ship hulls as box girders, and the influ-

ence of the virtual mass-inertia, the conclusions drawn by Henderson as to the ap-

parent modulus E appear too high.

III The Elastic Behavior of Ship Forms in Vibration.

4. Influence of effective width.

From the investigations of G. Schnadel (22) it was found that the decrease

in stress in the flanges of girders under static load contributes to the increase

in the deflection. In what follows an effort is made to apply Schnadel's theory

to vibration phenomena. In the case of vibration the dynamic "mass-moment curve"

logically takes the place of the static bending moment curve. For a box girder of

length 2a, width 2b, with an xy coordinate system in the middle of the flange sur-

face this was developed into a Fourier series according to Herman's method. As-

suming the maximum moment equal to unity the following series results:

-,Os z -A a/0' -Cs- 'O~6as -Z
50" Idaep-7Ooew -tr -

The computation of the effective width b'm was first carried out according

to the formula given by Schnadel in WRH, Mar. 7, 1931, p. 92 for a box girder with

a/b = 2 and h/b = 0.754, where h represents the depth of the box girder, for six

different sections distant 0.2a apart. We obtain for the effective width b'm and

the ratio of the effective moment of inertia Jw to the total moment of inertia of

the entire cross-section Jfull the values given in Table II. Since the nodal points

lie at 0.552a it is evident that only between the nodal points,from x = 0 to
+

x = - 0.5a, the effective width decreases in approximately constant ratio and

amounts to about 94% of the entire section of the flange. Outside the nodal points

the flanges are fully effective so that our investigation remains valid also for

ships (pointed ends).

Table II. Decrease in effective width of flanges of a box girder

during vertical vibrations of the fundamental type.

a/b = 27T; h/b = 0.754

Station

a = L/2 b'm Jw/Jfull

0 0.939b 0.944

+0.2a 0.939b 0.944

+0.4a 0.939b 0.944

+0.6a 1.000b 1.000

+1. Oa 1.000b 1.000

,,, 1 ,lliiHIMl ENllM uilllill 'ifim



For establishing the numerical dependency

ratio of the length-to-width and length-to-depth

o,88

'gI
0?o, z

0,80 I±-

Fig. 11 Influence of L/B and L/H on Moment

of Inertia of Box Girders Considering Effec-

tive Width.

Sof the effective width on the

of the box girder, the effective

widths and the corresponding

effective moments of inertia for

the L/B ratios arising in ship

construction were calculated each

with a series of appropriate L/H

ratios. Here the computation was

required to include only the de-

termination of the effective moment

of inertia of the midship section,

since in the case of similar moment

curves the effective moment of

inertia found for the midship

section remains the same up to the nodal points as has been proved. The results

are as shown in Fig. 11.

From the diagram it follows that the L/B ratio has an important influence

on the effective moment of inertia. The effect of L/H is, on the contrary, of very

little significance. In practical cases the effective moment of inertia fluctuates

between 90 and 98% of the moment of inertia of the full cross-section according to

the L/B ratio which corresponds to a lowering of the frequency from 5.5 to 1%.

5. Influence of the shear deflection.

In recent years numerous writers have made an exhaustive investigation of

the influence of the shear deflection on the total deflection under static load.

Whereas W. Dahlmann (23) assumes that mainly the webs alone take up the shearing

forces, and G. Wrobbel (24) regards as a value for deflection due to shear ys /Yb
25 (H/L)2 as sufficing for practical cases, the investigations of 0. Lienau (25),

G. Schnadel (22), and J. L. Taylor (26) probably approximate reality more closely

since they consider the distribution of shearing stress in the flanges of built-up

girders.

The known investigations do not give, however, numerically complete data

on this point, namely as to what extent the shear deflection is influenced by the

principal dimensions, and especially by the dimensions of and the number of flanges.

The following investigation has as its object the solution of this question.

We start with the familiar formula for shear deflection obtained by com-

parson of the external and internal work of deformation

0

- ---- _011
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in which G is shear modulus of elasticity

Q is shearing force

t is shearing stress

s is plate thickness

u is total differential*

For the exact calculation of the shear deflection from equation (10) the

accurate distribution of the shear stresses over the entire area of each cross-

section is required. In the case of a decrease in bending stresses in the flanges

varying for the individual frame sections it would be necessary for an exact solu-

tion to have recourse to Schnadel's formula for the distribution of shearing

stresses. As has been demonstrated in section 4 the effective width between the

nodes is constant. Therefore in our case the distribution of shear stresses

throughout the section can be computed by the familiar formula:

ELS

where St is the static moment of (area of) the adjoining section, and

J is the moment of inertia.

By inserting equation (11) in equation (10) and under the assumption that

the moment of inertia for the individual cross sections is constant equation (10)

reduces to: I

Since computation of the frequency was carried out graphically on the basis

of the deflection at the forward perpendicular the shear deflection at this point
must logically be determined. For the uniform bar the ratio of the deflection at

the ends to that in the middle referred to the base line is 1:1:608. On intro-

ducing the maximum dynamic bending moment which for a uniform rod of weight P and

length 2a with two nodes was determined as 0.0704 Pa, when we assume~'y = ,

and 4a = S/Je "  we get from equation (12)

/k~p= O/ 37jz -d .................
0

For the moment of inertia we introduce Jfull; likewise we compute the static

moment under the assumption that the flanges are fully loaded. This assumption can

be made without adversely affecting the accuracy because in the vibration under

consideration the effective moment of inertia amounts to only 90% to 98% of the

completely loaded section.

The bending deflection is found by the vibration formula for uniform bars

and for vibrations of the fundamental order

4ohis 3. -f " 7oL -Fp-  oadn T ,.rJ ) 3-s . 3.Z...... .... Il)
--------------------------------------------------

*This formula is identical with the formulas of Lienau, F6ppl, Hovgaard and Taylor.



Since the frequencies vary inversely as the square root of the deflections

we get under the same assumptions as above for ylvp and I A:

where y2 vp represents the computed deflection at the forward perpendicular. By

equating 14 and 15 and inserting L = 2a, g = 981 cm/sec', and Jw =o Jfull we

obtain:

Y Z r. . . . ....... ...

and by division of equation (13) by

, Jo ,

0/ zo /€¢

0 L-
425

39 5 ?& 9 70 171 IS

FIg. 12 IMNFLUENCE OF L/B AND L/H ON THE
RATIO OF SHEAR TO BElDIMlG DEFLECTION FOR

SIMPLE BOX GIRDER

(16)

7 /6 17.........)
roo

F 13 DI3TRJTiN OF SHEARIN
STRESS AT A JUNICTION-POINT

On the basis of this formula, the ratio of shear to bending deflection was

computed for the practical L/B and L/H ratios occurring in ship construction. The

diagram gives remarkable data in several respects. First it is evident that for

ships the ratio L/B is of markedly greater influence on Ys/Yb than L/H, in con-

trast with the widely accepted belief that the shear deflection becomes of im-

portance only when the ratio L/H decreases considerably. Thus it is shown for

example that in a relatively very low ship of L/H = 14, with a normal L/B of about

6.3, the shear amounts to 14%; L/B = 4.7, shear = 19.5%, proof of the fact that in

no case is the shear deflection to be neglected.

- --- _ __ 111



Moreover it is plainly evident that the ratio y s/Yb cannot be assumed as

even approximately a constant function of (H/L)a. Because although with L/B = 4.72

and L/H = 10 we still get ys/Yb = 24.78 (H/L)', with L/B = 9.42 and L/H = 10 we get

ys/Yb = 11.90 (H/L)*, a difference of over 100% with the same L/H.

The influence of the flanges is accordingly of transcending importance. By

considering the webs alone we get errors which even for single deck ships without

double bottoms, with the ratios L/B and L/H under consideration, lie between a min-

imum of 21% and a maximum of 83%. In general it can be said that even for a box

girder with only one upper and one lower flange the shear deflection amounts to

about 6 - 25% of the bending deflection. We extend our investigations to sections

with intermediate bracing such as inner decks, double bottom, longitudinal bulk-

heads, etc. In this case the distribution of shear stresses at the junction points

must be determined according to Taylor (27) from the equilibrium conditions that

for every enclosed space there be no shifting in the longitudinal direction and no

local torsion about a longitudinal axis. With reference to Fig. 13 the equilibrium

conditions for the junction points are:

0 0 o

By substituting for =4? j S we get for sections with uniform wall

thickness:

StS ; 'M*0 , 0
00

for every enclosed section.

rIG. 14 DISTRISUTION OF SHEARING STRESS IN CROSS- SECTIONS
WITH STIFFENERS

In the simplest case of a ship with two longitudinal bulkheads (Fig. 14)

the components x and y can be directly computed by the corresponding equations:

. A X o
Irt

8 C



With non-uniform plate thicknesses we first take up the integration of the

static moment without considering the parts x and y. On introducing St = St - x

in conjunction with Sto = x + y in
A J4 4 d

8C C 8
we obtain also in this case the shear force component without difficulty.

By plotting the St2/s curve and integrating the same over the circunference

of the section the value for the coefficient of the section JSt/s a can be de-

termined and therefore according to equation (17) the ratio ys/Yb

By this method ys/Yb was computed for various ship sections with double

bottoms and multiple decks and compared with the corresponding values for single

deck ships without double bottoms with equal L/B and L/H ratios. The proportional

values C1 are tabulated in Table III with the other calculated results.

Table III. Influence of Double Bottoms and Decks on the Shear Deflection.

Type J Jfull
of L/B L/H J /Jfull ys/Yb for single C
Ship " sb 3  deck

A 7.63 12.86 2.620 2.000 0.963 0.155 0.118 1.315

B 7.18 10.80 4.863 2.775 0.962 0.234 0.144 ' 1.625

C 7.57 10.87 5.960 3.183 0.965 0.226 0.138 1.633

D 7.58 9.90 9.659 4.789 0.966 0.243 0.150 1.620

A. Single-decker with double bottom 122.0 x 16.0 x 9.5 m D.B. 13.5 x 1.5 m

B. Two decker with double bottom 111.3 x 15.5 x 10.3 m D.B. 13.2 x 1.1 m

Height between decks 2.6 m

C. Three decker with double bottom 119.5 x 15.8 x 11.0 m D.B. 13.8 x 1.1 m

Height between decks 2.5 m

D. Five decker with double bottom 151.5 x 20.0 x 15.3 m D.B. 18.0 x 1.25 m

Height between decks 2.5 m

We perceive that the shear deflection through the influence of the double

bottom as against single deckers without double bottom is increased about 30% and

according to the number of decks up to 63%.

The value of ys/yb determined on the assumption of constant plate thick-

ness and a uniform mid-ship section over the entire ship's length may be useful

for actual ship forms with fined ends and variable plate thickness as a mean value.

It must not be overlooked that in case of extreme loading the shape of the shear-

ing force curve may also exert a great influence on the shearing deflection.

111
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6. Influence of the complex nature of the ship members.

There can be no question that the actual deflections of a ship hull to be

expected as a result of the complex nature of the framing (superposition of stresses

through hatches and rivets, reinforcing of weaker members by stronger, etc.) will be

greater than they would be considering only the effective width and the shearing

deflection. Effort was made therefore to determine the difference mathematically by

comparison of the computed values on the basis of sections 4 and 5 and the deflec-

tion measurements of numerous other investigators. For this purpose the deflection

measurements of T. C. Read and G. Stanbury (28), W. Dahlmann (22), J. L. Taylor (27),

J. H. Biles (30) on ship hulls and of 0. Lienau (25) on model hulls were referred to.

1. Measurements of T. C. Read and G. Stanbury: (a) Two decker with double

bottom 105.80 x 13.90 x 9.12 m; L/B = 7.61; L/H = 11.60; capacity 5000 tons (esti-

mated), load 5000 tons. Measured deflection 5.870 cm. Computed deflection with

E = 2.1 x 10 rkg/cma and Jfull without deduction for rivets according to the data

of R. and St. 4.975 cm. Addition for the shear deflection taking into consideration

the number of decks according to Fig. 12 and Table III = 1.050 cm. The effective

width was not added because Jfull was computed disregarding the decks between the

hatchfes, Accordingly the total computed deflection amounts to 6.025 cm. If in

the following Yth = theoretical total deflection and yw = measured deflection we

get yw/yth = 0.975. (b) Ship with platform decks with double bottom 91.50 x 12.68

x 7.14; L/B = 7.22; L/H = 12.82; capacity 4000 tons (estimated); load 1800 tons.

Measured deflection 1.575 cm. Computed deflection under the same assumptions as

in (a) 1.098 cm., added for shear deflection (Fig. 12 and Table III) = 0.228 cm.

Computed total deflection accordingly 1.326 cm. yw/yth = 1.190.

In order to make possible a comparison of the measurements with one another

the loads should be expressed as fractions of the capacity. We get accordingly

for a load of 45% of the capacity yw/yth = 1.190 and for a load equal to the full

capacity yw/Yth = 0.975.

2. Measurements of W. Dahlmann: Single decker with double bottom and

very large hatchways (ore steamer) 121.92 x 16.50 x 9.42 m. L/B = 7.39; L/H =

12.94; capacity = 8300 t. To the bending deflections computed by D. are added

the shear deflections according to Fig. 12 and Table III (ys/yb = 0.12 x 1.315 =

0.159) and the deflection resulting from the effective width according to Fig. 11

(Jw/Jfull = 0.963). The deduction of 10% for rivets made by D. was equalized by

a corresponding increase in J and instead of E = 2.15 x 10 , E = 2.1 x 10G was

introduced in order to obtain a uniform basis of comparison. The inclusion of the

longitudinal hatch coamings in the moment of inertia should be let stand since

such coamings, according to the measurements of J. L. Taylor (27) are very nearly

fully effective. The deflections obtained under these assumptions are tabulated

in table IV.
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Table IV. Comparison of measured and computed deflections for

an ore steamer from the measurements of W. Dahlmann

Cob-/

Z'C' A P/. CO". C00. COW. I ----.-

0 -2 410 -2.242 -2.700

1 1640 -0.165 -0.154 -0.185 2.515 3.500 1.392

2 3710 2.800 2.610 3.140 3.325 3.900 1.172

3 5570 4.060 3.760 4.530 1.390 0.900 0.648

4 5800 2.660 2.475 2.980 1.550 1.000 0.643

5 9130 2.800 2.610 3.140 0.160 0.300

First it must be said of the measurements themselves that they refer only to

one station (forward edge of bridge house). We obtain from this somewhat different

yw/yth ratios than if the mean were taken of several stations distributed over the

ent re length of the ship. Further the values of yw/yth appear unreliable in trans-

ition from condit on of loading 2 to 3 and 3 to 4 since the readings of yw refer

to relatively small deflections (0.9 to 1 cm.). The final measurement (0.3 cm.)

might be dropped for the same reason. According to Dahlman's data the possible

error amounted in all cases to 1 mm.

From Dahlmann's investigations it is unmistakable that as the load in-

creases y w/yth decreases, that is to say more and more parts contribute to taking

up the stresses, which agreeswith the experiments of Read and Stanbury; quantita-

tively only the values of yw/yth = 1.392 and likewise 1 172 appear to be useful.

When again the loads are expressed as a fraction of the capacity, we get for a

load f 0.1975 of the capacity yw/Yth = 1.392 and for a load of 0.446 of the

capacity yw/yth = 1.172.

3. Measurements of J. L. Taylor: Tanker with transverse frames 121.92 x

16.15 x 10.67 m- L/B = 7. 5- L/H = 11.46; E = 2.0744 x 10 ; J computed in the

usual manner.

The shear deflections were likewise computed by Taylor. Since by taking
6

E = 2.1 x 10 and Jw/Jful = 0.965, yth would be only about 1% greater, the values

given by Taylor for the theoretical total deflection may be adopted as in agreement

with the hitherto applied basis of comparison.

* Approximate weights calculated according to Dahlmann's directions.

Ifil
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Table V. Comparison of the measured and computed deflections for a

tanker from the measurements of J. L. Taylor

Yth accord-* y * yw/Yth Loading

Condi- Loading ing to calc. measured yw/yth mean capacity

tion ts cm cm value mean value

1 70

2 1502 -1.295 0.794 0.613

2a 1282 -1.994 0.477 0.239

3 2498 1.577 2.382 1.510

3a 2428 1.918 4.525 2.360 1.635 0.245

3b 2498

4 2722 2.298 2.382 1,037

5 3682 5.205 5.951 1.144

5a 3722 2.032 3.335 1.640 1.514 0.503

6 4792 6.109 8.732 1.429

6a 4942 2.338 4.290 1.844

7 6266 10.278 12.467 1.213

7a 6106 3.875 5.397 1.392 1.235 0.772

8 7284 5.057 5.560 1.099

7324
8488

8578

12.604

13.898
13.438

14.285

16.672

15.082

1.133

1.200

1.122
1.150

______ L ___________ a _________ - ______-

0.958

The deflections obtained are given in the order of increasing load in Table V.

When the measurements for conditions 2 and 2a are stricken out on account of too

great inaccuracy of measurement (yw < 0.8 cm) a glance at the two last columns of

the table shows that yw/yth with increasing load becomes smaller, in agreement

with the experimental results of Read and Dahlmann. That the absolute values of

yw/yth are relatively high must be attributed to the type of ship being a tanker

with its many weaknesses due to riveting at the transverse bulkheads and in part

also to the buckling of the deck plating observed by Taylor.

4. Measurements of J. H. Biles: Biles computed the deflections for in-

dividual test conditions disregarding the shear deflection but considering the

effect of riveting and with E = 2.21 x 10 , of which only those for "sagging"

will be noted because only in this case does the position of the supports corres-

pond to the nodes in two-noded vibration. Biles derived the apparent E modulus by

comparison of measured and computed values (average values over the ship's length).

Biles' data must first be reduced to our basis of comparison. The "Wolf" had an

* Sum of the values at 3 different points.



27

L/B of 10.88 and L/H of 16.80 from which we obtain according to Fig. 11 J w/Jfull
0.98 and according to Fig. 12 ys/Yb = 0.064. Since the destroyer had platforms

fore and aft the addition of approximately 30% to yslYb based upon table III ap-

pears justified. Accordingly the shear deflection should be about 8%. For

equalizing the deductions made for riveting the apparent E modulus must be multi-

plied by 15/16. (See A. Robb (31)). Finally we take the computed deflection on

the basis of E = 2.1 x 10 kg/cm'. Then the y w/yth values in Table VI are obtained.

Table VI. Comparison of measured and computed deflections for the

destroyer "Wolf" according to the measurements of J. H. Biles.

Draft E modulus (Biles)
I ts/m.z  yw/yth

6 11813 1.148

5 11950 1.135

4 11390 1.192

3 11500 1.180

2 11110 1.222

1 10550 1.286

Dry 10340 1.312

With decreasing draft, that is with increasing load, according to the ex-

perimental results of the other investigators, y w/yth must become smaller; actually,

this phenomenon does occur just at from 6 to 5 ft. draft. With further increase

of load, which for lightly built ship hulls must be regarded as extreme, the

opposite case begins to apply; y w/yth increases. This phenomenon, however, is

satisfactorily explained according to Schnadel's investigat.ons (22) by the oc-

currence of buckling phenomena, which naturally lead to constantly increasing values

of yw with increasing load.

It can, therefore, be established from the comparison of Biles investigations

with the results of Read, Dahlmann, and Taylor that buckling phenomena occurred at

about 4 ft. draft in the case of the "Wolf."

Since the freely floating condition of the "Wolf" at a draft of 6 ft. must

correspond to the displacement in fully loaded condition of a freighter, the de-

rived ratio y w/yth = 1.148 is comparable with the values measured by the remaining

investigators.

5. Measurements of 0. Lienau: The experiment was carried out with a box

girder of dimensions 6400 x 1100 x 400 x 0.5 mm under the action of a concentrated

load at mid-length of the girder the magnitude of the load having been so chosen

that the buckling of the flange members was barely avoided. Comparison of the

theoretical deflection, taking into account the effective width according to

- 1 11h'
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Schnadel, and the shear deflection, with the measured values yields with E = 2.1 x

10 (as compared to the calculated values of E = 2.15 x 10 ) the yw/yth values of

Table VII. (See also Fig. 19 of the paper of Lienau). As a mean over the length

of the girder we obtain from Table VII, y w/Yth = 1.121.

Table VII. Comparison of the measured and computed deflections

for a box girder from the measurements of 0. Lienau.

Station yth w

(a = L/2) computed mm. measured mm. Yw/Yth

0 = 9.34 10.27 1.100

0.2a 8.61 9.48 1.100

0.4a 7.19 7.99 1.111-

0.6a 5.06 5.94 1.174

Unfortunately deflection measurements for smaller loads were not made; however,

we can probably compare the values obtained for the fully loaded condition below

the buckling limit with the other tests

The results of the topics under 1 to 5 are summarized in Fig. 15.

In consideration of the widely divergent types of ships investigated-and

the improvement in the course of time of design strength, as well as in considera-

tion of the well known difficulties in obtaining the actual loading conditions on

board, and of greater accuracy required for measurement for small deflections, it

is not surprising that the measured points are scattered over a certain range.

Undoubtedly it follows from the results already obtained that the ratio of yw/yth
is dependent upon the load as well as the type of ship. This knowledge is of

especial importance in vibration processes since it gives an explanation of the

familiar phenomenon that the frequencies of ships in the lightly loaded and fully

loaded conditions do not differ from one another nearly as much as is to be ex-

pected on the basis of weight difference and weight distribution alone. Here we

purposely exclude the effect of the water vibrating with the ship.

7. Summarizing by Formulas.

The effect of the "elastic behavior" on the frequency may be expressed by

the following formula in which at the same time the corresponding factors for the

effect of the rotation of the beam section and the effect of the damping resistances

are introduced:

In this formula 4)J represents the theoretical frequency derived from the

I I..



Z,0

S" '  FIG. 15 VARIATION WITH LOAD OF

RATIOS OF MEASURED TO CALCULATED

S"~ - TOTAL DEFLECTION FROM DEFLECTION

S-MEASUREMENTS OF VARIOUS RESEARCHERS
0 READ I STA KtNMAL FREIGHT SHIP

O .AHLMA -ORE VE5SEL WITH LARGE HATCHWWS
o TAYLOR- TANKER
a BILES- TORPEDO-BOAT DESTROYER

, LIN AU- BOX GIRCERS
o j 4 40 a ,8 o ;z

SLOAD
CAPACITY

vibration calculation. K = Jfull/Jw (Fig. 11); K = yw/yth (Fig. 15);

K3 = C1 • ys/Yb (Fig. 12 and Table III); K4 = 7.26 (H/L)2 according to Taylor (10)

for vibrations of the fundamental type, K = damping resistance/ship weight (See

section 12).

8. Model experiments with a box girder.

The results obtained from the investigation of elastic behavior were checked

experimentally. A box girder built up of standard structural materials, whose

TEST SPECAMEN BQX GIRDERFIG. 16



dimensions and details of construction are illustrated in Fig. 16, was set in vi-

bration by electromagnetic impulses and the vibrations were measured by means of

a vibrograph. Figure 17 shows the experimental set up. For preventing local

Fig. 17 Experimental Set Up for Vibration Test of Box Girder.

vibrations the model was divided into four parts by the two ends and three trans-

verse bulkheads. By the loading plates screwed to the deck (321 kg) and by fill-

ing with dry sand (179 kg) the total weight of the box girder which itself was

only 105 kg. was brought to 605 kg. in order to obtain as low a natural frequency

as possible to facilitate measurement. The moment of inertia computed without de-

ductions amounted to 1766 cm. 4  With E = 2.1 x 106 kg/cm' we get for the theoretical

natural frequency:

A =.7.r.x S-7 W/

The constants K1 to K4 characterizing the elastic behavior were determined

from Figs. 11, 12, and 15 for the present ratios, namely L/B = 6.28 and L/H =

17.25 as K, = 1.052; K2 = 1.13; Ia = 0.13; K4 = 0.0245. With these values ac-

cording to equation (18) the natural frequency to be expected is 55 sec.

The number of electromagnetic impulses per unit time could be controlled by

a motor with an interrupter disc which was connected in the circuit of the elec-

tromagnet in series with a variometer. As a check on the frequency the number of

impulses was recorded on a drum. The model was supported on iron rods which were

inserted through the web at the neutral axis at distances of .244 L from the ends.

The natural frequency of the iron rods loaded with the weight of the experimental
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model lay outside the range of vibration of the girder to be measured as was de-

termined by special experiment.

The frequency of the impulses was varied by changing the terminal voltage

of the motor. The maximum amplitude occurred at 53.7 vibrations per second (Fig.

18). By reference to the resonance curves for the logarithmic decrement,

A = 0.3, 0.4, 0.5 in the familiar formula for the amplification: (32)

with z = "out of resonance" we find that the measured amplitudes lie very closely

on the curve A = 0.4. If Lt is assumed that the internal damping is proportional

to the frequency, we get in this case for the damping factor

m = mass,

c = "elasticity"

Under the influence of this damping the period of vibration is increased by

0.7% so that the natural frequency reduced to the undamped condition will be
-1

53.7 x 1 007 = 54.2 sec.-1

The agreement with the -value 55 sec.- computed by considering the elastic

behavior is almost perfect. The trivial difference may be assigned to the fric-

tion at the supports.

S - MEASURED
S* VALUES ,/ 31-3 3-

,8 ' R . CALCU..... .---.y j zVlO,~ ,W ,0 00 *00,I r"-

< NAT. FREQ. w-, DAMP11NG 3'I,8 MT. FREQ., CALCULATED
CORRECTED FOR ELASTIC rHSIO I

0,4 NAT. FREQ., CALCULATED
UNCORRECTED FOR ELASTIC BEHAN

J5 vO #5 50 55 00 65 0

IMPULSE FREQUENCY PER SEC.
FIG. 18 INVESTIGATION OF VIBRATION OF BOX GIRDERS

COMPARIMON OF CALCLATED AND MEASURED NATURAL FREQUENCIES

Comparison with the uncorrected theoretical frequency which equals 64.6 sec-

illustrates with great effect the importance of the consideration of the elastic



behavior in the calculation of the natural frequency of ship hulls and shows more-

over that the derived values for K to K4 can be regarded as agreeing with actual

conditions.

IV Damping resistance.

9. Determination of the model laws.

It is well known that all damping manifests itself in a lowering of the

natural frequency. The magnitude of the damping resistance may be expressed by

the virtual increase of mass which corresponds to the lowering of the natural

frequency. Since the frequency varies inversely as the square root of the load we

find the damping resistance to be

In this equation

W = damping resistance in kg.

G = weight of model in kg.

nL = frequency in air.

nw = frequency in water.

For determining the laws of similitude we set down according to M Weber (33),

the original relation of measured quantities:

Here: 1 = any linear dimension of the model.

t = time of one complete vibration.

= mass density of the medium.

= weight density of the medium.

= viscosity of the medium.

a = maximum amplitude.

8 = roughness of the surface.

The problem is stated in dimensionless terms by converting the relation of

measured quantities F = 0 into the relation of known quantities I = 0. Since

the process is a dynamical one we choose as fundamental units 1, t, andf?. There

remain as parameters W, r, 1a, E which with 1, t, 5, are to be changed into

dimensionless power products 7 to X . We write therefore:

1. For W: T, = W lx ty 3 z and with the appropriate unit equation [1 =
kg mx sec.y m- 4 z seca z kgZ] where the three fundamental units correspond to the

law of similarity of dimensions, we get three independent equations: 0 = x - 4 z;

0 = y + 2 z; 0 = 1 + z. The solution of these equations gives = W r i  S t

and by introducing the frequency per second n = t- I , we obtain Newton's number:

N = W/14 n 2 .

ii __ _~_______._ll YI IYII UIIYIII1IYIII
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2. For :=, t f , a relation similar to that for W gives

7,r ,/ - , and with n= t 1 and g =Z/f we obtain Froude's number

3. In a similar manner by introducing the kinematic viscosity in the case

of7 where e/./' we get Reynold's number: V//'A

4. a and C lead directly to the parameter numbers 2-= /4 and ='

likewise the ratio values for determining the under water form: L/B, B/T, and

coefficient of fineness 6 go directly into the numerical relation p0 = 0 as param-

eter numbers. If 4/1 in 7 is replaced by y'/yvp (= maximum amplitude amid-

ships/maximum amplitude at forward perpendicular) the numerical relation reads

(,, ~ ~7 ........ )= 0, whereby the characteristic value for the damping

resistance becomes:

The damping resistance obeys therefore the laws of Newton, Froude, and Reynolds.

On account of the familiar conflict of the two latter laws complete dynamic similar-

ity cannot be realized. The separate determination of frictional coefficients was

not, undertaken. The error arising therefrom must be of minor significance since

the frictional resistance amounts only to a fraction of the total resistance and

the latter is only a fraction of the total load affecting the natural frequency.

10. Experiments with rectangular hulls.

The models as in Nicholl's experiments consisted of a vibrating strip of

wood or steel on the under side of which individual wooden blocks were fastened

forming a displacement body. Rubber strips were glued over the spaces between the

blocks which had been made water tight by varnishing in order to prevent eddy

formation. In order to check up any possible change of weight the models were

weighed before and after each test. They were supported on pins screwed into the

strips at the calculated nodes. The experimental set up is shown in Fig. 6.

The first series of experiments was carried out with four models which

being of similar form (1500 x 200 x 100 mm) possessed various frequencies in air

due to suitable choice of vibrating strips; this series served for determining the

dependence of the damping resistance W = Kw l1 nlf upon Froude's number/-I //

and the ratio B/T.

Every model was measured at five different drafts and four different ampli-

tudes. Measurements in air were made before beginning the immersed tests as well

as after in order to counteract the deviation due to imperfect elasticity of the

rubber. It was evident that the natural frequencies in air were higher than those

computed and decreased with increasing amplitude, which obviously is to be attribu-

ted to the effect of the rubber strips. Therefore the frequencies in water and in

__~ I



air are only to be compared at equal amplitudes. Since it appeared, however, that

the effect of the absolute value of the amplitude lay within the range of accuracy

of the measurements the calculation of W by equation 19 is made with the mean of

the frequencies measured at each depth for four different amplitudes. Each measure-

ment is the mean of four different values. The test data and the analyses are shown

in Table VIII (see Appendix).
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FIG. 13 DAMPING RESISTANC FOR RECT-
ANGULAR HULLS (/ 
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7.5) As FUNCTIONS

OF DRAFT (TEST SERIES I)

In Fig. 19 the damping resistances as well as their index numbers F- for the four

fundamental vibration frequencies investigated are shown as functions of B/T. We

see first that the draft in the case of rectangular bodies has very little effect

on the damping resistance. Since the bottom of the models is the same in all

cases and the frictional surface of the four side walls increases with increasing

draft, we can conclude from the slight increase in W that there is only a small

frictional component of the measured total resistance. At the same time it follows

that W is by no means proportional to the displacement.

However, the damping resistance is quite dependent on the frequency in air.

It increases with increasing frequency first rapidly, then more slowly. Beginning

with a definite frequency whose corresponding magnitude for ships needs no longer

be considered it even appears to be approximately independent of frequency. Fur-

ther it should be recalled that it is not permissible to regard the ratio of the

frequency in air to that in water in the case of similarly formed bodies as con-

stant. Constancy of" this ratio is only to be expected when similarity of body9f - - j g~z- --1

01 Z J34' 5367 0 91

FIG. 15 DAMPING RESISTANCE FOR RECT-
ANGULAR HULLS (L/Ia = 75) AS FUNCTIONS
OF DRAFT (TEST SERIES 1)

In Fig. 19 the damping resistances as well as their index numbers F for the four

fundamental vibration frequencies investigated are shown as functions of B/T. We

see first that the draft in the case of rectangular bodies has very little effect

on the damping resistance. Since the bottom of the models is the same in all

cases and the frictional surface of the four side walls increases with increasing

draft, we can conclude from the slight increase in W that there is only a small

frictional component of the measured total resistance. At the same time it follows

that W is by no means proportional to the displacement.

However, the damping resistance is quite dependent on the frequency in air.

It increases with increasing frequency first rapidly, then more slowly. Beginning

with a definite frequency whose corresponding magnitude for ships needs no longer

be considered it even appears to be approximately independent of frequency. Fur-

ther it should be recalled tLhat it is not permissible to regard the ratio of the

frequency in air to that in water in the case of similarly formed bodies as con-

stant. Constancy of this ratio is on]ly to be expected when similarity of body
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Dimensions in mm. n. per sec.

Model Form body strips Weight J 4 in air

No. 1 x b x h 1 x b x d in kg. cm calculated

6 1500 x 100 x 200 1500 x 100 x 15(eachY 33.00 2.81 about4.4/sec.

7 1500 x 300 x 66.6 1500 x 100 x 15 35.70 2.81 24.4/sec.

8 900 x 200 x 100 900 x 72 x 7.5 12.50 0.253 24.4/sec.

9 2100 x 200 x 100 I 2100 x 174 x 24 88.30 20.05 24.4/sec.
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form accompanies similarity of mass of both bodies. This is true because the

damping resistances, (although they will be of equal magnitude when the forms are

similar) act in lowering the natural frequency in water only in proportion to the

ratio which they bear to the dead weight of the vibrating body. To establish this

fact and to prove whether the calculation of W from the formula W = G (n2L/naw - 1)

is permissible as a basis for the comparison of damping resistances with one another

an experiment with a model of exceptionally great dead weight was carried out.

Model No. 5 had the same body form as models Nos. 1 to 4 but, by attaching

uniformly distributed lead plates to the layers, they were brought to a weight of

82 kg.

The natural frequencies measured in water of model No. 5 were compared with

the natural frequencies computed by means of equation 19)wherein W was taken from

Fig. 19 for the vibrations in air of model No. 5 and for equal values of B/T

(n = 26.85 sec. - 1 ) (see Table IX).

Table IX. Comparison of the natural frequencies measured with model No. 5

with the frequencies computed according to the equation: . =,, 6 -

on the basis of series I:

nw

according according

B/T to tests to Fig. 19 nw n w- -; Deviation
-1F

with model 5 for nL = 26.85 sec.1

2 23.80 sec.-1 20.0 kg. 24.00 sec.-1  +0.8%

3 24.20 * 19.8 " 24.12 " -0.3
4 24.40 " 19.6 " 24.15 " +1.0%

The comparison shows that the deviation for nw lies within the range of

accuracy of measurements. The evaluation from equation 19 is therefore to be

regarded as permissible. Moreover Table IX shows that for 82 kg. dead weight nw

amounts to only 90% of nL whereas in the case of model 2 for example (see Table

VIII) of 17.90 kg. weight nw is about 70% of nL.

Table X. Model Measurements - test series II.
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A second test series was carried out in order to determine the dependence

of damping resistance upon the ratio L/B. The dimensions of the model were chosen

(see Table X) so that two models having the same length had different widths, and

two others having different lengths had the same width, and the computed natural

frequencies in air were the same in order to permit testing simultaneously the

validity of the model laws and to make possible a direct comparison of measured

results with one another. The results of the measurements are shown in Table XI

(see appendix).

A direct comparison of the results is possible for models 6 and 7 since

both have almost the same Froude's number. By supplementing by series I at cor-

responding F-1 values we get for the increase of damping resistance with diminish-

ing L/B the results given in Table XII, where the damping constant was determined

on the one hand as previously, by means of the equation W/= 4 2 and on the

other hand by means of the equation AK'= WV/ with f = damping surface.

Table XII. Evaluation of the results for rectangular shaped

bodies according to various characteristics

A / /. 7 o'/ -Zres l Voe . 6

Zo X& =/ o x -7a 7 30 4- X 8 /X4O X Zoo 9 , Lx * ' /Jo /0o 0*P"

;___T _;Poe,=2 0. 'AO% a

W wK W de,

O sS. 3.7S 0 .7 3-to 4 .7 o.-g. -~o. " £-4" I0. 94 1. i
-- 4 - 0 -4 -455 &')(10 3 9.7r 074'-PO a 73S - '  2.7o o.3$9.-o &.r,~o . 95. /01l

. .70 74 .o .730 10 L 69 03 5 00 0 0 .400 .

Table XIII. Index of damping resistances for rectangular shapes.

/40C= w// , 8 /rAT _ _ _ _ _ _ _ ,, ,,, ,_,,,,,,

5 7 9 L311 13 15

0.5 10- 2  0.530 10 -4  0.325 10-4  0.220 10-4  0.14016
4  0.115 104 0.100 10-4

1 " 1,000 0.625 " 0.410 " 0.275 . 0.225 " 0190

2 " 1.730 " 1.120 " 0.720 " 0.500 " 0.400 " 0.355

3 " 2.300 " 1.505 " 0.965 " 0.660 " 0.540 " 0.480 "

4 " 2.760 " 1.830 " 1.180 " 0.800 ' 0.640 " 0.580

5 L 3.160 " 2.080 " 1.370 " 0.915 " 0.730 " 0.660 "

6 " 3.540 " 2.310 " 1.550 " 1.020 " 0.810 " 0.740 "

_ I_11H, 1 I I Iu' h1m11 01



It is evident that the side ratio has a strong influence on W; even when

the damping surface is taken into account by means of /k1 the characteristic term

does not remain constant but increases considerably with decreasing L/B (in the

foregoing cases W is approximately proportional to e ). In view of these cir-

cumstances, and in order to avoid further extensive test series the resistance

constant f I//'/7') previously used, in which the damping surface was not taken

into account, was likewise used as a basis for evaluating further experiments.

In Fig. 20 and Table XIII the values of A/determined from test series II

which are converted for various F- values based on the results of serles I are

given as a function of L/B.
x10-4

ZIG 0 BOFIIN FDMIRSTA CEFO0,9-

0,& ,-1=,/ 10-
2,67 - - -21, " -',1 -

/14 -- X - /0
--.. 
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FIG. 20 COEFFICIENT OF DAMPING RESISTANCE FOR
RECTANGULAR BODIES AS A FUNCTION OF L/a AND F"

The values determined by experiments with models 8 and 9 are fairing points
of the plotted curves so that the validity of the model law is established at

least within the lengths in question.

A criticism of our experiments and of the method of analysis used is fur-

nished by comparison with the experiments of H. W. Nicholls (9).

Nicholls carried out experiments with two rectangular models. In analyzing

Nicholls tests for characteristics for L/B = 15 and B/T = 2 we get for model A:

Kw = 0.1064 x 10- 4 for F - = 0.526 x 10- 2 and for model B: Kw = 0.0336 x 10-4 for F- I
-2~ 

7-

= 0.1621 x 10- 2 . The corresponding values of our experiments are found by inter-

polation from Table XIII and are plotted together with the values of Nicholls in

Fig. 21. It is evident that the present investigations are completely confirmed

by the measurements of Nicholls.
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11. Experiments with bodies of ship form.

The exact determination of damping resistance for hulls of any form would

require many systematic series of experiments, a task which would far surpass the

scope of the work discussed. We have therefore confined ourselves to the investi-

gation of 3 models with different degrees of fullness and constant L/B. The con-

version of resistance coefficients for any F- I and L/B values can be carried out on

the basis of the results with rectangular shaped bodies, a method which at least

would permit an estimate of the damping resistance for any desired ship form to an

extent adequate for practical purposes.
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FIG 2l COMPARISON OF COEFFICIENTS OF DAMPING RESIS-
TANCE FOR RECTANGULAR-SHAPED HULLS WITH THE
COEFrFICIENTS FROM THE RESEARCHES OF H. W. MICHOLIS
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FIG. 22 MODELS FOR TESTS ON SHIP FORMS.

In Fig. 22 the models

tion of the nodal points for

condition were determined by

are reproduced by means of the body plans. The posi-

vibrations in the fundamental frequency and free-free

special computation and are tabulated together with

o VALUES FROM THE TESTS
OF H.W. NICHOLIS

* VALUES OBTAINED FROM
TEST SERIES T AND 3
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the remaining model data in Table XIV. The results are shown in Fig. 23 (see Table

XV in appendix).

Table XIV. Model Dimensions - Series III

Dimensions Dis- Nodal Point

Model Length Width Draft place- 6 L/B B/Tc Distance

No. cm cm cm ment from from

cma AP FP 0

10 150.0 21.83 9.20 22900 0.76 6.87 2.375 0.269L 0.267L 0.380

11 150.0 21.83 9.20 18975 0.63 6.87 2.375 0.280L 0.280L 0,334

12 150.0 21.83 9.20 15090 0.50 6.87 2.375 0.285L 0.283L 0.314

We see that in contrast with rectangular shapes the draft has considerable

effect on the damping resistance contrary to the opinion of several English authors

(Cole, Nicholls). Even when the damping surfaces (in this case the area of the

momentary planes of flotation) are introduced, we find that the damping resistances

increase with a higher power than one of the damping surface, in harmony with the

results established with rectangular shapes.

Further Fig. 23 shows that the fullness of the ship form has a very marked

influence on W. Since the three models investigated possess practically the same

Froude index their KW curves can be compared directly with one another. So for

example when B/T = 2.375 for 4 = 0.76 KW is 2.92 times greater than for <f = 0.50.

We have undertaken the conversion of measurements on three tested models for the

remaining -1 values in question under the assumption that the dependence of the

damping resistance on F -1 is the same as for rectangular shapes and have repre-

sented them together with the results for rectangular bodies of equal L/B and B/T

ratios in Fig. 24. The dependence of the Kw value on the ship form and the fre-

quency of vibration is clearly set forth in Fig. 24.

In the method used for determining the damping resistance from the fre-

quencies it is assumed that the damping resistance has the same distribution over

the length of the ship as the dead weight, that is, that the position of the nodes

in the prototype is the same as in the models. To establish the general effect of

the position of the nodes on the magnitude of the damping resistance, tests were

completed with models 10 and 11 having their nodes successively shifted amidships

and towards the ends.

The KW values obtained from these tests and converted for F-1 = 1 are

plotted against y#/y together with those from test series III in Fig. 25. It is

evident that on shifting themodel points towards the ends the damping resistance

increases considerably since simultaneously the effective damping surface increases

whereas on shifting the nodal points toward the middle the damping resistance

/I( ~Iil, ,lo,
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increases to a lesser degree. For the position of the nodes, therefore, which

corresponds to their position in a free-free bar the damping resistance is a minimum.

0,4 - m --Of-s
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IP
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NoI0,017
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FIG. 25 DEPENDENCE OF DAMPING RESISTANCE ON THE POSITION OF NODAL POINTS.

In order to permit general use of model results the KW values for various

positions of the nodes were divided by those corresponding to the free-free posi-

tion for the models under investigation. The correction curves are given in Fig.

26 with the help of which it is possible to make use of the resistance coefficients

hitherto found even in those cases in which the position of the nodes does not

agree with those of the models investigated.

12. Application of experimental results to the computation of damping

resistances.

The indices of damping resistance obtained from model experiments strictly

speaking may be applied only in the case of geometrically similar ship forms and

of similar distribution of weight. However, a sufficient estimate of the damping

resistance appears possible for any case whatever if the following procedure is

carried out.

(a) Since to every B/T value of models 10, 11 and 12 there corresponds a def-

inite S (see Fig. 27) we first determine the corresponding 6 value for the given
B/T for the three models and take from Fig. 23 for the same B/T the corresponding

KW value.

1,
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(b) By means of the KW values for rectangular shaped hulls of L/B = 6.87 which

can be obtained from Fig. 24 the conversion to any desired FA value is undertaken.

We get for the given B/T and the three corresponding degrees of fullness 3 KW

curves from which the indices for the given F -1 may be found and are to be plotted

as a function of 6. We then find for a given S a definite value of KW.

(c) In order to give due consideration to the L/B ratio it is necessary to con-

vert the last obtained KW value by means of the KW values for rectangular shapes

(Table XIII) for the given L/B.

'a
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(d) In case the nodal points derived from the vibration calculation do tot check

with those of the model a correction according to Fig. 26 must be made.

The damping resistance determined in the foregoing manner must be introduced

into the vibration calculation as an additional load corresponding to the weight

distribution of the models which would involve a repetition of the entire calcula-

tion. In order to avoid this the additional deflections which arise from the damp-

ing resistance alone can be computed separately in the following manner: The

effect of the weight distribution on the frequency may be expressed by the constant

C' in &= 27rC' EJg/PLa If we consider the vibrating system to be loaded only

by the weight W corresponding to the damping resistance we obtain a deflection yaw
at the forward perpendicular which corresponds to the computed frequency 40 =

\I'? /y2v.p. under the same assumption as in the case of the actual vibration

calculation (y, = 1 m; c, =9.81 sec.-2).
Setting co equal to % we get:

(y )y.R = 0.0/ WI,43

For C' the corresponding model constants are to be introduced which were deter-

mined for model 10 as 4.42, model 11 as 4.59 and model 12 as 4.61. For intermedi-

ate values of 6 the model constants must be interpolated. W is set down in kg,

hew
0,7l
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L in cm., E in kg/cm2 and J in cmi. The constant K = damping resistance/ships

weight in equation 18 is then = (y /) .. Under), , the end amplitude

computed from the vibration calculation at the forward perpendicular without any
6

correction is to be understood. For E is set down the same value (2.1 x 10 ) as

in the theoretical vibration calculation whereas for L the length between perpen-

diculars is used. A numerical example can be found in the appendix.

V. Frequencies of higher order.

Since the theoretical computation of natural frequencies of higher order

involves certain difficulties because of the uncertainty as to the magnitude of the

damping resistances, an estimate made from similar ships is preferable for the

present.

Results on the determination of natural frequencies of higher order have as

yet been given little publicity. The following data may therefore contribute to

filling out the deficiency.

First a survey of the influence of mass distribution is obtained from the

comparison of the natural frequency of uniform rods with that for rods with pointed

ends which H.W. Nicholls (9) computed. The ratio of natural frequencies of higher

order to the fundamental are:

for uniform bars . . . . . . . . . . . . . .. .. 1 : 2.755 : 5.400 : 8.940

for bars with pointed ends . . . . . . . . . . . 1 :'2.260 : 3.700 : 5.700

In contrast to these, the corresponding values for ship forms vibrating in water

according to measurement carried out are:

for fast steamers . . . . . . . . . . . . . . . . 1 : 2.130 : 3.365 : 4.755

for cargo and passenger ships . . . . . . . . . . 1 : 1.870 : 2.670

for cargo ships (according to Schlick) . . . . . 1 : 1.850

From this tabulation we find that the relative positions of frequencies of

higher order is strongly dependent upon the mass distribution but that also the

damping resistance appears to increase with increasing number of nodes. This phe-

nomenon probably must be attributed to the simultaneous increase of frequency with

which is associated an increase in damping resistance according to the present

experiments. Also the fact that for fuller ships the numerical ratios lie closer

together serves to explain the increase of damping resistance with increasing

fullness.

If we compare the natural frequencies especially of the fast steamer type

with one another we find that the oritical zones lie closer to one another the

greater the number of nodes.

The coincidence of the impulse frequency with a natural critical of higher

- -- i
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order for this reason and also because of strong damping will no longer manifest

itself in the appearance of pronounced nodes and loops, but rather there must be

expected a general indeterminate vibration of the hull which cannot be decisively

affected even by altering the impulse frequency. Heavy and pronounced vibrations,

therefore, especially in the case of fast ships, whose engine speed in general lies

so high that only resonance with criticals of higher order (about 4 - 6 nodes) is to

be expected, are mainly of a local nature.
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VI Comparison of measured results on a full sized ship with computed results.

On the basis of the previous investigations the natural frequencies of the

vertical vibrations of the first class which might be expected in propulsion, were

computed for five different types of ships, and compared with the values measured

on board. A summary of the measured and computed values is given in Table XVI.

Several observations and explanations of the results are here appended.

1. Tank motor ship of 11,000 tons light displacement.

The measurements were carried out with a displacement of 15,300 tons although

computations were made on a basis of 16,900 t. Fig. 28 shows the calculated and

measured vibration curves. The agreement between the two curves, considering the

difference in displacement, appears to be satisfactory.

In Fig. 29 the measured amplitudes for stations I and III are plotted

against propeller revolutions. Vibration becomes noticeable at 77 RPM, increases

to a maximum at 84 RPM and disappears at 90 RPM. The total range amounts to about

8 per cent below and 7 per cent above the natural frequency.

From the sharp rise and fall of the resonance curve we can conclude that the

internal damping is only slight. Therefore there can be no question in practice of

an influence of internal damping on the frequency. Comparison with the resonance

curve determined for the box girder shows in addition that internal damping is de-

pendent in large measure upon the frequency since the range of resonance in the

case of the box girder investigated is considerably greater when Ncr. = 3250 min.-1

From the measured maximum amplitude we get moreover an inference as to the

bending stresses produced during resonant vibration. Since from the vibration

calculation (Fig. 4) it is known that for a maximum bending moment of 42,250 mt

there must be an end amplitude of 0.06445 m we find for the measured end amplitude

of 6 mm the corresponding maximum moment of 3950 mt. The moment of resistance (I/c)

amounts to 6.10 m3, so that Omax. = about 65 kg/cm2 . Even though the absolute

value of the stress is found to be insignificant it may, as a rapidly varying

superimposed stress which generally represents an increase of about 7 to 10 per

cent of the total stress, lead to fatigue phenomena at especially critical places.

In order to be able to compare the measured frequency of 84 min.-1 measured

at 15,300 t with that computed at 16,900 t a conversion to the calculated displace-

ment is necessary. Under the assumption that the natural frequency varies as the

square root of the displacement we get N = 80. Since, however, it is knownvm from

measurements obtained elsewhere that the natural frequency decreases at a somewhat

smaller ratio we shall have to regard N = 81 as corresponding to a displacement of

16,900 t.

The natural frequency determined from the vibration calculation amounts to

117.9. According to the factors given in Table XVI for the elastic behavior, the

111j 1161 111 IIII M I lm i
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theoretical natural frequency decreases to 96.6 = 82% of Nth. With K5 = 0.4 we get

N = 81.5 = 69% of Nth. The deviation from the corresponding measured value N = 81

is negligible.

2. Cable layer of 481 Br.-Reg. T.

For this ship vibrograph measurements were not undertaken. However, accord-

ing to the report of the ship's officer the fundamental natural frequency lies be-

tween the limits N = 205 and 210. The elastic behavior lowers the theoretical fre-

quency from 299 to 239.6 = 80.3%. Considering the damping resistance we get N =

210 = 70% of Nth.

3. Torpedo boat destroyer of 1400 tons displacement.

The principle dimensions given in Table XVI are taken from the article of

H.W. Nicholls (9) who computed the theoretical fundamental natural frequency as

Nth = 135 min. - I1 with E = 1.575 x 106 kg/cm2 . In carrying out the calculation ac-

cording to Tobin's method only the first end condition was considered by Nicholl's.

As pointed out we get too low natural frequencies unless both end conditions are

strictly regarded. Therefore to compensate for the non-observance of the second

condition the theoretical natural frequency must be assumed higher and was set at

137 min.-I1 in the calculation. If we convert this value to our basis of comparison

with E = 2.1 x 10 we get Nth = 137 2.1/1.575 = 158. By the influence of the

elastic behavior this value is lowered to 143.3 = 89% of Nth and because of the
damping resistance (see appendix) still further to 118.2 = 75% of Nth.

The observed natural frequency given in the discussion of the foregoing

paper amounted to 120 min.-I1 More detailed data as to whether the displacement

used in this study agrees with that in the calculation are not given.

4. Tanker of 5800 tons displacement.

The principal measurements are taken from the papers of A. P. Cole (7).

Cole determined the natural frequency by computation to be 112 min.-1 Here it is

assumed that E = 1.81 x 10 kg/cm2 , ys/Yb = 0.16 and the damping resistance dis-

tributed approximately in parabolic form amounts to 3590 tons. With E = 2.1 x 10

and discarding the remaining assumptions we get:

Upon introducing the factors K, to K this value falls to 135.4 = 86.6% of

Nth and with K = 0.458 we get N = 112 = 72% of Nth.
In the discussion of the papers of T.C. Tobin the measured natural frequency

for the fully loaded condition is given by P. A. Hillhouse as 112 min. - I This

agreement with the computed value is perfect.

III



5. Freight motor ship of about 5300 tons displacement.

The displacement in the fully loaded condition amounted to 9,302 tons at a

draft of 7.22 m. The vibration calculation is based on a displacement of 8500 tons

according to the data of F. Horn (34). The corresponding theoretical frequency is

given by Horn as 138 where E was taken as 2 x 106 kg/cm2 and in which, in the cal-

culation of the moment of inertia, the deck plating between hatches is neglected.

Converted to E = 2.1 x 10 , we get N = 141.5. The factor Kdesignating the ef-

fective width was set to equal 1 accepting the given computation of the moment of

inertia. K2 = y,/yth was determined for a ratio of load to capacity = 4500/5300 =

0.85. The shear deflection determined from Fig. 12 and Table III is considerable

for the two deck type with double bottom (ys/yb = 1.625 x 0.146 = 0.237). With the

constants given in Table XVI the frequency in air = 120.2 and wi h K = 0.333 that

in water = 104.1 min.-1 The frequency measured with a displacement of 8500 tons

according to the data of F. Horn was N = 105.

In regard to the K factors it should in general be noted that the factor K2
which accounts for the effect of the complex nature of the ship's members will

generally be that factor which must be estimated from Fig. 15 with special care.

So for the tanker with longitudinal frames (No. 1) we have chosen K2 = 1.15 since

it is known that at the interruptions of the longitudinals by the transverse bulk-

heads a weakening of the longitudinal frames is produced (the longitudinals were

fully included in the calculation). For the cable l3yer (No. 2) the same K2

value was used since this ship is very considerably reenforced in its longioudinal

structure above classification requirements and therefore its behavior with regard

to deflection will be similar to that of a ship not fully loaded whose members are

not under high stress and therefore are not fully utilized. In the remaining ships

with transverse frames we have taken the mean values given in Fig. 15 (K2 = 1.08 -

1.05). However, the possible error in the computation of natural frequency when

the factor K2 is carefully estimated is in all cases slight.

The final comparison of computation and experiment gives a mean error of

-0.18% with limits of plus 0.5% and -1.5%. On the other hand comparison of the

C values according to Schlick with those determined by measurement gives a mean

deviation of -4.6% with limits of -14.5% and 0%, a proof that in the case of special

types of ships Schlick's estimated values are to be replaced by more exact methods.

Of further interest is the part played by the individual factors which tend

to lower the theoretical frequency. In the five cases investigated, the frequency

in water amounted to 69 - 75% of the theoretical. The difference, therefore,

amounts to 25 - 31%. This is made up of from 11 - 18% on the basis of elastic

behavior and from 13 - 14% on the basis of damping resistance. Damping resistance

and elastic behavior, therefore, lower the theoretical natural frequency according

to estimate approximately by the same amount. The damping resistance fluctuates
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approximately between 30 and 45% of the displacement, that is within relatively

narrow limits.

The papers of F. M. Lewis (18) and J. L. Taylor (19) which were published

only after the conclusion of the present investigation, on the other hand, report a

damping resistance in a distribution similar to that in the case investigated of

more than 100% of the displacement in certain instances. These data are not con-

firmed by our experiments; even though a different distribution of damping resistance

may have considerable influence on its absolute magnitude the resulting difference

is still inexplicable. It is worthy of note that the dependence of the damping re-

sistance upon the frequency was not considered by the authors mentioned. The satis-

factory agreement between computation and measurement reported by J. L. Taylor,

moreover, probably must be attributed to an underestimate of the elastic behavior

in favor of damping resistance.

VII Summary.

An attempt is made to give a numerical explanation of the difference between

calculated and observed natural frequencies for two noded vertical vibration a

problem as yet not cleared up in detail on the basis of theoretical and experimental

research. The theoretical computation of the natural frequency of a ship hull on

the basis of a non-uniform beam is simplified by a readily executed method which

exactly fulfills the end conditions. The factors which embody the influence of the

effective width, the shear deflection, the complex nature of the ship's structure,

and the damping resistance are investigated. As a result of this investigation,

they can be derived for any case of computation from dimensionless diagrams.

As a result of the good agreement shown in five cases between computations

and measurements on board, the investigations carried out probably will form a

suitable basis for computing the vertical natural frequency of ship hulls as they

are to be expected under operating conditions.

In conclusion it is the pleasant duty of the author to express his sincerest

appreciation to the management ofeutsche Schiffs-und Maschinenbau-Aktiensgesellschaft

for their constant cooperation, through whose especial efforts it was possible for

the author to carry out investigations on a large scale. Further the author wishes

to thank Prof. F. Horn, of tha Tehnische Hochschule of Berlin for several reports

of test results obligingly given concerning the results and data on cargo ships,

as well as Mr. C. Cole, for valuable aid in the comprehensive graphic and numerical

evaluations.

VIII Appendix.

1. Design of the model (for model dimensions see Table I as well as Figs.

8 and 9).
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For determining the weight scale of the model we proceed from the point at

which the largest moment of inertia corresponds to the smallest weight, since the

weight of the plate serves as the basis of weight. In the case of the cable layer

this point lies between frames 51 and 52 (see Fig. 8) for which the weight of the

ship amounts to 4,180 tons and the weight of the model,,with a plate thickness of

2 cm. and a plate width of 14.20 cm., assumed at this point amounts to 0.258 kg.

Accordingly 1 kg. for the model corresponds to 16.21 tons for the ship and one ton

for the ship corresponds to .0617 kg. for the model. Since the width of plate is

fixed by the assumption of maximum width and the thickness by the moment of inertia

curve it follows that its weight is known for each individual section. The differ-

ence between the plate weight and the weight per frame space according to the

weight curve gives therefore the required weight of lead.

The calculation of the natural frequency of the model is obtained most simply

from the determination of ,he form constant C = N/V J/GL for the ship and trans-
ferring the same to the model. For the cable layer with E = 2.1 x 106 kg/cm',
the theoretical natural frequency amounted to N = 299. With J = 0.945 m , G =

846.5 t, L = 55.05 m, C is therefore 3,650,000, and the model natural frequency
with i = 9. cm , g =52 kg, 1 = 110.10 cm: n = Ci/gl = 4268 min = 71.1 sec

In a similar way we get the model natural frequency for the dredge model. It is

self-evident that the moment of inertia to be introduced into the formulas both in

the prototype and in the model is always to be measured at the same position. For

the dredge model the relative moment of inertia of the ship amounted to 2.96 m4 . The

remaining data are given in Table I.

2. Computation of the damping resistance.

Torpedo boat destroyer of 1400 t displacement

(91.44 x 9 x 2.9 m draft)

Frequency in air according to Table XVI 143.3 min.-1 = 2,390 sec.- 1

Vibration velocity I  = g/In' = 1.880 x 10-

factor L/B = 10.15; B/T = 3.10: 6 = 0.57

For B/T = 3.10 we get from Fig. 27 the following 5 and FI values of the model
under investigation (L/B = 6.87) -

F-1 = 0.694 x 10-s 0.621 x 10-' 0.667 x 10-"

6 = 0.448 0.591 0.736

From Fig. 23 we find the accompanying damping coefficients for the corres-

ponding model draft of 21.83/3.10 = 7.05 cm as

F - 1 = 0.694 x 10-2 0.621 x 10-' 0.667 x 10-'

Kw = 0.057 x 10 - 0.121 x 10 - 4 0.197 x 10- 4
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The Kw values for any F- 1 value are given in the following table:

For
Rect. Hulls

Fr-i L/B = 6.87 = 0.736 = 0.591 6= 0.448
See Fig. 24

0- 500 x 10- 0.350 x 10-4 0.1498 x 10- 4  0.0985 x 10-4 0.0422 x 10-4

0.621 x 10-2 0.430 x 10 4  -- 0.1210 x 1C +  -

0.667 x 10-2 0.460 x 104  0.1970 x 1c 4  - -

0.694 x 10-2 0.473 x 10 -- -- 0.0570 x 10
1.000 x 10-2 0.654 x 10 -4 0.2800 x 10-4  0.1840 x 10 -4 0.0788 x 10-4

2.000 x 10-a 1.153 x 10 4  0.4940 x 10- 4  0.3245 x 104 0.1390 x 107

3.000 x 10-a 1.550 x 10C+ 0.6640 x 10- 4 0.4361 x 10- 4 0.1868 x 1 d

By interpolation we find for F-1 = 1,880 x 10-2

6 = 0.736
K = 0.465 x 1

6 = 0.57

0.591

0-4  0.310 x 10-

Kw = 0.285 x 10
- 4

0.448

0.130 x 10- I

For rectangular shaped bodies F- = 1.880 x 10-

L/B = 6.87 10.15

K = 1.13 x 10 4  0.552 x 10 - 4

Therefore in the present case

0.285 x 10-4 x 0.552 .1 4

S- 1.13 0.139 x 10

and the damping resistance

W= Kwl n 2 = 0.139 x 10 x 91.44 4 x 2.3901 x 102 = 566 t

The corresponding model constant for the distribution of W is C' = 4.61.

For determining the constants K-. the deflection must first be computed
2

which corresponds to Nth = 158 min - with cv = 9.81 sec 2 and y, = 1 m

We find 9

, . 0. . o o/'7

Under the same assumption for w;, and 7, , we get the additional deflec-

tion resulting from the damping resistance as

SO. o/ x X /

= rC._ 0EV 40= O o//6/,,

Therefore:

o. o/ - o.17o
-- 0. 903O

and for

(Y W ) V. .



Table VIII. Measured Results of Test Series I with Rectangular Shaped Hulls.

Lx B = 1500 x 200 m/m
L/B = 7.5

ym/y'v. P . .608

n = frequency per sec. in air nw = frequency per sec. water
I 

=

Model before Amplitudes Amplitudes KW  " =
immer- Mean nL  W

wt. sion 1 2 3 4 Mean of I Draft 1 2 3 4 Mean -- 1
No. II =  and B/T nw kg. / >/g g/Ins

kg. after Mean of 4 Values II cm. Mean of 4 Valiles X /0o4

0.5 40 10.10 11.50 10.75 9L35 10.42 0.562 9.44 1.080

I 13.48 12.78 12.35 12.05 12.67 2.5 8 9.56 10.06 9.46 10.00 9.95 0.712 11.96 1.368 3.85
~ x

16.40 13 02 4.5 4.45 9 50 9.51 9.19 8,41 9.16 -- 10-
II 14.78 13.84 12.52 T2.39 13.37 6.5 3.08 9 82 9.40 9.46 8.87 9.73 0.790 13.28 1.518

8.5 2.35 9 40 9.50 9.14 10.17 9.67 0.812 13.64 1.560

0.5 40 18.57 '7.80 17.60 17,40 17.84 0.902 1.15 0.518

2 17.90 I 24.54 23.47 23.19 22.75 23.50 2.5 8 18.30 17.04 17.20 16.99 16 5 1.030 18.43 0.592 1.081

24.60 4 5 4.45 18.22 17 00 16.50 - 17.24 1.038 18 60 0.596 10-x

II 27.04 25.52 24.56 - 25.70 6.5 3.08 18.22 17.75 17.11 16.28 17.12 1.065 19 05 0.610

8.5 2.35 17.92 17.24 16.85 16.36 7.08 1.070 19.15 0.614

0 5 40 26.30 25.67 25.31 25.60 25.75 0 905 17.72 0.260

3 I 36.00 - 34.90 - 35.45 2.5 8 26.91 25.96 24 97 24.56 25.60 0.925 18.00 0.267 0.519

19.50 35.50 4.5 4.45 25.60 24.56 24 21 24.22 24.65 - .075 21.00 0.315 10x

II 37.40 35.70 34.90 33.85 35.50 6.5 3.08 24.92 24.86 24.65 23.82 24.60 1.085 21.20 0.314

8.5 2.35 25 51 24.75 24 21 23.71 24.55 1.090 21.30 0.315

0.5 40 34.55 34.90 34 45 33.90 34.50 0.400 15-35 0.1785

4 I 41.80 40.70 - 40.30 40.93 2.5 8 33 00 32.70 33.40 33.55 33.25 0.510 19.55 0.227 0.3925

38.35 40.80 4.5 4.45 32.20 32.15 32.60 32 67 32.50 0.578 22.18 0.258 1xo

II - 40.85 40.70 40.60 40.67 6.5 3.08 32.70 32.50 32.50 32.60 32.60 0.568 21.80 0.254

8.5 2.35 32.60 32.45 32.25 32.40 32.45 0.578 21.18 0.246



TABLE XI. Measured Results of Test Series II with Rectangular Shaped Hulls.

Model measurements from Table X - /Yv.. = 0.608

_____r r i

nL = Frequency per sec. in air

Amplitudes

112 o 4 4 Mean

Mean of 4 Values

Mean
of I
and
II

Draft

cm.

n = Frequency per sec. water

Amplitudes

1 2 3 4

Mean of 4 Values

Mean nLa

nw

KW =

x /O
g/Ina

0.5 20.00 30.60 30.55 29.75 29.55 30.12 0.134 4.42 0.0831

6 I 33.30 32.30 31.60 31.15 32.10 2.5 4.00 30.40 29.10 29.00 28.85 29.32 0.197 6.50 0.1221 0.636

L/B 33.00 32.09 4.5 2.22 29.96 29.69 28.83 29.50 0.186 6.14 0.1153 x

= 15 II 33.56 32.27 31.24 31.15 32.08 6.5 1.54 29.68 29.11 29.18 28.62 29,15 0.211 6.95 0.1305 10-2

8.5 1 18 27.50 28.78 29.15 29.12 28.65 0.254 8.38 0.1575

0.66 45.00 22.75 22.67 22.22 - 22.55 1.030 36.80 0.690

7 I 32.96 32.55 31.75 31.89 32.28 2.66 11.30 22.39 22.25 21.92 21 82 22.10 1.110 39.60 0.743 0.634

L/B 35.70 32.12 4.66 6.43 22.32 22.15 21.96 21.81 22.08 1.110 39.60 0.743 10x

= 5 II 32.52 32.00 31.72 31.50 31.95 5.66 5.30 21.96 22.50 22.35 21.70 22,11 1.110 39.60 0.743

0.5 40.00 25.75 25.62 25.00 24.52 25.22 0.438 5.48 0.895

8 I 30.99 30.00 30.02 29.80 30.20 2.5 8.00 25.69 25.05 24.64 24.10 24.85 0.480 6.00 0.980 1.192

L/B 12.50 30.22 4.5 4.45 25.69 25.05 24.50 24.00 24.81 0.485 6.06 0.990 10x

= 4.5 II 30.75 30.45 30.06 29.80 30.24 6.5 3.08 25.15 24.55 24.02 23.71 24.40 0.536 6.70 1,095
8 5 2 35 25.35 24.76 24.02 23.60 24.42 0.535 6.70 1.095

0. 5 40 00 23.25 23.60 23.20 23.01 23.30 0.245 21.62 0, 161

9 I 25.80 26.06 25.95 25.85 25.90 2.5 8.00 22.60 22.52 22.76 22.50 22.60 0.322 28.41 0.212 0.691

L/B 88.30 26.00 4.5 4.45 22.58 22.48 22.36 22.28 22.45 0.341 30.10 0.225 10x,, 10.2
= II 26.20 26.10 26.10 26.06 26.10 6.5 3.08 22.51 22.45 22.50 22.22 22.41 0.345 30.45 0.227

10.5 8.5 2.35 22.62 22.50 22.42 22.40 22.49 0.338 29.85 0.223

Model

wt.
No,

kg.

I =
before
immer-
sion
II=

after



Table XV. Measured Results of Test Series III with Ship Shaped qulls.

/8 = 6. 7 01 =z..7.F

n = Frequency per sec. in air n = Frequency per sec. water
I 

=

Model before Amplitudes Amplitudes K1Wommer Draft 1 2 Mean n

Wt. sion 1 2 3 4 Mean of I Draft 1 2 3 4 Mean 7- 1NO. 11 3 and T/Tc  Kg. g//n2

kg. after Mean of 4 Values II cm. Mean of 4 Values x oZ

0.75 0.081 27.39 28.10 26.79 26.40 27.20 0.324 5.84 0.1153

I 32.36 31.52 31.01 30.15 31.25 2.75 0.299 26.50 26.68 25.75 25.50 26.40 0.405 7.30 0.1441 0.667

10 18.00 4.75 0.516 26.30 26.15 25.45 25.40 25.80 0.472 8.50 0.1678 x
6= 31.32 6.75 0.734 - 25.60 25.35 24.75 25.20 0.543 9.78 0.1930 10-
0.76 II 31.72 32.00 31.50 30.35 31.39 8.75 0.951 26.12 25.10 24.20 24.40 24.95 0.575 10.35 0.2045

9.75 1.059 24.80 24.40 24.20 23.66 24.26 0.664 11.95 0.2360

2.00 0.217 30.04 29.30 28.70 28.08 29.05 0.248 4.282 0.0787

I 33.43 32.50 32.18 31.78 32.50 4.00 0.435 29.01 28.45 28.08 27.38 28.22 0.322 5.570 0.1023 0.621

11 17.30 6.00 0.652 29.30 28.28 28.00 27.45 28.28 0.316 5.465 0.1004 x

6= 32.47 8.00 0.870 28.35 27 60 27.12 26.36 27.36 0.406 7.020 0.1290 10-2
0.63 II 33.42 32.52 32.24 31.50 32.45 10.00 1.086 28.00 26.98 26.42 25 85 26 82 0.464 8.030 0.1475

11.00 -1-5 27.50 21.62 2 98 25 88 2,50 0.499 8.640 0.1587

12

6=
0.50

17.90

31.80

30.85

31.05 30.50 30.00

31.101 30.40 30.10

30.82

30.60

30.71

3.75

5.75

7.75

9.75

11 75

12.75

0.408

0 625

0.842

1.059
1.277

1.386

30.40
29.70

29.30

28.40

26.66

26.50

29 85
29 05

28.82

28.30

26.50

25.85

29 55
28.40

28.10

27.65

25.70

25.66

28.90
28.60

27.95

26.80

25.60

25.08

29,70

28.95

28.55

27.80

26.10

25.80

0.070

0.126

0.169

0.221

0.384

0.419

1.252
2.256

3.050

3.960
6.875*

7.500*

0.0257
0.0463
0.0625

0.0814

0.1413

0.1541

0.694
x

10-2

* Aft overhang begins at 8 cm draft

I I - -
I

* Aft overhang begins at 8 
cm 

draft

I

Ajode I j& ntrh 4. 6 /Y
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Prof. Dr.-Ing. Horn, Berlin-

Since in latter years the problem of the most exact possible preliminary

calculation of the elastic vibrations of ships has found increasing attention and

especially in England and America a group of very capable scientists and engineers

has undertaken this task with visible results,it is exceedingly gratifying that at

this time there has also been found in Germany a man who has undertaken to give the

especially important topic of vertical flexural vibration a thorough in estigation.

In doing so he adopts the correct and only means possible for such an exceedingly

complex problem of a synthesis of theory and experiment, and we can only be grate-

ful to the author for the abundance of important and new material which his fine

experiments were chiefly instrumental in supplying and which the interested experts

certainly will use to great advantage.

The author probably understands better than anyone else that this synthesis

of theory and experiment is not altogether flawless and in many respects had to be

replaced by a sort of working hypothesis. Insofar as such an hypothesis is not

based on false premises we can use it freely and in case of necessity which may

arise on account of the effect of elastic behavior it will be possible to extend

and improve it. I have however certain fundamental objections to an important

point in the working hypothesis adopted by the author. I have in mind his state-

ments about "damping resistance." In principle this expression, "damping resist-

ance," must first be characterised as incorrect and misleading in view of the

concept the author claims actually to have formed regarding this resistance. In

all vibration phenomena we understand by damping a process in which energy of

vibration is lost, whether this be converted into heat-, wave-, or some other form

of energy. Damping always causes a decrease of the amplitude of free vibration

with time but in addition as a rule a very slight decrease in the frequency. The

author, however, does not have in mind such a process; he has in mind expressly

the inertia resistance which is produced by the inertia force of the water vi-

brating with the hull and whose effect amounts to an increase in the virtual mass

of the hull. It would not be a serious matter if only the child were called by

the wrong name, but my objection is not merely a matter of form. Herr Schadlofsky

discredits the two methods which have become well known in recent years, namely

Taylor's and Lewis' which should give this inertia resistance and which from my

point of view indicate a decided advance in this direction; in any case he denies

their practical significance and expresses the opinion that they lead to essentially

incorrect results. He bases his objection on the actually noteworthy fact that

in his experiments with rectangular hulls the coefficient of water resistance, other

conditions being the same, were found to be quite dependent on the frequency

whereas the methods of Lewis and Taylor stipulated that the inertia resistance is

independent of frequency. To my mind, this is not in order and requires explana-
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tion. Either the additional resistance arising during vibration in water as

compared with vibration in air is entirely or predominantly inertia resistance,

in which case the coefficient of this additional resistance would not be materially

dependent upon the velocity and in the results of the experiments with rectangular

hulls at various frequencies there would have to be some erroneous conclusion, and

a calculation carried out according to Lewis and Taylor could not lead to erroneous

results, or if the results of experiments with rectangular hulls are reliable and

contain no erroneous conclusions, it would indicate that the additional resistance

is not a pure inertia resistance but contains a very considerable proportion of

actual damping resistance.

I do not profess to be able to decide this question offhand; I can only

offer certain conjectures and propose a method for clearing it up. Beforehand,

I wish to remark that in several vibration computations which I recently made on

my own initiative, Lewis' method appeared to give correct results, and for simple

types of ships for which one can safely compute by Schlick's method gave quantita-

tively satisfactory agreement with the Schlick computation. In these calculations

the effect of shear deflection was allowed for according to Taylor; further

corrections for elastic behavior had not been made. The good agreement in these

calculations naturally is not definite proof. To permit appraisal of the state of

affairs, I wish to make the following remarks:

Should strong dependence of the coefficient of water resistance on the

vibration frequency actually exist then there would have to be a very strong actual

damping. For the instantaneous motion of the water produced by the raoid vibra-

tions we may assume, however, that it follows approximately the laws of flow of

potential, and that therefore frictional and extraneous resistances play no sig-

nificant role. On the other hand, a damping can occur theoretically as a result

of the free surface, since then energy of vibration is changed into wave energy-

it may be stated here that only this circumstance would justify the application

of Froude's law of similarity used by Schadlofsky; if it were a case of pure

inertia resistance this law of similarity would be of no value. Apparently it may

now be determined by a simple experiment whether the damping is actually sufficient

to explain such a close dependence of the coefficient of the resistance on the

velocity. It would only be necessary to determine the decay of amplitude of free

vibration in water. From the so-called logarithmic decrement we can then conclude

as to the magnitude of the d'amping resistance in the familiar manner.

I am inclined to surmise that such an experiment would have negative

results, that is, that the degree of damping thus obtained, at least for the

greater drafts, will not be nearly sufficient to explain the close dependence of

the value of resistance on the velocity. Then there must be some error in the

test data of Schadlofsky at this point. I would, for example, suggest investigating
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whether in the experiments with rectangular hulls the nodal points were not dis-

placed outwards in water as compared with air. Such an investigation has been

carried out only with ship forms and not with rectangular hulls; however, it was

in the case of the latter that the experiments for determining the dependence of

the damping resistance on the frequency were made. Any possible displacement of

the nodal points outward as has been proved results in a considerable change in

the frequency in water that is to say in the sense of a lessening of the dis-

crepancy now existing. Another possibility which might be followed up is that the

increase in the coefficient of resistance in the case of low frequencies is in

some manner connected with the limited dimensions of the tank.

Whether the foregoing suggestions will clear things up or not, I consider

it important to go thoroughly into this question because it has considerable

practical value. If the methods of Lewis and Taylor are confirmed in practice,

then certain elastic effects have been overestimated by the author and must be

corrected.

In any case much praise is due the author for having supplied a quantity

of positive and valuable material for solving the most complicated problem of

elastic vibration and thus having brought nearer to a solution the task of pre-

determining the natural frequency with sufficient accuracy for practical purposes.

Chief Naval Constructor Burkhardt- Berlin:

I would like to amplify the unusually valuable work of the author with

some data on vibration measurements on new ships of the German navy. Whereas

formerly vibration measurements could not be made before the actual trial tests,

the Spaeth-Losenhausen system vibration machine renders it possible to obtain the

desired information in advance.

The first such experiment was carried out on the artillery training ship

"Bremsew before the engines had been installed. The tests are to be repeated

later after completion.of the engine installation.

In Fig. 1 are shown the experimental results. The vibration machine was

installed on one of the main engine foundations approximately amidships. The

amplitudes were measured at ten stations with suitable vibrographs but chiefly

with a three-component seismograph of the Askania Works. The vibration machine

covered frequencies from 2 -to 10 Hertz. As you see from the diagrams, not only

can the deflection be definitely determined for the fundamental mode of vibration,

but also for the second and third harmonics.

When the frequency was raised to 30 Hertz the nodal points could no longer

be satisfactorily determined; it was possible, however, to determine the natural

frequency up to the seventh harmonic. The results are given in the upper left

hand corner where the natural frequencies are expressed in logarithmic coordinates.
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Qf especial interest is the rectilinear course of the curve from the third

harmonic on. From these curves it is evident that at the higher natural fre-

quencies the ship exhibits the same law of proportionality as a homogeneous

elastic beam.

A few weeks ago the same tests were carried out on the cruiser "Leipzig."

In this case the ship was fully constructed but without fuel and equipment.

In this case it was possible to determine the natural frequencies of the

first and second harmonics (1.3 and 2.1 Hertz) but not the forms of flexure because

the capacity of the vibration machine is not large enough to give sufficient

amplitude to the larger ships at these low frequencies. On the other hand, it was

possible to measure the form of flexural vibrations for the third, fourth, and

fifth order vibrations satisfactorily.

It was possible to determine the higher natural frequencies even up to the

thirteenth order as you see in Fig. 3. Here again is evident the rectilinear course

of the curve for the higher natural frequencies from the seventh harmonic on.

Besides the vertical vibrations the horizontal vibrations were also de-

termined for the cruiser. These results may be seen in Fig. 4. As was to be

expected, the horizontal vibrations show loops where the vertical vibrations show

nodes and vice versa. The planes of the frames must therefore execute a rocking

motion about a transverse axis which was also confirmed by measurements on the

upper deck and inner bottom. In the lower part of Fig. 4 is shown a measurement

for one frame. As you see the location of the neutral axis can therefore be

determined.

Thus, I have indicated in what way such measurements may be profitable.

Naturally it has been impossible to conclude the analyses in the short time since

the experiments were undertaken. I thought, however, that in connection with

the author's statements it was not fitting to withhold from you the results of

these measurements carried out for the first time with such precision. The

further development of such experiments and the conclusions to be derived from

them will have to be undertaken along the following lines:

1. Determination of vibration relationships

(elimination of disturbing engine speeds, choice of location for setting

up instruments on war ships)

2. Determination of important static relationships by vibration tests

(determination of effective moment of inertia and the neutral axis of the

hull; dependence of the moment of inertia on the amplitude; as well as

the effect of various stiffeners on the pressure zone.)

3. Observation of structural conditions of ships by determination of the

natural frequencies.

The experiments described were carried out at the Wilhelmshaven Yard with

the cooperation of the mechanical division of the Heinrich Hertz Institute for
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vibration research.

Prof. Dr. Ing. Schnadel- Berlin:

As the hour is late, I will be as brief as possible. The address which

represents a monumental piece of work has evoked general interest as one can see

from participation in the discussion. I am joining in the discussion in an effort

to eradicate certain obscurities or errors.

In the first place, I might point out as did Prof Horn that I cannot agree

with the authors opinion of the work of Lewis and Taylor. On the contrary, these

investigators are materially more advanced in the realm of computing natural

frequencies of ships than the author recognizes. Thus Dr. Taylor has considered

the influence of the shear stresses in the flanges and webs of shi6s with suffi-

cient accuracy. He showed as early as 1924 that a uniform distribution of tensile

or compressive stresses in deck and bottom can no longer occur when shear stresses

are present in addition to normal stresses. From equilibrium conditions alone

it would follow that shear stresses would increase linearly from the middle of

the girder to the webs if it is assumed that the whole width of the flange is

uniformly effective. The shearing stresses cause a change in the uniform stress

distribution in such a way that the normal stresses are non-uniformly distributed

over the width or in other words the effective width is reduced. The deflection

due to shearing stress in the flanges considered by the author is therefore

identical with the change in deflection as a result of the reduction of effective

width. This follows also from my precise calculation in which the total energy

of deformation of the flanges is applied to the computation of effective width.

For the case of flexural vibrations of lower order my method gives only slightly

different values. The ends of the ship, as the author correctly remarks, are

unimportant. This interdependence between shear stresses and effective width

escaped the notice of the author and thus a mistake in his method of computation

is explained. He has considered the influence of effective width twice in the

coefficients KI1 and K3. Hence it would follow that the computed frequencies

would not agree with the measured. Either the influence of effective width

Smust be set equal to unity or we must so compute K3 that 
only the shear

stresses in the web are considered. The second method is appropriate for fre-

quencies of higher order since in this case the effective width decreases

rapidly.

On the other hand the author has not considered the influence of water

pressure on the reduction of effective width. This, however, can reach a

magnitude of 10 per cent or more. It seems to me important to point this out

because the author, in connection with the "complex nature of the ship's frame"

introduces an empirical coefficient which he deduces from the average of his
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experiments on large ships. A check of the reports on the experiments of Read,
Stanbury, and Dahlmann shows that Dr. Schadlofsky has not computed the shear
deflection correctly. The magnitude of the shear deflection is in fact not only
dependent on the ratios L/B and L/H but also on the shape of the moment curve.
This latter decisive point, however, is not considered although this materially
alters the numerical results. In a small experimental girder we must remember
that the allowable tolerances in thickness can cause a variation of several per

cent. With regard to the deflection of the destroyer "Wolf", I refer to my
publications on this subject. The coefficient K2 appears to me therefore not

well established.

I might amplify somewhat the remarks of Prof. Horn. He has already shown
that the extremely large change in the frequency cannot be ascribed to damping
but must be due to the vibrating water. There is now a simple means of deter-

mining the effective magnitude of the damping. We need only consider the free

vibration of the hull after an. impulse. Dr. Taylor, already mentioned, made such
measurements during a launching. On leaving the ways the ship had been set in

vibration. The seismograph which was set up amidships recorded the amplitudes

which decayed according to the equation y =f 0 e-0.6
6 t. The damping due to wave

resistance was so small that it could have only a slight influence on the fre-
quency. Nevertheless a large decrease in frequency was observed in the case of

this ship in agreement with the theory of Lewis, Moullin, and Taylor. Thus it
appears to be proved that the opinion of the author as to the influence of damp-
ing is incorrect, that the large decrease in frequency can be explained by the

vibrating mass of water, and that this induced vibration is practically friction-
less. If the author has made contrary observations in his experiments, which
does not appear to be probable, this might be due to experimental errors. Whereas
the vibration amplitudes of ships are very small compared to the draft-1/1000

to 1/10,000-so that here the loss due to wave formation is vanishingly small, the
experiments of the author were made with small models and relatively great

amplitudes. Therefore, they are not with certainty applicable to large ships.

The author arbitrarily introduces the damping in the calculation as a mass which
is proportional to the mass of the ship by introducing a damping coefficient K5*
In spite of the fact that he has an incorrect principle of computation he obtains
by this method results which in many cases do not differ greatly from the

experimental results and the more accurate calculations of Lewis and Taylor.
This is inherent in the nature of the calculation. Thus as far as the results are
concerned it is unimportant how the individual masses are distributed over the

*Damping would have to appear as a special term in the differential equation,
while the mass vibrating with the body belongs with the mass distribution.



length but only the mean values over the elements of length are significant. The

case is similar to the computation of the deflection by means of the trapezoidal

rule where a continuous load can be subdivided into individual loads. The quad-

ruple integration equalizes the uneven units if the mean values over not too great

distances are of equal magnitude. As long as the distribution of the vibrating

water mass over the length does not differ on the average essentially from the

distribution of the ships mass, the results according to Dr. Schadlofsky's calcu-

lation also yield a useful value. On the other hand if a markedly non uniform

mass distribution exists as in the case of a battleship with armored turrets the

results in general will not agree. The calculation of the English investigators

is therefore to be preferred.

The author in his investigation also tested the influence of ship's fine-

ness $on the frequency of vibration. He assigned to a fineness coefficient 6 ,

independent of the remaining form of the ship a definite damping (really mass, of

water vibrating with the ship, "mitschwingende Wassermasse.") Even this method is

questionable. Actually the form plays an important part. Thus the effective water

mass will be quite differently distributed if we consider first a cruiser stern on

the one hand and on the other an ordinary cargo vessel stern. The method of

Schadlofsky is only permissible when the ships are of such forms as those investi-

gated by the author. The process here is similar to that of a hydroplane which goes

through the water at a high velocity. In this case an entirely different mass of

water is set in motion according as the portion of the ship has a flat bottom or

curved keel. This error was eliminated in the authors method.

With reference to the work of Dr. Dahlmann, I wish merely to bring out the

basic difference between our points of view. Dr. Dahlmann attempts to include in

the modulus of elasticity all effects such as shear, effective width, and vibra-

ting water mass. This however produces no great-difference as compared with the

old empirical formula of Schlick since an empirical coefficient is used. We are

investigating on the other hand the various causes which influence the frequency

in order to get sound results.

The results which chief naval constructor Burkhardt has here presented

appear to me especially interesting. He has given the results of measurements of

vibrations of very high frequencies on board war ships. Thus he finds that the

moment of inertia decreases sharply with the frequency but appears gradually to

approach a constant value. This agrees very well with my theory of box girders.

This shows that in the higher harmonics of vibration only the web and a small

strip of deck contribute to the moment of inertia. The shear deflection moreover

is greater than the deflection due to moments. The phenomenon observed by Herr

Burkhardt, namely the great decrease in computed moment of inertia and the gradual

approach to a limiting value shows the combined action of these two effects.
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In conclusion, I wish to call attention to several errors which occur in
the author's calculation. In Fig. 14 the shearing stresses for the tankers with
longitudinal bulkheads are not given correctly. On account of the fastening to

the side walls through the transverse bulkheads and because of the deformation the
longitudinal bulkheads can take up only essentially smaller shearing stresses and

therefore also transverse forces than the author has given. Also that part of the
flange included with the longitudinal bulkhead is therefore essentially small so

that a quite different distribution of shearing stress exists in the flanges and

webs.

The statement of the author that double bottoms and decks greatly increase

the shear deflection is not correct in this form. The actually state of affairs
is that the moment of inertia is essentially increased due to the inclusion of
double bottoms and decks, and therefore the deflection due to bending moment is

greatly diminished. The actual shear deflection is on the other hand only slightly
increased. Moreover the effective width is decreased in the usual manner when there
are decks and double bottoms. From the combination of these circumstances it
follows that the ratio of shear deflection to deflection due to moments is greater,

while the absolute magnitude of the shear deflection is only slightly increased.

I must not fail for my part to thank Herr Schadlofsky for stimulating this
exhaustive discussion by his work and contributing essentially to clearing up this

interesting subject.

Dr. Dahlmann- Hamburg:

As the author has mentioned that part of my work in question may I be
granted a few remarks. The problem is exceedingly difficult. I should like
therefore to confine my remarks to the elastic behavior since the second involved
question, thdt of damping resistance, is of so complicated a nature that in my
opinion it is not yet ready for public discussion. Personally, it is my opinion

that this resistance -is not as important as represented.

The analysis of the factors which influence the frequency, that is, the
segregation of the Schlick factors is to be commended and therefore the work of
the author is to be marked as progressive. In my opinion, the question of

effective width cannot be solved by the use of an ideal box girder but only by
experiment on an actual ship. The ideal box girder has, however, actually done
its duty but now we should deal with actual ship proportions. Likewise the
effect of shear deflection on the elastic line of the complete hull cannot be
solved mathematically. The reason for this as is well known is the ignorance of
the stress distribution. The expression chosen by the author is to be considered
only an approximation. Actually the shearing stress is a function of the deflec-
tion. An attempt must be made to introduce the shear deflection term as an
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auxiliary term in the basic vibration equation -C / _

The author obtains for the effect of shear deflection relatively high values

which at least with respect to the influence of double bottoms must be doubted.

We require further extension of the theoretical expressions by full scale

experiments. I indicated the correct line of investigation some time ago in the

journal Werft und Reederei. With regard to the influence of the complex nature of

the hull, I believe that an additional differentiation of the factors which in-

fluence the bending factor is possible particularly with regard to the modulus of

elasticity. I repeat the question already asked of the author whether he is of

the opinion that two otherwise similar ships one of which is welded and the other

riveted have the same modulus of elasticity. For the complete longitudinal frame

of the ship, I am of the opihion that it is considerably lower than that of the

material as used in the author's computation.

A still further separable factor is the influence of the transverse

contraction of the section between bulkheads. Its analysis is only possible on

the basis of systematic experiments.

The author deals with only a part of the important practical vibration

problem which still offers many difficulties from the standpoiit of measuring

technique. In order to make clear the deformation processes a number of vibro-

graphs must be distributed over the ship inasmuch as in practice superpositions

occur due to horizontal and torsional vibrations. This complication of the actual

vibration process due to which local vibration phenomena are also of considerable

practical importance places difficult requirements on the technique of measurement.

It is therefore gratifying that the STG will attack the problem of elasticity in

a separate committee. In this connection the wish must be expressed that in this

time of necessity the scant means at our disposal be distributed among all inves-

tigators in a more equitable manner in order that all may be able to contribute

to further clarifying so important a practical problem in elasticity.

Dr. Ing. Weinblum, Berlin:

First of all several formal observations on the interesting work of

Dr. Schadlofsky which is based on the fundamental equation of the vibrating bar.

It is appropriate first to consider all terms involved in the differential

equation even though a solution cannot be found in this general form. Besides

the potential energy due to normal stress the shearing stress is to be considered;

in the kinetic energy there appears in addition to the mass of the bar the addi-

tional mass of the water; for the damping a dispersion function can be written.

If we now undertake an estimate of the influences of the individual terms

(e.g. there exists for prismatical bars a solution by Timoshenko which takes

into consideration the shear stresses) it is possible to make simplifications
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without encountering the danger of overlooking essential points. Then it would

also have been possible to do without a number of experiments.

The concept of virtual mass is of fundamental importance in this investi-

gation. The theoretically determined values of the same agree very well for

bodies on the surface so long as it is a case of vertical motion - buoyancy

vibration; e.g. we undertook such experiments on a sphere in the Versuchsanstalt

fur Wasserbau und Schiffbau, Berlin in charge of Dr. Erbach (see Schiffbau 1931

p 490) which confirmed with good accuracy the value of effective mass of 50% of

the original volume even for relatively large amplitudes. Moullin (Transactions

for the Third International Congress of Applied Mechanics, Stockholm 1930) gives

for prismatical bars an experimentally determined value of about 90% of the

theoretical; at the same time he points out that for vibration with nodes the

percentage appears to be still lower. On the basis of the present data we must

assume that, even in complicated forms of motion, theory gives in the main results

for determining virtual mass which are useful both qualitatively and quantitatively.

The effect of the damping on the period seldom exceeds 1%.

Dr. Ing. Gustav Wrobbel - Hamburg:

May I also express my acknowledgment of the unusually interesting state-

ments of Dr. Schadlofsky as well as the support given him by the Deschimag I

share the opinion of Dr. Dahlmann that the shear effect of double bottoms cannot

be as great as shown by the calculations in this paper. Contrary to Dr. Dahlmann

and in agreement with Prof. Schnadel,thanks to whose statements I am able to ex-

press myself comparatively briefly, I should like to point out that the modulus

of elasticity of the material has been used as a basis for all calculations as

opposed to the apparent modulus of elasticity constantly proposed by Biles

and Dahlman. When Dr. Dahlman states that the elastician must consider that model

technique has been,gnawed to the bone may I in contrast express my view that there

is still a quantity of flesh thereon and, as emphasized by me on various occasions,

model research and research on full size ships must go hand in hand and supplement

one another if we wish to obtain a scientific knowledge of the processes actually

taking place and the existing laws. For brevity I refer to an article of mine on

this topic in the journal WRH Vol. 12, No. 7, Sept. 1, 1931 which treats these

questions exhaustively. The fact that the present work of DP. Schadlofsky is based

on model research as well as full scale research gives the work special value.

Closing remarks of the author:

Prof. Horobjects in the first place to the expression chosen by me

"damping resistance" on the grounds that by damping we understand a process by

which energy of vibration is dissipated. In this connection I might refer to the
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well known book of Prof. Hort "Technische Schwingungslehre" in which in section

six is stated: "Under damping we understand all general resistance forces which

oppose the motion of a vibrating body."

I therefore chose the expression damping resistance as suitable chiefly so

that the other remaining resistances such as waves, friction, and turbulence

resistances are included.

To the contradiction which exists between my measured results and the

theory of Lewis and Taylor I should like to state first that in no sense do I

underestimate the great scientific significance of the work of Lewis and Taylor.

My experimental results agree with the results of this theory except for the case

of relatively low frequencies. At high frequencies they probably would agree

fully with the theory mentioned as shown by the agreement with Nicholl's experi-

ments. An answer to the question whether the observed difference at low fre-

quencies is due to any source of error in my experiments or to the actual

presence of a true damping resistance can only be given by new experiments. I

will only point out in this respect that with models of very low natural fre-

quencies considerable difficulties of measurement arise since these models are

very soft and light. The effect of the pressure of the vibrograph rods and the

effect of the rubber strips are thus somewhat greater. Moreover the light models

float at a certain draft and must be held in their original position by special

precautions. For these reasons the series of measurements with test model 1 was

repeated not less than three times. It was necessary to reject one series because

the frequencies before and after immersion differed widely. The two other repeti-

tions gave results in agreement.

The proposal of Prof. Horn to alter the test conditions in repeating the

experiments appears very valuable as a means of finally clarifying the relation

between damping resistance and frequency. Thus I might point out that the

absolute magnitude and distribution of the damping resistance cannot be derived

from the foregoing experiments. The values determined are relative and are bound

by a fixed nodal distance and an assumed distribution. Clarification of the

absolute magnitude can only be given by experiments with entirely freely vibrat-

ing models.

I will briefly touch upon the remarks of the other speakers in the dis-

cussion. The statements of chief naval constructor Burkhardt which bring out

what attention the navy is paying to the vibration problem are unusually in-

teresting. The experiments with the familiar vibration generator of Losenhausen

are naturally best adapted for determining vibration constants according to the

Schlick formula especially for vibrations of the higher harmonics. The applica-

tion of such constants however is possible only for similar ships. For different

ship types the execution of a vibration computation is unavoidable. A compre-
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hensive program evidently has been set up by the naval authorities. It would be
highly gratifying if further particulars of the results could be reported at

future meetings.

I would like to thank especially Prof. Schnadel for his very interesting
remarks and encouragement. I know very well that Dr. Taylor had gone thoroughly
into the problem of shear deflection and in this connection have scarcely anything
to add to the statements of Prof. Schnadel. With regard to the conclusions drawn
by him from Taylor's measurements on board ship after launching regarding the
slight magnitude of "real damping resistance" it must be admitted that it corrobo-
rates the view of Prof. Horn to the effect that the exoerimental conditions have
not been without effect on the dependence of total resistance on frequency
observed by me. Therefore, in the interest of a final clarification, it is
absolutely necessary that such experiments be repeated. As I have heard further

experiments in this direction will be made.
To the remarks of Dr. Weinblum I would like to make the following reply:

Even though in the interest of a complete presentation of the entire problem
the introduction of the factors influencing the elastic behavior and the inertia
resistance in the differential equation appears desirable, practically the total
picture would be unnecessarily complicated. The calculation of shear deflection
according to Timoshenko should probably be regarded as more exact but also much
more complicated. It is doubtful whether the gain in accuracy is commensurate
with the increased time expended.

In conclusion I would like to emphasize that my work was conceived from
practical considerations and is intended for direct application to practice. Even
though many special questions still require special research I nevertheless hope
that my paper will contribute to facilitating the method of computing the natural
frequency in practice and give an incentive for further studies.

I thank the gentlemen taking part in the discussion for the friendly
interest which they have shown in my work and the STG that they have given me the
opportunity to present my paper in their meeting.
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Schwingungsmessungen auf ,,Bremse" 11. Juni 1931.
Auswertungsergebnisse aus den Kurven des Askania-Schwingungsmessers.

(Eigenfrequenz = 6 Hertz

If 1,5
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Ordnung zahl d . firequenz

Reihenfoige der Eigenfrequenzen.
Die Frequcnzen oberhalb der

II. Eigenfrequenz zeigen die gleiche
Gesetzmdfigkeit wie beim homogenen

elastischen Balken.
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Zentrifugalkriifte der Erregermaschine.

(Nach SpiithLosenhausen.)

Ms

'I
f,

Bild 1.
Si = indiz. Vergaser, Sdyn = dynamischer Vergaser.

= GesamtVergaser des Messers.

(Schwingungsmessungen Kreuzer ,,Leipzig")

Auf Blatt 2 und 3 sind zum besseren
Vergleich der verschiedenen Frequen-
zen nicht die absoluten Amplituden,
sondern die auf die Einheit der Kraft
(100 kg) umgerechneten aufgetragen.

0 5 70 if /erntz AO
Bild 2 a. Biegungsschwingungsformen.
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Bild 2. Vertikale Schwingungsformen bei 100 kg Erregerkraft.
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Bild 8. Kreuzer ,,Leipzig'.
Reihenfolge der Eigenfrequenzon.
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Horizontal-Schwingung liingsschiffs auf Oberdeck im Vergleich zu den
VertikalSchwingungen.

(Amplituden-Mastab entspricht dem auf Blatt 4 und ist fiir horizontale und
vertikale Schwingungen der gleiche.)

4--
L -

Knoten der Vertikalbewegung
= Bauch der Horizontalbeweg.
Bauch der Vertikalbewegung
= Knoten d. Horizontalbeweg.

Ldngsschni / dAJo//?aR'

Bild 4.

Vergleichsmessung
Oberdeck und Innendeck.
(Ermittling der Nullinie

fir Spant 84.)
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